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Abstract
We present Resilient Distributed Datasets (RDDs), a dis-
tributed memory abstraction that lets programmers per-
form in-memory computations on large clusters in a
fault-tolerant manner. RDDs are motivated by two types
of applications that current computing frameworks han-
dle inefficiently: iterative algorithms and interactive data
mining tools. In both cases, keeping data in memory
can improve performance by an order of magnitude.
To achieve fault tolerance efficiently, RDDs provide a
restricted form of shared memory, based on coarse-
grained transformations rather than fine-grained updates
to shared state. However, we show that RDDs are ex-
pressive enough to capture a wide class of computations,
including current specialized programming models for it-
erative jobs like Pregel. We have implemented RDDs in
a system called Spark, which we evaluate through a vari-
ety of benchmarks and user applications.

1 Introduction
Cluster computing frameworks like MapReduce [10] and
Dryad [18] have been widely adopted for large-scale data
analytics. These systems let users build parallel compu-
tations out of a set of high-level operators, without hav-
ing to worry about work distribution and fault tolerance.

Although current frameworks provide a wide range of
abstractions for accessing a cluster’s computational re-
sources, they lack abstractions for making use of dis-
tributed memory. This makes them inefficient for an im-
portant emerging class of applications: those that reuse
intermediate results across multiple computations. Data
reuse is common in many iterative machine learning and
graph algorithms, including PageRank, K-means cluster-
ing, and logistic regression. Another compelling use case
is interactive data mining, where a user runs multiple ad-
hoc queries over the same subset of the data. However, in
most current frameworks, the only way to reuse data be-
tween computations (e.g., between two MapReduce jobs)
is to write it to an external stable storage system, like a
distributed file system. This approach incurs substantial
overheads due to data replication, disk I/O, and serializa-
tion, which can dominate application execution times.

Recognizing this problem, researchers have developed
specialized frameworks for some applications that re-
quire data reuse. For example, Pregel [21] is a system for
iterative graph computations that keeps intermediate data
in memory, while HaLoop [7] offers an iterative MapRe-
duce model. However, these frameworks only support
specific computation patterns (e.g., looping a series of
MapReduce steps) and perform data sharing implicitly
for these patterns. They do not provide abstractions for
more general reuse, e.g., to let a user load several datasets
into memory and run ad-hoc queries across them.

In this paper, we propose a new abstraction called re-
silient distributed datasets (RDDs) that enables efficient
data reuse in a broad range of applications. RDDs are
fault-tolerant, parallel data structures that let users ex-
plicitly persist intermediate results in memory, control
their partitioning to optimize data placement, and ma-
nipulate them with a rich set of operators.

The main challenge in designing RDDs is defining a
programming interface that can provide fault tolerance
efficiently. Existing abstractions for in-memory storage
on clusters, such as distributed shared memory [23], key-
value stores [24], databases, and Piccolo [26], offer an
interface based on fine-grained updates to mutable state
(e.g., cells in a table). With this interface, the only ways
to provide fault tolerance are to replicate the data across
machines or to log updates across machines. Both ap-
proaches are expensive for data-intensive workloads, as
they require copying large amounts of data over the dat-
acenter network, whose bandwidth is far lower than that
of RAM, and substantial storage overhead.

In contrast to these systems, RDDs provide an inter-
face based on coarse-grained transformations (e.g., map,
filter and join) that apply the same operation to many
data items. This allows them to efficiently provide fault
tolerance by logging the transformations used to build a
dataset (its lineage) rather than the actual data.1 If a parti-
tion of an RDD is lost, the RDD has enough information
about how it was derived from other RDDs to recom-
pute just that partition. This mechanism is similar to the

1Checkpointing the data in some RDDs may be useful when a lin-
eage chain grows large, however, and we discuss how to do it in §5.1.1.

1



partial recovery schemes used within a computation in
MapReduce and Dryad, except that RDDs track lineage
for a data structure that persists across computations.

Although an interface based on coarse-grained trans-
formations may at first seem limited, RDDs are a good
fit for many parallel applications, because these appli-
cations naturally apply the same operation to multiple
data items. Indeed, we show that RDDs can efficiently
express many cluster programming models that have so
far been proposed as separate systems, including MapRe-
duce, DryadLINQ, SQL, Pregel and HaLoop, as well as
new applications that these systems do not capture, like
interactive data mining. The ability of RDDs to accom-
modate computing needs that were previously met only
by introducing new frameworks is, we believe, the most
credible evidence of the power of the RDD abstraction.

We have implemented RDDs in a system called Spark,
which is being used for research and production applica-
tions at UC Berkeley and Conviva Inc. Spark provides
a convenient language-integrated programming interface
similar to DryadLINQ [30] in the Scala programming
language [3]. In addition, Spark can be used interactively
to query big datasets from the Scala interpreter. We be-
lieve that Spark is the first system that allows a general-
purpose programming language to be used at interactive
speeds for in-memory data mining on clusters.

We evaluate RDDs and Spark through both mi-
crobenchmarks and measurements of user applications.
We show that Spark is up to 20× faster than Hadoop for
iterative applications, speeds up a real-world data analyt-
ics report by 40×, and can be used interactively to scan a
1 TB dataset with 5–7s latency. More fundamentally, to
illustrate the generality of RDDs, we have implemented
the Pregel and HaLoop programming models on top of
Spark, including the placement optimizations they em-
ploy, as relatively small libraries (200 lines of code each).

To summarize, our contributions are:

• Resilient distributed datasets, an efficient data shar-
ing abstraction that can express a wide range of par-
allel applications, including several specialized pro-
gramming models proposed for iterative jobs.

• A lineage-based fault recovery scheme for RDDs that
exploits coarse-grained operations to avoid the over-
head of checkpointing and replication.

• An implementation of RDDs that we evaluate
through diverse applications.

We begin this paper with overviews of RDDs (§2)
and Spark (§3). We then discuss our representation of
RDDs and their lineage (§4), our implementation (§5),
and experimental results (§6). Finally, we discuss
how RDDs capture several existing cluster programming
models (§7), survey related work (§8), and conclude.

2 Resilient Distributed Datasets (RDDs)
This section provides an overview of RDDs. We first de-
fine RDDs (§2.1), discuss their programming interface in
Spark (§2.2), and show an example (§2.3). We compare
RDDs with distributed shared memory in §2.4. Finally,
we discuss the internal representation of RDDs in Spark
(§2.5) and limitations of the RDD model (§2.6).

2.1 RDD Abstraction

Formally, an RDD is a read-only, partitioned collection
of records. RDDs can only be created through determin-
istic operations on either (1) data in stable storage or (2)
other RDDs. We call these operations transformations to
differentiate them from other operations on RDDs. Ex-
amples of transformations include map, filter, and join.2

RDDs do not need to be materialized at all times. In-
stead, an RDD has enough information about how it was
derived from other datasets (i.e., its lineage) to compute
its partitions from data in stable storage. This is a power-
ful property: in essence, a program cannot reference an
RDD that it cannot reconstruct after a failure.

