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ABSTRACT
To effectively manage large-scale data centers and utility
clouds, operators must understand current system and appli-
cation behaviors. This requires continuous, real-time mon-
itoring along with on-line analysis of the data captured by
the monitoring system, i.e., integrated monitoring and an-
alytics – Monalytics [28]. A key challenge with such inte-
gration is to balance the costs incurred and associated de-
lays, against the benefits attained from identifying and re-
acting to, in a timely fashion, undesirable or non-performing
system states. This paper presents a novel, flexible archi-
tecture for Monalytics in which such trade-offs are easily
made by dynamically constructing software overlays called
distributed computation graphs (DCGs) to implement de-
sired analytics functions. The prototype of Monalytics im-
plementing this flexible architecture is evaluated with moti-
vating use cases in small scale data center experiments, and a
series of analytical models is used to understand the above
trade-offs at large scales. Results show that the approach
provides the flexibility to meet the demands of autonomic
management at large scale with considerably better perfor-
mance/cost than traditional and brute force solutions.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Network Operating Systems

General Terms
Management, Design, Experimentation
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1. INTRODUCTION
Monitoring and data analysis1 are two fundamental ele-

ments of data center management. Monitoring tracks de-
sired hardware and software metrics. Analysis evaluates
these metrics to identify system or application states for
troubleshooting, resource provisioning, or other management
actions. To effectively manage modern data centers, both
monitoring and associated analytics must be performed in
real-time and at scales of tens of thousands of heterogeneous
nodes with complex network and I/O structures.

Previous research on monitoring has created scalable meth-
ods for real-time data collection and aggregation [13, 40,
37, 33, 31], to support efficient on-line queries that answer
questions like ‘which machines have CPU utilization above
90%?’[25]. ‘Analysis-focused’ research has drawn from areas
like data mining, machine learning, and statistics to create
techniques that assist in or automate problem diagnosis [5,
6, 10, 11, 15], with high accuracy and significantly reduced
human intervention. However, while monitoring has been
shown feasible at scale and in real-time, analysis is typi-
cally performed after a volume of monitoring data has been
written to disk-resident logs, or in a central location, which
impedes the scalability of on-line monitoring and analysis
tasks. Further, due to lack of underlying infrastructure sup-
port, analytics often require global data – over time and
space – making it difficult to use them on-demand and in
real-time. Finally, in modern virtualized utility or cloud
computing systems, operators or administrators have lim-
ited visibility into the virtual machines running on data
center machines. This prevents them from using problem
diagnosis methods that require such insight.

To address these challenges, we propose a system inte-
grating monitoring with analytics, termedMonalytics, which
can capture, aggregate, and incrementally analyze data on-
demand and in real-time, only where (i.e., in situ) and to
the extents needed by intended management actions. This
is first introduced in [28], with initial results indicating that
Monalytics should be built to respect notions of ‘scope’ in
time and space for (i) acceptable overheads, and (ii) ap-
propriate delays between when certain conditions arise and
when they are detected (and thus, can be acted on). To

1We use ’analysis’ and ’analytics’ interchangeably in this
paper.



do so, however, requires a flexible architecture to accommo-
date the changing and diverse characteristics of analytics,
with cost-effectiveness in large-scale data centers.
This paper presents the design and evaluations of Mon-

alytics’ flexible architecture built upon dynamic distributed
computation graphs (DCGs), providing the following techni-
cal contributions:

• Pro re nata (PRN) deployment: an important prop-
erty of Monalytics is its instantiations of analytic func-
tions only where and when they are needed. In other
words, Monalytics must have capabilities for dynami-
cally zooming in to ‘interesting’ locations and periods
of time. Such capabilities can also benefit scalability
by substantially reduced costs compared with systems
forced to ‘watch everything all the time’. We vali-
date the PRN deployment in two realistic use cases and
compare them with traditional brute-force approaches.

