
0.01

0.1

1

10

100

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

R
u

n
ti

m
e

 (
m

s)
 

r 

consec = 0 

t=1 t=4 t=8 t=16

Design Space Analysis for Heterogeneous Systems 
Wenhao Jia (Princeton), Tae Jun Ham (Princeton), Kelly A. Shaw (Univ of Richmond), Margaret Martonosi (Princeton) 

The Emergence of Heterogeneous Systems 
 

Approach 2: Designing 
Communication Accelerators 

• Increasingly demanding power/performance goals require designers to utilize 
heterogeneous components 
• GPUs offer high performance-per-watt, but they are difficult to design 
• Accelerators can substantially improve streaming application performance 

• The problem: Heterogeneous systems are difficult to design and optimize 
• Must account for computation AND communication 
• Must account for performance AND power 
• Existing automated design space exploration approaches often cannot 

handle real-system variance and subspace-induced nonlinearity 

Our Work: Automated Design Space Partitioning 

• Partition-based regression tree approach is powerful and robust 
• Handles real-system measurement variance 
• Handles “performance cliffs” and “subspaces” common for GPU systems 
• Applicable to multiple metrics and CPUs 
• Tree visualizations are intuitive 

• For GPU users, tool builders and hardware designers 
• Optimize designs within or across different platforms 
• Reveal power/performance trade-offs 
• Measure a program’s input sensitivity 
• > 300X speed-up in design space exploration 

do  

  for each current partition C 

    for each parameter ds 
      for each possible value vt of ds 
      split C into C1 and C2 based on (ds, vt) 

        SSEst = Σi(P1i – P1) + Σj(P2j – P2) 

    find the smallest SSEmn among all SSEst 
    if SSEmn > 0 

      split C using (dm, vn) and add to tree 

while at least one partition was split 

output the generated partition tree 

Starchart Method 

• Step 1: Uniformly and randomly sample N designs from the whole space  
• Step 2: Apply an iterative algorithm to recursively partition the samples 
• Step 3: Use resulting tree representations to solve subspace-based problems 

The whole 
design space 

70 designs 

21 designs 
mean = 1.1 ms 

21 designs 
mean = 0.79 ms 

consec = 0 consec = 1 

18 designs 
mean = 5.8 ms 

52 designs 
mean = 0.76 ms 

t = 1 t > 1 

Further partitioning 
depends only on r 

42 designs 
mean = 0.93 ms 

10 designs 
mean = 0.10 ms 

1 < t ≤ 8 t > 8 

0.01

0.1

1

10

100

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

R
u

n
ti

m
e

 (
m

s)
 

r 

consec = 0 (—) or 1 (···) 

0

5

10

15

20

25

30

35

40

45

50

20 50 100 200 400 800 1600 3200

M
e

d
ia

n
 r

e
la

ti
ve

 p
re

d
ic

ti
o

n
 e

rr
o

r 
(%

) 

Number of training samples 

bfs/AMD

bfs/NVIDIA

hotspot/AMD

hotspot/NVIDIA

kmeans/AMD

kmeans/NVIDIA

matrix/AMD

matrix/NVIDIA

nbody/AMD

nbody/NVIDIA

streamcluster/AMD

streamcluster/NVIDIA

param meaning value 

r 
# rows / 

thread block 
1–256 

t 
# threads / 

row 
1–16 

consec 

threads work 
on 

consecutive 
elements? 

0 / 1 

# total 
designs 

70 

re
cu

rs
iv

e 
p

ar
ti

ti
o

n
in

g 

try all 
tentativ
e splits 

stopping 
criteria 

matrix transpose 

Approach 1: Starchart 

Motivation 

• GPU design spaces contain complex “performance cliffs” and “subspaces” 
• Existing design space exploration approaches are insufficient 

(Publication) Starchart: Hardware and Software Optimization Using Recursive 
Partitioning Regression Trees, Wenhao Jia et al., Parallel Architectures and 
Compilation Techniques (PACT) 2013 (Work in Progress) 

Motivation 

• Accelerator design is not just about computation! 
• Moving data to/from the accelerator from/to the cores or memory can 

consume substantial amount of time and energy 
• It is necessary to think about both communication and computation when 

utilizing an accelerator 

Communication-Aware Accelerator Architecture 

• An accelerator consists of three components : data load unit, computation 
unit, data store unit 
 
 
 
 
 
 
 
 
 
 
 

• On this design, we consider data load and data store each as a single stage of 
the pipeline (computation can have multiple stages ) 

• To balance this pipeline, we perform DVFS or similar techniques on either data 
load/store stage or computation stage to minimize energy consumption 

• Our goal is to automate this optimization process 

Data load 
unit 

Accelerator 
Memory 

Cores or 
Memory 

Computation 
Unit 

Accelerator 
Memory 

Data store 
unit 

Conclusion 
• Heterogeneity calls for systematic and novel design space analysis techniques 
• Automated regression tree methods can solve real-system 

power/performance optimization problems with > 300X productivity speedup 
• Communication-aware accelerators balance communication with computation 

to significantly reduce wasted energy consumption 

Our Work 
• Analyze Existing Systems 

• Power/performance analysis of heterogeneous systems 
• Real-system measurements and simulation 

• Optimize Mappings onto GPUs 
• Statistical and machine learning-based design space analysis techniques 
• Also, compile-time analysis to prune program design parameters 

• [Newer] Analyze and Design Mappings onto Accelerators 
• Key focus:  Plan Communication Accelerators to pair with Computation 

Accelerators in a balanced manner 