Finally, users can control two other aspects of RDDs:
persistence and partitioning. Users can indicate which
RDDs they will reuse and choose a storage strategy for
them (e.g., keeping them in memory). They can also ask
that an RDD’s elements be partitioned across machines
based on key in each record. This is useful for placement
optimizations, such as ensuring that two datasets that will
be joined together are hash-partitioned in the same way.

2.2 Spark Programming Interface

Spark exposes RDDs through a language-integrated API
similar to DryadLINQ [30] and FlumeJava [8], where
each dataset is represented as an object and transforma-
tions are invoked using methods on these objects. We
emphasize here that we are not claiming novelty for the
language-integrated interface to RDDs; rather, we took
an interface that is widely successful and show that the
RDDs abstraction can be added behind this interface to
greatly increase the power of DryadLINQ-like tools.

Programmers start by defining one or more RDDs
through transformations on data in stable storage
(e.g., map and filter). They can then use these RDDs
in actions, which are operations that return a value to the
application or export data to a storage system. Exam-
ples of actions include count (which returns the number
of elements in the dataset), collect (which returns the el-
ements themselves), and save (which outputs the dataset
to a storage system). Like DryadLINQ, Spark computes

2Although individual RDDs are immutable, it is possible to imple-
ment mutable state by having multiple RDDs to represent multiple ver-
sions of a dataset. We made RDDs immutable to make it easier to
describe lineage graphs, but it would have been equivalent to have our
abstraction be versioned datasets and track versions in lineage graphs.
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RDDs lazily the first time they are used in an action, so
that it can pipeline transformations.

In addition, programmers can call a persist method to
indicate which RDDs they want to reuse in future oper-
ations. Spark keeps persistent RDDs in memory by de-
fault, but it can spill them to disk if there is not enough
RAM. Users can also request other persistence strategies,
such as storing the RDD only on disk or replicating it
across machines, through optional flags to persist. Fi-
nally, users can set a persistence priority on each RDD to
specify which in-memory data should spill to disk first.

2.3 Example: Console Log Mining

We illustrate RDDs through an example use case. Sup-
pose that a large website is experiencing errors and an
operator wants to search terabytes of logs in the Hadoop
filesystem (HDFS) to find the cause. Using Spark, the
operator can load just the error messages from the logs
into RAM across a set of nodes and query them interac-
tively. She would first type the following Scala code:

lines = spark.textFile("hdfs://...")

errors = lines.filter(_.startsWith("ERROR"))

errors.persist()

Line 1 defines an RDD backed by an HDFS file (as a
collection of lines of text), while line 2 derives a filtered
RDD from it. Line 3 then asks for errors to persist in
memory so that it can be shared across queries. Note that
the argument to filter is Scala syntax for a closure.

At this point, no work has been performed on the clus-
ter. However, the user can now use the RDD in actions,
e.g., to count the number of messages:

errors.count()

The user can also perform further transformations on
the RDD and use their results, as in the following lines:

// Count errors mentioning MySQL:

errors.filter(_.contains("MySQL")).count()

// Return the time fields of errors mentioning

// HDFS as an array (assuming time is field

// number 3 in a tab-separated format):

errors.filter(_.contains("HDFS"))

.map(_.split(’\t’)(3))

.collect()

After the first action involving errors runs, Spark will
store the partitions of errors in memory, greatly speed-
ing up subsequent computations on it. Note that the base
RDD, lines, is not loaded into RAM. This is desirable
because the error messages might only be a small frac-
tion of the data (small enough to fit into memory).

Finally, to illustrate how our model achieves fault tol-
erance, we show the lineage graph for the RDDs in our

lines 

errors 

filter(_.startsWith(“ERROR”)) 

HDFS errors 

time fields 

filter(_.contains(“HDFS”))) 

map(_.split(‘\t’)(3)) 

Figure 1: Lineage graph for the third query in our example.
Boxes represent RDDs and arrows represent transformations.

third query in Figure 1. In this query, we started with
errors, the result of a filter on lines, and applied a fur-
ther filter and map before running a collect. The Spark
scheduler will pipeline the latter two transformations and
send a set of tasks to compute them to the nodes holding
the cached partitions of errors. In addition, if a partition
of errors is lost, Spark rebuilds it by applying a filter on
only the corresponding partition of lines.

2.4 RDDs vs. Distributed Shared Memory

To further understand the properties of RDDs as a dis-
tributed memory abstraction, we compare them against
distributed shared memory (DSM) in Table 1. In DSM
systems, applications read and write to arbitrary loca-
tions in a global address space. Note that under this def-
inition, we include not only traditional shared memory
systems [23], but also other systems where applications
make fine-grained writes to shared state, including Pic-
colo [26], which provides a shared DHT, and distributed
databases. DSM is a very general abstraction, but this
generality makes it harder to implement in an efficient
and fault-tolerant manner on commodity clusters.

The main difference between RDDs and DSM is that
RDDs can only be created (“written”) through coarse-
grained transformations, while DSM allows reads and
writes to each memory location. This restricts RDDs
to applications that perform bulk writes, but allows for
more efficient fault tolerance. In particular, RDDs do not
need to incur the overhead of checkpointing, as they can
be recovered using lineage.3 Furthermore, only the lost
partitions of an RDD need to be recomputed upon fail-
ure, and they can be recomputed in parallel on different
nodes, without having to roll back the whole program.

A second benefit of RDDs is that their immutable na-
ture also lets a system mitigate slow nodes (stragglers),
by running backup copies of slow tasks as in MapRe-
duce and Dryad [10]. Backup tasks would be hard to
implement with DSM, as both copies of a task would

3In some applications, it can still help to checkpoint RDDs with
long lineage chains, as we discuss in Section 5.1.1. However, this can
be done in the background because RDDs are immutable, and there is
no need to take a snapshot of the whole application as in DSM models.
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Aspect RDDs Distr. Shared Mem. 
Reads Coarse- or fine-grained Fine-grained 
Writes Coarse-grained Fine-grained 
Consistency Trivial (immutable) Up to app / runtime 
Fault recovery Fine-grained and low-

overhead using lineage 
Requires checkpoints 
and program rollback 

Straggler 
mitigation 

Possible using backup 
tasks 

Difficult 

Work 
placement 

Automatic based on 
data locality 

Up to app (runtimes 
aim for transparency) 

Behavior if not 
enough RAM 

Similar to existing data 
flow systems 

Poor performance 
(swapping?) 

Table 1: Comparison of RDDs with distributed shared memory.

read/write to the same memory locations and would in-
terfere with each other’s updates.

The RDD model also provides two other advantages
over DSM. First, in bulk operations on RDDs, a runtime
can schedule tasks based on data locality to improve per-
formance. Second, RDDs degrade gracefully when there
is not enough memory to store them, as long as they are
only being used in scan-based operations. Partitions that
do not fit in RAM can be stored on disk and will provide
similar performance to current data-parallel systems.

One final point of comparison is the granularity of
reads. Many actions on RDDs (e.g., count and collect)
perform bulk reads that scan the whole dataset, which
also lets us schedule them close to the data. However,
RDDs support fine-grained reads as well, through a key
lookup operation on hash- or range-partitioned datasets.