• Reducing ‘Time to Insight’ (TTI) and cost: a vi-
tal metric for assessing the performance of monitor-
ing/analysis actions is Time to Insight (TTI) captur-
ing the total delay between when ‘interesting’ events
occur until they are recognized (i.e., after analysis is
complete). Using this metric and also assessing the
costs incurred along with different values of TTI, we
evaluate the cost-effectiveness of alternative topologies
used to construct DCGs, and validate our novel flexible
hybrid DCG design.

The evaluations are based on both experimental results
and performance modeling at scale. They show that, as the
key to autonomic data center management, the flexible PRN
deployment of DCGs enables continuous operation at scale
and is cost-effective in attaining TTI required for various
analytics functions. Compared with brute force solutions
and traditional static topologies, Monalytics yields up to
92% TTI reduction and 86% lower cost.
The remainder of this paper is organized as follows. Sec-

tion 2 elaborates challenges for integrating monitoring and
analysis in large-scale data centers. The two use cases driv-
ing our research are presented in Section 3. The design of
DCG-based Monalytics software is described in Section 4,
and a series of analytical models assessing DCG topologies
is detailed in Section 5. Section 6 presents experimental
and analytical evaluation results, related work appears in
Section 7. Conclusion and future work are in Section 8.

2. PROBLEM STATEMENT
Accommodating the Variety of Analytics: A first step
towards integrating monitoring and analytics is to recog-
nize that analytics approaches vary widely in terms of com-
putational complexity and implementation (e.g., centralized
or distributed, etc.). As an illustration, we list representa-
tive analytics approaches for data center management in Ta-
ble 1. The second column describes core algorithms, includ-
ing simple sorting or traversal algorithms, machine learning
methods (e.g., TAN–Tree Augmented Naive Bayes and K-
Clustering), and algorithms used for specific purposes, such
as Convolution [6] and Pathmap [5]. The computational
complexities of these various analytics approaches range from
linear to exponential, with differences in their computation
styles as well. For instance, MAX and Top-K could be run
in a distributed manner using an aggregation tree, while
TAN Bayes is processed at a centralized location. Magpie

Table 1: Typical Analytics Approaches. N :number of moni-
toring samples, n:number of metrics in each monitoring sam-
ple, k:number of centroids, ∆:increment number of samples,
{p, e, S, E, W , τ , m}:approach-specific parameters

Name Core Algorithms Computational Complexity
MAX [37] Traversing O(nN)
Top-K [37] Sorting O(nNlogN)

Signatures [16]
TAN Bayes O(n2N) [19]
K-Clustering O(Nnk+1logN) [23]

Pinpoint [15] UPGMA Clustering O(N2) [32]
Magpie [11] Incremental Clustering O(n(N+∆)) [12]
Pranaali [27] TAN Bayes O(n2N) [19]

Black-Box [6]
Nesting Algorithm O(Np)

Convolution Algorithm O(em+eSlogS)

E2EProf [5] Pathmap O(E[W
τ
]2)

Sherklock [10] Inference Graph O(3m)

can use incremental clustering as new monitoring data ar-
rives, whereas [6] needs to collect traces for some period of
time and do a one-time off-line analysis.

A challenge resulting from this variety is how to accommo-
date such a wide range of analytics for autonomic manage-
ment in large scale data centers? Previous research does not
address this challenge when designing monitoring or aggre-
gation systems, instead focusing optimization efforts on the
communication overheads incurred for monitoring, includ-
ing message volumes and bandwidth consumption, delays
in data delivery, etc., using techniques such as in-network
processing [30] and source-based filtering [20, 18, 24]. Sec-
tion 6 shows that traditional static system designs cannot
easily accommodate analytics functions of varying compu-
tation complexities.
Meeting the Varying Requirements in Time and Space:
Autonomic management requires on-demandmonitoring and
analytics to diagnose problems and to understand system be-
havior, so as to take timely corrective actions to meet service
level objectives. The actual analytics used, however, and the
level of detail at which they must operate vary over time,
across the different components or entities being managed,
as well as across the multiple levels of abstraction present in
complex data center systems. Specifics for this depend on
the types of applications or services deployed, system loads,
hardware configurations used, desired service level objec-
tives, etc. In any large scale data center, therefore, there
will be heterogeneous and non-uniform monitoring and an-
alytics needs over time and space, and these properties also
and perhaps, even more so, hold for cloud environments.
The elasticity provided by cloud environments allow system
deployments to scale-up and scale-down, thereby directly
affecting associated analysis structures and requirements.

