
Improving DRAM Performance by Parallelizing Refreshes with Accesses
Kevin Chang†, Donghyuk Lee†, Zeshan Chisti§ , Alaa Alameldeen§, Chris Wilkerson§, Yoongu Kim†, Onur Mutlu†

†Carnegie Mellon University, §Intel Labs

Background and Problems Our Solution

 DRAM cells require periodic refresh to prevent data loss from leakage
 Problems: 
1. System performance degradation
All-bank refresh (REFab): memory controllers refresh every bank within 
a rank, blocking the rank from servicing memory requests

2. DRAM scaling
As DRAM density increases (more cells), refresh latency is expected to 
increase

 Per-bank refresh (REFpb): refresh one bank at a time, following a 
strict sequential round-robin order

Advantage: enable DRAM to serve requests in non-refreshing  banks 
while another bank is refreshing

 Our goal: improve system performance over existing refresh schemes 
by mitigating refresh penalty
 Our key idea: hide refresh latency by parallelizing refresh operations 
with memory accesses to avoid delaying memory requests

Dynamic Access Refresh Parallelization (DARP):1
 Refresh scheduling policy with two components
1. Out-of-order per-bank refresh: 
 Key observation: DRAM has internal logic that strictly refreshes 
banks in a round-robin order
 Key idea: refresh banks in out-of-order fashion by issuing a per-bank 
refresh to any idle bank

2. Write-refresh parallelizaton:
 Key observations: 
1) Write requests are buffered and drained to DRAM in a batch
2) Write requests are not latency-critical 
 Key idea: select the bank with the fewest number (or none) of 
pending writes to refresh while DRAM is draining writes

Methodology

 8 OoO cores, 4GHz, 3-wide issue
 64KB L1, 512KB private L2 cache slide/core
 Memory controller: 64-entry request queue,
FR-FCFS scheduling
 DRAM: DDR3-1333, 2 channels,
2 ranks/channel, 8 banks/rank, 8 

subarrays/bank
 Simulation: cycle-level x86 multi-core 
simulator
 Workloads: TPC, STREAM, SPEC CPU2006

Results

0
5

10
15
20
25
30

0 - 1 1 - 5 5 - 10 > 10 Gmean

MPKI All

P
e

rf
o

rm
an

ce
 

Lo
ss

 (
%

)

8Gb 16Gb 32Gb

Subarray Access Refresh Parallelization (SARP):2

 Key observations: 
1) A bank consists of multiple subarrays (sub-banks)
2) Every subarray has its own local sense amplifiers (row buffer) to 

perform refresh operations
3) DRAM I/O remains idle under refresh

 Key idea: enable a bank to service accesses in idle subarrays in 
parallel with refreshes to other subarrays in a bank
 SARP requires modifications to the DRAM microarchitecture
 Area overhead: 0.71% based on Rambus DRAM model

0

10

20

30

8Gb 16Gb 32Gb

P
e

rf
o

rm
an

ce
 

Lo
ss

 (
%

)

DRAM Density

REFab REFpb

0.95

1

1.05

1.1

1.15

1.2

N
O

R
M

A
LI

ZE
D

 W
S

100 WORKLOADS

REFpb DARP SARPpb DARP+SARPpb

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

N
O

R
M

A
LI

ZE
D

 W
S

100 WORKLOADS

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

1.3
1.35

1.4

N
O

R
M

A
LI

ZE
D

 W
S

100 WORKLOADS

0
5

10
15
20
25
30
35

0 25 50 75 100 Avg 0 25 50 75 100 Avg

Compared to REFab Compared to REFpb

W
S 

Im
p

ro
ve

m
e

n
t 

(%
) 8Gb 16Gb 32Gb

8Gb 16Gb

32Gb Memory Intensity