2.5 RDD Representation

Although RDDs can be constructed through a variety of
transformation operators, we represent them in Spark us-
ing a simple common interface. Each RDD has a list
of partitions, preferred locations for each partition (hosts
where it can be accessed faster due to locality), a list of
dependencies on parent RDDs, a function for computing
each partition of the RDD given the parent partitions that
it depends on, and information about partitioning order.

Having this common interface for all RDDs allowed us
to design a job scheduler that does not need to be aware
of every possible operator. This in turn made it easy to
plug in new transformations that compose with the ex-
isting ones; indeed, most of the transformations in Spark
are implemented in tens of lines of code. We discuss our
representation of RDDs more fully in Section 4.

2.6 Applications Not Suitable for RDDs

As discussed in the Introduction, RDDs are best suited
for batch applications that apply the same operation to
all elements of a dataset. In these cases, RDDs can ef-
ficiently remember each transformation as one step in a

Worker 
tasks 

results 
RAM 

Input Data 

Worker 
RAM 

Input Data 

Worker 
RAM 

Input Data 

Driver 

Figure 2: Spark runtime. The user’s driver program launches
multiple workers, which read data blocks from a distributed file
system and can persist computed RDD partitions in memory.

lineage graph and can recover lost partitions without hav-
ing to log large amounts of data. RDDs would be less
suitable for applications that make asynchronous fine-
grained updates to shared state, such as a storage sys-
tem for a web application or an incremental web crawler.
For these applications, it is more efficient to use systems
that perform traditional update logging and data check-
pointing, such as databases, RAMCloud [24], Percolator
[25] and Piccolo [26]. Our goal is to provide an efficient
programming model for batch analytics and leave these
asynchronous applications to specialized systems.

3 Spark Programming Interface
Spark provides the RDD abstraction through a language-
integrated API similar to DryadLINQ [30] in Scala [3],
a statically typed functional programming language for
the Java VM. We chose Scala due to its combination of
conciseness (which is convenient for interactive use) and
efficiency (due to static typing). However, nothing about
the RDD abstraction requires a functional language.

To use Spark, developers write a driver program that
connects to a cluster of workers, as shown in Figure 2.
The driver defines one or more RDDs and invokes ac-
tions on them. The workers are long-lived processes that
can store dataset partitions in RAM across operations.

As we showed in the log mining example in Section
2.3, users provide arguments to RDD operations like map
by passing closures (function literals). Scala represents
each closure as a Java object, and these objects can be
serialized and loaded on another node to pass the closure
across the network. Scala also saves any variables bound
in the closure as fields in the Java object. For example,
one can write code like var x = 5; rdd.map(_ + x) to
add 5 to each element of an RDD.4

RDDs themselves are statically typed objects
parametrized by an element type. For example,
RDD[Int] is an RDD of integers. However, most of our
examples omit types since Scala supports type inference.

4We save each closure at the time it is created, so that the map in
this example will always add 5 even if x changes.
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Transformations

map(f : T ⇒ U) : RDD[T] ⇒ RDD[U]
filter(f : T ⇒ Bool) : RDD[T] ⇒ RDD[T]

flatMap(f : T ⇒ Seq[U]) : RDD[T] ⇒ RDD[U]
sample(fraction : Float) : RDD[T] ⇒ RDD[T] (Deterministic sampling)

groupByKey() : RDD[(K, V)] ⇒ RDD[(K, Seq[V])]
reduceByKey(f : (V,V) ⇒ V) : RDD[(K, V)] ⇒ RDD[(K, V)]

union() : (RDD[T],RDD[T]) ⇒ RDD[T]
join() : (RDD[(K, V)],RDD[(K, W)]) ⇒ RDD[(K, (V, W))]

cogroup() : (RDD[(K, V)],RDD[(K, W)]) ⇒ RDD[(K, (Seq[V], Seq[W]))]
crossProduct() : (RDD[T],RDD[U]) ⇒ RDD[(T, U)]

mapValues(f : V ⇒ W) : RDD[(K, V)] ⇒ RDD[(K, W)] (Preserves partitioning)
sort(c : Comparator[K]) : RDD[(K, V)] ⇒ RDD[(K, V)]

partitionBy(p : Partitioner[K]) : RDD[(K, V)] ⇒ RDD[(K, V)]

Actions

count() : RDD[T] ⇒ Long
collect() : RDD[T] ⇒ Seq[T]

reduce(f : (T,T) ⇒ T) : RDD[T] ⇒ T
lookup(k : K) : RDD[(K, V)] ⇒ Seq[V] (On hash/range partitioned RDDs)

save(path : String) : Outputs RDD to a storage system, e.g., HDFS

Table 2: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

Although our method of exposing RDDs in Scala is
conceptually simple, we had to work around issues with
Scala’s closure objects using reflection.5 We also needed
more work to make Spark usable from the Scala inter-
preter, as we shall discuss in Section 5. Nonetheless, we
did not have to modify the Scala compiler.

3.1 RDD Operations in Spark

Table 2 lists the main RDD transformations and actions
available in Spark. We give the signature of each oper-
ation, showing type parameters in square brackets. Re-
call that transformations are lazy operations that define a
new RDD, while actions launch a computation to return
a value to the program or write data to external storage.

Note that some operations, such as join, are only avail-
able on RDDs of key-value pairs. Also, our function
names are chosen to match other APIs in Scala and other
functional languages; for example, map is a one-to-one
mapping, while flatMap maps each input value to one or
more outputs (similar to the map in MapReduce).

In addition to these operators, users can ask for an
RDD to persist. Furthermore, users can get an RDD’s
partition order, which is represented by a Partitioner
class, and partition another dataset according to it. Oper-
ations such as groupByKey, reduceByKey and sort auto-
matically result in a hash or range partitioned RDD.

3.2 Example Applications

We complement the data mining example in Section 2.3
with two iterative applications: logistic regression and
PageRank. The latter also showcases how control of
RDDs’ partitioning can improve performance.

5Specifically, when a closure is nested inside another closure, it may
reference variables from the outer closure that it does not need.

3.2.1 Logistic Regression

Many machine learning algorithms are iterative in nature
because they run iterative optimization procedures, such
as gradient descent, to maximize a function. They can
thus run much faster by keeping their data in memory.

As an example, the following program implements lo-
gistic regression [14], a common classification algorithm
that searches for a hyperplane w that best separates two
sets of points (e.g., spam and non-spam emails). The al-
gorithm uses gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it.

val points = spark.textFile(...)

.map(parsePoint).persist()

var w = // random initial vector

for (i <- 1 to ITERATIONS) {

val gradient = points.map{ p =>

p.x * (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

}.reduce((a,b) => a+b)

w -= gradient

}

We start by defining a persistent RDD called points
as the result of a map transformation on a text file that
parses each line of text into a Point object. We then re-
peatedly run map and reduce on points to compute the
gradient at each step by summing a function of the cur-
rent w. Keeping points in memory across iterations can
yield a 20× speedup, as we show in Section 6.1.