The resulting challenge for a Monalytics system is: how to
design a system capable of dynamically configuring monitor-
ing and analysis structures to meet the varying requirements
in time and space? Section 6 shows that static solutions do
not meet the flexibility needed at large scale, whereas our
Monalytics design can address the challenge with significant
potential performance improvements.
Improving Cost-Effectiveness: With active management
of data center hardware and applications becoming increas-
ingly common, it is important to study the costs of man-
agement [36, 29]. This should include budgeting both for
the capital costs of management hardware resources and
for their operational costs (power, cooling, administration,



etc). Such budgeting must differentiate costs incurred when
management uses dedicated hardware (e.g., HP’s iLO [2] or
IBM’s Director [4]) versus when it is collocated with the
machines being monitored. Intuitively, the former typically
provides performance benefits at higher capital costs, whereas
the latter has less capital costs but offers reduced perfor-
mance since it competes for machine resources with the ap-
plications being run in the data center.
A resulting challenge is: how to design a cost-effective sys-

tem minimizing management cost while yielding the best pos-
sible performance?. As shown in Section 6, when considered
at scale, high performance for management may incur poten-
tially prohibitive capital cost. Our research addresses this
by explicitly modeling the capital costs of management re-
sources. Preliminary results show that Monalytics can out-
perform static systems at considerably lower capital costs.

3. MOTIVATING USE CASES
3.1 ZIA: Zoom-In Analysis in Large Scale In-

ternet Services
Automatically inferring causal dependencies between com-

ponents[6, 10, 5] – causal path inference – is known to be
useful for identifying performance problems in multi-tier web
applications. A typical example is the detection of bottle-
necks in the end-to-end latencies experienced by requests.
However, the monitoring requirements – large request traces
– and high computational complexity make it expensive and
most likely, unrealistic to determine all causal paths in large
scale data centers, whether they contribute to bottlenecks.
Consider a flexible monitoring and analytics (Monalytics)

software that can address this issue by implementing a two-
phase approach that evaluates only those dependencies that
likely contribute to sudden bottlenecks. This PRN method,
termed Zoom-in Analysis (ZIA), allows system administra-
tors to use powerful tools like those required for causal path
detection at large scales. Key to the implementation of ZIA
is the ability to deploy overlays and analysis functions on
any subset of machines, at runtime and as needed (PRN)
for further diagnosis.
The phases of ZIA are described with an illustration in

Figure 1a, showing a practical use case. The first phase
is global light-weight anomaly detection. Anomaly detection
runs continuously with a Monalytics overlay (i.e., the DCG
elaborated in Section 4) that spans all appropriate data cen-
ter machines. The overlay collects application-level SLO
(Service Level Objective) metrics and system metrics, e.g.
transaction response times and CPU utilizations, and it pro-
cesses them with a low-cost algorithm described in [38, 39].
For simplicity, the figure depicts a hierarchical overlay, but
other topologies may also be used. Anomaly detection has
each processing unit aggregate and analyze its local metrics
and then pass results to its parents. The root has a global
view of all machines.
Alarms are raised if anomalies in, say SLOs (e.g., long re-

quest duration) are detected, which then triggers the second
phase of ZIA. The second phase performs in-depth analysis
in ‘problem areas’, which touches only upon a subset of the
machines being monitored, i.e., those for which anomalous
behavior has been observed. As illustrated in Figure 1a, this
involves creating a new overlay at runtime and on-demand
to cover the machines associated with Service 3, Front-end
Server 3 (FS3), Application Server 3 (AS3), and Database

Server 3 (DS3). This overlay uses a network tracing fa-
cility to identify all messages between these servers (RPC
requests/replies, IP packages). The data is sent to an an-
alyzer for casual path inference, using an inference engine
like the one described in [6]. Knowledge about causal paths
can then help identify the potential bottlenecks that caused
large end-to-end transaction response times.