3.2.2 PageRank

A more complex pattern of data sharing occurs in
PageRank [6]. The algorithm iteratively updates a rank
for each document by adding up contributions from doc-
uments that link to it. On each iteration, each document
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Figure 3: Lineage graph for datasets in PageRank.

sends a contribution of r
n to its neighbors, where r is its

rank and n is its number of neighbors. It then updates
its rank to α/N + (1 − α)

∑
ci, where the sum is over

the contributions it received and N is the total number of
documents. We can write PageRank in Spark as follows:

// Load graph as an RDD of (URL, outlinks) pairs

val links = spark.textFile(...).map(...).persist()

var ranks = // RDD of (URL, rank) pairs

for (i <- 1 to ITERATIONS) {

// Build an RDD of (targetURL, float) pairs

// with the contributions sent by each page

val contribs = links.join(ranks).flatMap {

(url, (links, rank)) =>

links.map(dest => (dest, rank/links.size))

}

// Sum contributions by URL and get new ranks

ranks = contribs.reduceByKey((x,y) => x+y)

.mapValues(sum => a/N + (1-a)*sum)

}

This program leads to the RDD lineage graph in Fig-
ure 3. On each iteration, we create a new ranks dataset
based on the contribs and ranks from the previous itera-
tion and the static links dataset.6 One interesting feature
of this graph is that it grows longer with the number of
iterations. Thus, in a job with many iterations, it may
be necessary to reliably replicate some of the versions
of ranks to reduce fault recovery times [19]. The user
can call persist with a RELIABLE flag to do this. However,
note that the links dataset does not need to be replicated,
because partitions of it can be rebuilt efficiently by rerun-
ning a map on blocks of the input file. This dataset will
typically be much larger than ranks, because each docu-
ment has many links but only one number as its rank, so
recovering it using lineage saves time over systems that
checkpoint a program’s entire in-memory state.

Finally, we can optimize communication in PageRank
by controlling the partitioning of the RDDs. If we spec-
ify a partitioning for links (e.g., hash-partition the link

6Note that although RDDs are immutable, the variables ranks and
contribs in the program point to different RDDs on each iteration.

lists by URL across nodes), we can partition ranks in
the same way and ensure that the join operation between
links and ranks requires no communication (as each
URL’s rank will be on the same machine as its link list).
We can also write a custom Partitioner class to group
pages that link to each other together (e.g., partition the
URLs by domain name). Both optimizations can be ex-
pressed by calling partitionBy when we define links:

links = spark.textFile(...).map(...)

.partitionBy(myPartFunc).persist()

After this initial call, the join operation between links
and ranks will automatically aggregate the contributions
for each URL to the machine that its link lists is on, cal-
culate its new rank there, and join it with its links. This
type of consistent partitioning across iterations is one of
the main optimizations in specialized frameworks like
Pregel. RDDs let the user express this goal directly.

4 Representing RDDs
One of the challenges in providing resilient distributed
datasets as an abstraction is choosing a representation
for RDDs that can track lineage across a wide range of
transformations. Ideally, a system implementing RDDs
should provide as rich a set of transformation operators
as possible (e.g., at least the ones we outlined in Table 2),
and let the user compose them in arbitrary ways. We pro-
pose a simple graph-based representation for RDDs that
facilitates these goals. We have used this representation
in Spark to support a wide range of transformations with-
out having to add special logic to the scheduler for each
one, which greatly simplified the design of the system.

In a nutshell, we propose representing each RDD
through a common interface that exposes five pieces of
information: a set of partitions, which are atomic pieces
of the dataset; a set of dependencies on parent RDDs;
a function for computing the dataset based on its par-
ents; and metadata about its partitioning scheme and data
placement. For example, an RDD representing an HDFS
file has a partition for each block of the file and knows
which machines each block is on. Meanwhile, the result
of a map on this RDD has the same partitions, but applies
the map function to the parent’s data when computing its
elements. We summarize this interface in Table 3.

The most interesting question in designing this inter-
face is how to represent dependencies between RDDs.
We found it both sufficient and useful to classify de-
pendencies into two types: narrow dependencies, where
each partition of the parent RDD is used by at most one
partition of the child RDD, wide dependencies, where
multiple child partitions may depend on it. For exam-
ple, map leads to a narrow dependency, while join leads
to to wide dependencies (unless the parents are hash-
partitioned). Figure 4 shows other examples.
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Operation Meaning 
partitions() Return a list of Partition objects 

preferredLocations(p) List nodes where partition p can be 
accessed faster due to data locality 

dependencies() Return a list of dependencies 
iterator(p, parentIters) Compute the elements of partition p 

given iterators for its parent partitions 
partitioner() Return metadata specifying whether 

the RDD is hash/range partitioned 

Table 3: Interface used to represent RDDs in Spark.

This distinction is useful for two reasons. First, narrow
dependencies allow for pipelined execution on one clus-
ter node, which can compute all the parent partitions. For
example, one can apply a map followed by a filter on an
element-by-element basis. In contrast, wide dependen-
cies require data from all parent partitions to be available
and to be shuffled across the nodes using a MapReduce-
like operation. Second, recovery after a node failure is
more efficient with a narrow dependency, as only the lost
parent partitions need to be recomputed, and they can be
recomputed in parallel on different nodes. In contrast, in
a lineage graph with wide dependencies, a single failed
node might cause the loss of some partition from all the
ancestors of an RDD, requiring a complete re-execution.

This common interface for RDDs made it possible to
implement most transformations in Spark in less than 20
lines of code. Indeed, even new Spark users have imple-
mented new transformations (e.g., sampling and various
types of joins) without knowing the details of the sched-
uler. We sketch some RDD implementations below.

HDFS files: The input RDDs in our samples have been
files in HDFS. For these RDDs, partitions returns one
partition for each block of the file (with the block’s offset
stored in each Partition object), preferredLocations gives
the nodes the block is on, and iterator reads the block.

map: Calling map on any RDD returns a MappedRDD
object. This object has the same partitions and preferred
locations as its parent, but applies the function passed to
map to the parent’s records in its iterator method.

union: Calling union on two RDDs returns an RDD
whose partitions are the union of those of the parents.
Each child partition is computed through a narrow de-
pendency on the corresponding parent.7

sample: Sampling is similar to mapping, except that
the RDD stores a random number generator seed for each
partition to deterministically sample parent records.

join: Joining two RDDs may lead to either two nar-
row dependencies (if they are both hash/range partitioned

7Note that our union operation does not drop duplicate values—it is
equivalent to SQL’s UNION ALL.

union 

groupByKey 

join with inputs not 
co-partitioned 

join with inputs 
co-partitioned 

map, filter 

Narrow Dependencies: Wide Dependencies: 

Figure 4: Examples of narrow and wide dependencies. Each
box is an RDD, with partitions shown as shaded rectangles.

with the same partitioner), two wide dependencies, or a
mix (if one parent has a partitioner and one does not). In
either case, the output RDD has a partitioner (either one
inherited from the parents or a default hash partitioner).

5 Implementation
We have implemented Spark in about 10,000 lines of
Scala. The system runs over the Mesos cluster man-
ager [16], allowing it to share resources with Hadoop,
and can read data from any Hadoop input source
(e.g., HDFS or HBase). We did not need to modify the
Scala compiler; Spark is provided as a library.

We sketch two of the technically interesting parts of
the system: our job scheduler (§5.1) and our modified
Scala interpreter enabling interactive use of Spark (§5.2).

5.1 Job Scheduling

Spark’s scheduler uses our representation of RDDs, de-
scribed in Section 4, to find an efficient execution plan
for each action. The interface to the scheduler is a runJob
function that takes an RDD to work on, a list of partitions
of interest, and a function to run on these partitions. This
interface is sufficient to implement all of the actions in
Spark (count, collect, save, etc).

Overall, our scheduler is similar to Dryad’s [18], but it
additionally takes into account which partitions of persis-
tent RDDs are available in memory. The scheduler exam-
ines the lineage graph of the target RDD to build a DAG
of stages to execute, as illustrated in Figure 5. Each stage
contains as many pipelined transformations with narrow
dependencies as possible. The boundaries of the stages
are the shuffle operations required for wide dependen-
cies, or any already computed partitions that can short-
circuit the computation of a parent RDD. The scheduler
then launches tasks to compute missing partitions from
each stage until it has computed the target RDD.

Our scheduler assigns tasks to machines based on data
locality. If a task needs to process a partition that is avail-
able in memory on a node, we send it to that node. Oth-
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join 

union 

groupBy 

map 

Stage 3 

Stage 1 

Stage 2 

A: B: 

C: D: 

E: 

F: 

G: 

Figure 5: Example showing how Spark computes job stages.
Boxes with solid outlines are RDDs. Partitions are shaded rect-
angles, in black if they are already in memory. To run an action
on RDD G, the scheduler builds stages at wide dependencies
and pipelines narrow transformations inside each stage. In this
case, stage 1 does not need to run since dataset B is already in
memory, so we run stage 2 and then 3.

erwise, if a task processes a partition for which the con-
taining RDD provides preferred locations (e.g., due to
data locality in HDFS), we send it to those.

For wide dependencies (i.e., shuffle dependencies), we
currently materialize intermediate records on the nodes
holding parent partitions to simplify fault recovery, much
like MapReduce materializes map outputs.

If a task fails, we re-run it on another node as long
as its stage’s parents are still available. If some stages
have become unavailable (e.g., because an output from
the “map side” of a shuffle was lost), we resubmit tasks
to compute the missing partitions of those stages.

Finally, the lookup action, which lets the user fetch
an element from a hash or range partitioned RDD by its
key, poses an interesting design question. When lookup
is called by the driver program, we can build just the
partition that the desired key falls in using the existing
scheduler interface. However, we are also experiment-
ing with allowing tasks on the cluster (e.g., maps) to call
lookup, to let users treat RDDs as large distributed hash
tables. In this case, the dependency between the tasks
and the RDD being looked up is not explicitly captured
(since workers are calling lookup), but we have the task
tell the scheduler to compute the RDD in question if it
cannot find partitions for it in memory on any nodes.

5.1.1 Extension: Automatic Checkpointing

Although lineage can always be used to recover RDDs
after a failure, such recovery may be time-consuming for
RDDs with long lineage chains. Thus, it can be helpful
to checkpoint some RDDs to stable storage.

In general, checkpointing is useful for RDDs with long
lineage graphs containing wide dependencies, such as
the rank datasets in our PageRank example (§3.2.2). In
these cases, a node failure in the cluster may result in

the loss of some slice of data from each parent RDD, re-
quiring a full recomputation [19]. In contrast, for RDDs
with narrow dependencies on data in stable storage, such
as the points in our logistic regression example (§3.2.1)
and the link lists in PageRank, checkpointing may never
be worthwhile. If a node fails, lost partitions from these
RDDs can be recomputed in parallel on other nodes, at a
fraction of the cost of replicating the whole RDD.

Spark currently provides an API for checkpointing (a
REPLICATE flag to persist), but leaves the decision of
which data to checkpoint to the user. However, we be-
lieve that it would also be possible to perform automatic
checkpointing in the scheduler. In particular, the first
time each RDD is computed from its parents, the sched-
uler can measure how long this took. It can then esti-
mate the recovery time for this RDD starting only from
RDDs that are in stable storage (i.e., are checkpointed or
represent files), by adding up the computation costs of
its parents. Finally, if the RDD’s recovery time is high
enough, the scheduler can select a good point along its
lineage graph to take a checkpoint (ideally minimizing
the amount of data logged by only checkpointing small
parent datasets). We have not yet implemented automatic
checkpointing but we plan to do so in future work.8

Finally, note that the read-only nature of RDDs makes
them both simpler and potentially faster to checkpoint
than shared memory. Because consistency is not a con-
cern, RDDs can be out in the background without requir-
ing program pauses or distributed snapshot schemes.

5.2 Interpreter Integration

Scala includes an interactive shell similar to those of
Ruby and Python. Given the low latencies attained with
in-memory data, we wanted to let users run Spark inter-
actively from the interpreter to query big datasets.

The Scala interpreter normally operates by compiling
a class for each line typed by the user, loading it into
the JVM, and invoking a function on it. This class in-
cludes a singleton object that contains the variables or
functions on that line and runs the line’s code in an ini-
tialize method. For example, if the user types var x =
5 followed by println(x), the interpreter defines a class
called Line1 containing x and causes the second line to
compile to println(Line1.getInstance().x).

We made two changes to the interpreter in Spark:
1. Class shipping: To let the worker nodes fetch the

bytecode for the classes created on each line, we
made the interpreter serve these classes over HTTP.

2. Modified code generation: Normally, the single-
ton object created for each line of code is accessed
through a static method on its corresponding class.
This means that when we serialize a closure refer-

8Optimal checkpointing has also been widely studied in HPC [29].
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var query = “hello” 

rdd.filter(_.contains(query)) 
   .count() 

Line 1: 

Line 2: 

Closure1 
line1: 
eval(s): { return 
 s.contains(line1.query) } 

Line1 

query: 

String 

hello 

Line2 

line1: 

a) Lines typed by user b) Resulting object graph 

Figure 6: Example showing how the Spark interpreter trans-
lates two lines entered by the user into Java objects.

encing a variable defined on a previous line, such as
Line1.x in the example above, Java will not trace
through the object graph to ship the Line1 instance
wrapping around x. Therefore, the worker nodes will
not receive x. We modified the code generation logic
to reference the instance of each line object directly.

Figure 6 shows how the interpreter translates a set of
lines typed by the user to Java objects after our changes.

We found the Spark interpreter to be useful in process-
ing large traces obtained as part of our research and ex-
ploring datasets stored in HDFS. We also plan to use it
as a basis for interactive tools providing higher-level data
analytics languages, such as variants of SQL and Matlab.

6 Evaluation
We evaluated Spark and RDDs through a series of exper-
iments on Amazon EC2 [1], including comparisons with
Hadoop and benchmarks of user applications. Overall,
our results show the following:
• Spark outperforms Hadoop by up to 20× in itera-

tive machine learning and graph applications. The
speedup comes from avoiding I/O and deserialization
costs by storing data in memory as Java objects.

• Applications written by our users perform and scale
well. In particular, we used Spark to speed up an
analytics report that was running on Hadoop by 40×.

• When nodes fail, Spark can recover quickly by re-
building only the lost RDD partitions.

• Spark can be used to query a 1 TB dataset interac-
tively with latencies of 5–7 seconds.

We start by presenting benchmarks for iterative ma-
chine learning applications (§6.1) and PageRank (§6.2)
against Hadoop. We then evaluate fault recovery in Spark
(§6.3) and behavior when a dataset does not fit in mem-
ory (§6.4). Finally, we discuss results for user applica-
tions (§6.5) and interactive data mining (§6.6).

Unless otherwise specified, our experiments used
m1.xlarge EC2 nodes with 4 cores and 15 GB of RAM.
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Figure 7: Duration of the first and later iterations in Hadoop,
HadoopBinMem and Spark for logistic regression and k-means
using 100 GB of data on a 100-node cluster.

We used HDFS for persistent storage, with 256 MB
blocks. Before each test, we cleared OS buffer caches
across the cluster to measure disk read times accurately.

6.1 Iterative Machine Learning Applications

We implemented two iterative machine learning appli-
cations, logistic regression and k-means, to compare the
performance of the following systems:
• Hadoop: The Hadoop 0.20.2 stable release.

• HadoopBinMem: A Hadoop deployment that con-
verts the input data into a low-overhead binary format
in the first iteration to eliminate text parsing in later
ones, and stores it in an in-memory HDFS instance.

• Spark: Our implementation of RDDs.
We ran both algorithms for 10 iterations on 100 GB

datasets using 25–100 machines. The key difference be-
tween the two applications is the amount of computa-
tion they perform per byte of data. The iteration time
of k-means is dominated by computation, while logistic
regression is less compute-intensive and thus more sen-
sitive to time spent in deserialization and I/O.

Since typical learning algorithms need tens of itera-
tions to converge, we report times for the first iteration
and subsequent iterations separately. We find that shar-
ing data via RDDs greatly speeds up future iterations.

First Iterations All three systems read text input from
HDFS in their first iterations. As shown in the light bars
in Figure 7, Spark was moderately faster than Hadoop
across experiments. This difference was due to signal-
ing overheads in Hadoop’s heartbeat protocol between
its master and workers. HadoopBinMem was the slow-
est because it ran an extra MapReduce job to convert the
data to binary, it and had to write this data across the
network to a replicated in-memory HDFS instance.

Subsequent Iterations Figure 7 also shows the aver-
age running times for subsequent iterations, while Fig-
ure 8 shows how these scaled with cluster size. For
logistic regression, Spark 25.3× and 20.7× faster than
Hadoop and HadoopBinMem respectively on 100 ma-
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Figure 8: Running times for iterations after the first in Hadoop,
HadoopBinMem, and Spark. The jobs all processed 100 GB.

chines. For the more compute-intensive k-means appli-
cation, Spark still achieved speedup of 1.9× to 3.2×.

Understanding the Speedup We were surprised to
find that Spark outperformed even Hadoop with in-
memory storage of binary data (HadoopBinMem) by a
20×margin. In HadoopBinMem, we had used Hadoop’s
standard binary format (SequenceFile) and a large block
size of 256 MB, and we had forced HDFS’s data di-
rectory to be on an in-memory file system. However,
Hadoop still ran slower due to several factors:
1. Minimum overhead of the Hadoop software stack,

2. Overhead of HDFS while serving data, and

3. Deserialization cost to convert binary records to us-
able in-memory Java objects.

We investigated each of these factors in turn. To mea-
sure (1), we ran no-op Hadoop jobs, and saw that these at
incurred least 25s of overhead to complete the minimal
requirements of job setup, starting tasks, and cleaning up.
Regarding (2), we found that HDFS performed multiple
memory copies and a checksum to serve each block.

Finally, to measure (3), we ran microbenchmarks on
a single machine to run the logistic regression computa-
tion on 256 MB inputs in various formats. In particular,
we compared the time to process text and binary inputs
from both HDFS (where overheads in the HDFS stack
will manifest) and an in-memory local file (where the
kernel can very efficiently pass data to the program).

We show the results of these tests in Figure 9. The dif-
ferences between in-memory HDFS and local file show
that reading through HDFS introduced a 2-second over-
head, even when data was in memory on the local ma-
chine. The differences between the text and binary input
indicate the parsing overhead was 7 seconds. Finally,
even when reading from an in-memory file, converting
the pre-parsed binary data into Java objects took 3 sec-
onds, which is still almost as expensive as the logistic re-
gression itself. By storing RDD elements directly as Java
objects in memory, Spark avoids all these overheads.
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Figure 9: Iteration times for logistic regression using 256 MB
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Figure 10: Performance of PageRank on Hadoop and Spark.

6.2 PageRank

We compared the performance of Spark with Hadoop
for PageRank using a 54 GB Wikipedia dump. We
ran 10 iterations of the PageRank algorithm to process
a link graph of approximately 4 million articles. Fig-
ure 10 demonstrates that in-memory storage alone pro-
vided Spark with a 2.4× speedup over Hadoop on 30
nodes. In addition, controlling the partitioning of the
RDDs to make it consistent across iterations, as dis-
cussed in Section 3.2.2, improved the speedup to 7.4×.
The results also scaled nearly linearly to 60 nodes.

We also evaluated a version of PageRank written us-
ing our implementation of Pregel over Spark, which we
describe in Section 7.1. The iteration times were similar
to the ones in Figure 10, but longer by about 4 seconds
because Pregel runs an extra operation on each iteration
to let the vertices “vote” whether to finish the job.

6.3 Fault Recovery

We evaluated the cost of reconstructing RDD partitions
using lineage after a node failure in the k-means appli-
cation. Figure 11 compares the running times for 10 it-
erations of k-means on a 75-node cluster in normal op-
erating scenario, with one where a node fails at the start
of the 6th iteration. Without any failure, each iteration
consisted of 400 tasks working on 100 GB of data.

Until the end of the 5th iteration, the iteration times
were about 58 seconds. In the 6th iteration, one of the
machines was killed, resulting in the loss of the tasks
running on that machine and the RDD partitions stored
there. Spark re-ran these tasks in parallel on other ma-
chines, where they re-read corresponding input data and
reconstructed RDDs via lineage, which increased the it-
eration time to 80 seconds. Once the lost RDD partitions
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Figure 12: Performance of logistic regression using 100 GB
data on 25 machines with varying amounts of data in memory.

were reconstructed, the iteration time went back down to
58 seconds, same as before the failure.

Note that with a checkpoint-based fault recovery
mechanism, recovery would likely require rerunning at
least several iterations, depending on the frequency of
checkpoints. Furthermore, the system would need to
replicate the application’s 100 GB working set (the text
input data converted into binary) across the network, and
would either consume twice the memory of Spark to
replicate it in RAM, or would have to wait to write 100
GB to disk. In contrast, the lineage graphs for the RDDs
in our examples were all less than 10 KB in size.

6.4 Behavior with Insufficient Memory

So far, we ensured that every machine in the cluster
had enough memory to store all the RDDs across iter-
ations. A natural question is how Spark runs if there is
not enough memory to store a job’s data. In this experi-
ment, we configured Spark not to use more than a certain
percentage of memory to store RDDs on each machine.
We present results for various amounts of storage space
for logistic regression in Figure 12. We see that perfor-
mance degrades gracefully with less space.

6.5 User Applications Built with Spark

In-Memory Analytics Conviva Inc, a video distribu-
tion company, used Spark to accelerate a number of
data analytics reports that previously ran over Hadoop.
For example, one report ran as a series of Hive [2]
queries that computed various statistics for a customer.
These queries all worked on the same subset of the
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Figure 13: Per-iteration running time of two user applications
implemented with Spark. Error bars show standard deviations.

data (records matching a customer-provided predicate),
but performed aggregations (averages, percentiles, and
COUNT DISTINCT) over different grouping fields, requir-
ing separate MapReduce jobs. By implementing the
queries in Spark and loading the data shared across them
into an RDD, the company was able to speed up the re-
port by 40×. A report on 200 GB of compressed data that
took 20 hours on a Hadoop cluster now runs in 30 min-
utes using only two Spark machines and 96 GB RAM.

Traffic Modeling Researchers in the Mobile Millen-
nium project at Berkeley [17] parallelized a learning al-
gorithm for inferring road traffic congestion from spo-
radic automobile GPS measurements. The source data
were a 10,000 link road network for a metropolitan area,
as well as 600,000 samples of point-to-point trip times
for GPS-equipped automobiles (travel times for each
path may include multiple road links). Using a traffic
model, the system can estimate the time it takes to travel
across individual road links. The researchers trained this
model using an expectation maximization (EM) algo-
rithm that repeats two map and reduceByKey steps itera-
tively. The application scales nearly linearly from 20 to
80 nodes with 4 cores each, as shown in Figure 13(a).

Twitter Spam Classification The Monarch project at
Berkeley [28] used Spark to identify link spam in Twitter
messages. They implemented a logistic regression classi-
fier on top of Spark similar to the example in Section 6.1,
but they used a distributed reduceByKey to sum the gradi-
ent vectors in parallel. In Figure 13(b) we show the scal-
ing results for training a classifier over a 50 GB subset of
the data — 250,000 URLs and 107 features/dimensions
related to the network, content and lexical properties of
the pages associated with visiting a URL. The scaling is
not as close to linear as for the traffic application due to
a higher fixed communication cost per iteration.

6.6 Interactive Data Mining

To demonstrate Spark’ ability to interactively query big
datasets, we used it to analyze 1TB of Wikipedia page
view logs (2 years of data). For this experiment, we used

11



1.
7!

3.
2!

5.
5!

2.
0!

4.
5!

7.
0!

2.
8!

4.
7!

6.
6!

0!

2!

4!

6!

8!

10!

100 GB! 500 GB! 1 TB!

Q
ue

ry
 re

sp
on

se
 ti

m
e 

(s
)!

Data size (GB)!

Exact Match + View Count!
Substring Match + View Count!
Total View Count!

Figure 14: Response times for interactive queries on Spark,
scanning increasingly larger input datasets on 100 machines.

100 m2.4xlarge EC2 instances with 8 cores and 68 GB
of RAM each. We ran queries to find total views of (1)
all pages, (2) pages with titles exactly matching a given
word, and (3) pages with titles partially matching a word.
Each query scanned the entire input data.

Figure 14 shows the response times of the queries on
the full dataset and half and one-tenth of the data. Even
at 1 TB of data, queries on Spark took 5–7 seconds. This
was more than an order of magnitude faster than work-
ing with on-disk data; for example, querying the 1 TB
dataset from disk took 170s. This illustrates that RDDs
make Spark a powerful tool for interactive data mining.

7 Discussion
Although RDDs seem to offer a limited programming in-
terface due to their immutable nature and coarse-grained
transformations, we have found them suitable for a wide
class of applications. In particular, RDDs can express a
surprising number of cluster programming models that
have so far been proposed as separate frameworks, al-
lowing users to compose these models in one program
(e.g., run a MapReduce operation to build a graph, then
run Pregel on it) and share data between them. In this
section, we discuss which programming models RDDs
can express and why they are so widely applicable (§7.1).
In addition, we discuss another benefit of the lineage in-
formation in RDDs that we are pursuing, which is to fa-
cilitate debugging across these models (§7.2).

7.1 Expressing Existing Programming Models

RDDs can efficiently express a number of cluster pro-
gramming models that have so far been proposed inde-
pendently. By “efficiently,” we mean that not only can
RDDs be used to produce the same output as programs
written in these models, but that RDDs can also capture
the optimizations that these frameworks perform, such as
keeping specific data in memory, partitioning it to min-
imize communication, and recovering from failures effi-
ciently. The models expressible using RDDs include:

MapReduce: This model can be expressed using the
flatMap and groupByKey operations in Spark, or reduce-

ByKey if there is a combiner.

DryadLINQ: The DryadLINQ system provides a
wider range of operators than MapReduce over the more
general Dryad runtime, but these are all bulk operators
that correspond directly to RDD transformations avail-
able in Spark (map, groupByKey, join, etc).

SQL: Much like DryadLINQ expressions, SQL
queries consist of data-parallel operations on sets of
records that can be expressed with RDD transformations.

Pregel: Google’s Pregel [21] is a specialized model for
iterative graph applications that at first looks quite differ-
ent from the set-oriented programming models in other
systems. In Pregel, a program runs as a series of coordi-
nated “supersteps.” On each superstep, each vertex in the
graph runs a user function that can update state associ-
ated with the vertex, change the graph topology, and send
messages to other vertices for use in the next superstep.
This model can express many graph algorithms, includ-
ing shortest paths, bipartite matching, and PageRank.

The key observation that lets us implement this model
with RDDs is that Pregel applies the same user function
to all the vertices on each iteration. Thus, we can store
the vertex states for each iteration in an RDD and per-
form a bulk transformation (flatMap) to apply this func-
tion and generate an RDD of messages. We can then
join this RDD with the vertex states to perform the mes-
sage exchange. Equally importantly, RDDs allow us to
keep vertex states in memory like Pregel does, to min-
imize communication by controlling their partitioning,
and to support partial recovery on failures. We have im-
plemented Pregel as a 200-line library on top of Spark
and refer the reader to [31] for more details.

Iterative MapReduce: Several recently proposed sys-
tems, including HaLoop [7] and Twister [11], provide an
iterative MapReduce model where the user gives the sys-
tem a series of MapReduce jobs to loop. The systems
keep data partitioned consistently across iterations, and
Twister can also keep it in memory. Both optimizations
are simple to express with RDDs, and we were able to
implement HaLoop as a 200-line library using Spark.

Batched Stream Processing: Researchers at Yahoo!
and Microsoft have proposed incremental processing
systems for analytics applications that need to period-
ically update a result with new data [20, 15]. For ex-
ample, an application updating statistics about ad clicks
every 15 minutes should be able to combine intermedi-
ate state from the previous 15-minute window with data
from new logs. Both frameworks perform bulk opera-
tions similar to Dryad and store application state in dis-
tributed filesystems. Placing the intermediate state in
RDDs would speed up this type of processing.
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Explaining the Expressivity of RDDs Why are RDDs
able to express these diverse programming models? The
reason is that the restrictions on RDDs have little im-
pact in many parallel applications. In particular, although
RDDs can only be created through bulk transformations,
many parallel programs naturally apply the same opera-
tion to many records, making them easy to express. Sim-
ilarly, the immutability of RDDs is not an obstacle be-
cause one can create multiple RDDs to represent versions
of the same dataset. Indeed, many of today’s MapRe-
duce applications run over filesystems that do not allow
updates to files, such as HDFS.

One final question is why previous frameworks have
not offered the same level of generality. We believe that
this is because these systems looked at specific problems
that MapReduce and Dryad do not handle well, such as
iteration, without observing that the common cause un-
derlying all these problems was a lack of efficient data
sharing abstractions.

7.2 Leveraging RDDs for Debugging

While we initially designed RDDs to be deterministically
recomputable for fault tolerance, this property also facil-
itates debugging. In particular, by logging the lineage of
RDDs created during a job, one can (1) reconstruct these
RDDs later and let the user query them interactively and
(2) re-run any task from the job in a single-process de-
bugger, by feeding it the recomputed RDD partitions it
depends on. Unlike traditional replay debuggers for gen-
eral distributed systems [13], which must capture or infer
the order of events across multiple nodes, this approach
adds virtually zero recording overhead because only the
lineage (a graph of operators) needs to be logged.9

We are building a tool called rddbg that provides these
facilities for Spark. We include more details in [31].

8 Related Work
Cluster Programming Models: Related work in clus-
ter programming models falls into several classes. First,
data flow models such as MapReduce [10], Dryad [18]
and Ciel [22] support a rich set of operators for pro-
cessing data but share it through stable storage systems.
RDDs represent a more efficient data sharing abstraction
than stable storage because they avoid the cost of data
replication, I/O and serialization.10

Second, several high-level programming interfaces
for data flow systems, including DryadLINQ [30] and
FlumeJava [8], provide language-integrated APIs where
the user manipulates “parallel collections” through op-

9Unlike these systems, an RDD-based debugger will not replay
nondeterministic behavior in the user’s functions (e.g., a nondetermin-
istic map), but it can at least report it by checksumming data.

10Note that running MapReduce/Dryad over an in-memory data store
like RAMCloud [24] would still require data replication and serializa-
tion, which can be costly for some applications, as shown in §6.1.

erators like map and join. However, in these systems,
the parallel collections represent either files on disk or
ephemeral datasets used to express a query plan. We
based Spark’s API on the parallel collection model due to
its convenience, and claim no novelty in the programing
interface, but by using RDDs as a more efficient storage
abstraction behind this interface, we allow it to support a
much broader class of applications.

A third class of systems provide high-level interfaces
for specific classes of applications requiring data shar-
ing. For example, Pregel [21] supports iterative graph
applications, while Twister [11] and HaLoop [7] are iter-
ative MapReduce runtimes. However, these frameworks
perform data sharing implicitly for the pattern of com-
putation they support, and do not provide a general ab-
straction that the user can employ to share data of her
choice among operations of her choice. RDDs provide
this abstraction explicitly and can thus support applica-
tions that these specialized systems do not capture, such
as interactive data mining.

Finally, some systems expose shared mutable state to
allow the user to perform in-memory computation. For
example, Piccolo [26] lets users run parallel functions
that read and update cells in a distributed hash table.
Distributed shared memory (DSM) systems [23] and in-
memory storage systems like RAMCloud [24] offer a
similar model. RDDs differ from these systems in two
ways. First, RDDs provide a higher-level programming
interface based on operators such as map, sort and join,
whereas the interface in Piccolo and DSM is just reads
and updates to table cells. Second, Piccolo and DSM sys-
tems implement recovery through checkpoints and roll-
back, which is more expensive than the lineage-based re-
covery strategy of RDDs in many applications. As dis-
cussed in Section 2.4, the immutable nature of RDDs
also provides other advantages, such as allowing strag-
gler mitigation through backup tasks.

Caching Systems: Nectar [12] can reuse intermediate
results across DryadLINQ jobs by identifying common
subexpressions with program analysis. This capability
would be compelling to add to an RDD-based system.
However, Nectar does not provide in-memory caching
(it places the data in a distributed file system), nor does it
let users explicitly control which datasets to persist and
how to partition them. Ciel [22] and FlumeJava [8] can
likewise cache task results but do not provide in-memory
caching or explicit control over which data is cached.

Ananthanarayanan et al. have proposed adding an in-
memory cache to distributed file systems to exploit the
temporal and spatial locality of data access [4]. While
this solution provides faster access to data that is already
in the file system, it is not as efficient a means of shar-
ing intermediate results within an application as RDDs,
because it would still require applications to write these
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results to the file system between stages.

Lineage: Capturing lineage or provenance information
for data has long been a research topic in scientific com-
puting and databases, for applications such as explaining
results, allowing them to be reproduced by others, and
recomputing data if a bug is found in a workflow or if
a dataset is lost. We refer the reader to [5] and [9] for
surveys of this work. RDDs provide a parallel program-
ming model where fine-grained lineage is inexpensive to
capture, so that it can be used for fault recovery.

Our lineage-based recovery mechanism is also similar
to the recovery mechanism used within a computation
(job) in MapReduce and Dryad, which track dependen-
cies among a DAG of tasks. However, in these systems,
the lineage information is lost after a job ends, requiring
the use of a replicated storage system to share data across
computations. In contrast, RDDs apply lineage to persist
in-memory data efficiently across computations, without
incurring the costs of replication or disk I/O.

Relational Databases: RDDs are conceptually similar
to views in a database, and persistent RDDs resemble
materialized views [27]. However, like DSM systems,
databases typically allow fine-grained read-write access
to all records, requiring logging of operations and data
for fault tolerance and additional overhead to maintain
consistency. These overheads are not required with the
coarse-grained transformation model of RDDs.

9 Conclusion
We have presented resilient distributed datasets (RDDs),
an efficient, general-purpose and fault-tolerant abstrac-
tion for sharing data in cluster applications. RDDs can
express a wide range of parallel applications, including
many specialized programming models that have been
proposed for iterative computation. Unlike existing stor-
age abstractions for clusters, which require data repli-
cation for fault tolerance, RDDs offer an API based
on coarse-grained transformations that lets them recover
lost data efficiently using lineage. We have implemented
RDDs in a system called Spark that outperforms Hadoop
by up to 20× in iterative applications and can be used
interactively to query hundreds of gigabytes of data.
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