The concept of zoom-in analysis generalizes to other prob-
lems and applications, and in fact, we next show a second use
case in which zoom-in is performed in an entirely different
fashion. The effect of using PRN techniques like zoom-in,
of course, is that intensive or high overhead analytics can
be focused on likely problem areas instead of entire systems.
This substantially reduces monitoring overheads and inter-
ference to applications compared to a brute force approach
that performs causal path inferences all the time.

3.2 VMC: Virtual Machine Clustering
A common problem experienced in data centers and utility

clouds is lack of knowledge about the mappings of the ser-
vices being run by or offered to external users to the sets of
virtual machines (VMs) that implement them. This makes
it difficult to manage VM ensembles – sets of VMs imple-
menting some common service – to attain provider goals like
minimizing the resources consumed by certain services or re-
ducing the power they consume on data center machines. A
case in point is high network resource consumption when in a
public cloud, a VM ensemble running a Hadoop Mapreduce
application [1], for instance, is deployed on physical hosts lo-
cated on different racks rather than on the same rack. This
substantially reduces the cross-section bandwidth available
in the data center because typically, hardware is configured
in ways that offer much less bandwidth across versus within
racks. The outcomes are not only deteriorated performance
for the Hadoop application, but also negative impacts on
other applications running on these machines. The problem
is important because cross-section bandwidth is a limited
commodity and increasing it can be costly in terms of the
network switches and routers that must be purchased.

Key to properly placing VM ensembles is to first recog-
nize their existence, i.e., to identify them, but this can be
difficult. First, system administrators running utility clouds
typically have limited knowledge about the applications be-
ing run, in contrast to the previous ZIA use case in which we
assume an a priori knowledge about the web application’s
configuration. As a result, administrators must use black-
box methods to identify VM ensembles. One such method,
based on correlation analysis and described in [9], is efficient
in terms of the overheads being experienced, thereby permit-
ting the continuous monitoring necessary to deal with dy-
namic changes in ensembles and their dynamic arrivals and
departures commonly seen in utility data centers. Unfortu-
nately, while overheads are low, the method only discovers
potential VM ensembles, thus making it necessary to use ad-
ditional monitoring to distinguish potential from actual en-
sembles. With Monalytics, such additional, in-depth analy-
sis can be done where and as needed (PRN) and at runtime.
Specifically, the analysis method we use is one that inspects
all data exchanged between the VMs in a candidate ensem-
ble, both to confirm the ensemble’s existence and to gain ad-
ditional information for improved ensemble placement, such
as inter-VM message volumes. As will be explained in later
sections, this PRN method is implemented by installing net-



(a) Use case I: Zoom-In Analysis (ZIA) (b) Use case II: Virtual Machine Clustering

Figure 1: Two Representative Use Cases of Monalytics. The group of servers in the middle of Figure (a) exemplifies a utility
cloud that hosts Internet services. FS[i], AS[i], DS[i] denote Front-end Server, Application Server, and Database Server for
Service i, respectively. The assemblies of rectangles in Figures (a) and (b) represent autonomic deployments of Monalytics
overlays. In Figure (b), each of the three sample servers hosts three virtual machines, where slaves are the worker processes
in the mapreduce application, controlled by the master process. Virtual machines running applications other than mapreduce
or Internet services are named Misc.

filter modules only into appropriate machines and building
an appropriate DCG to analyze the data captured in this
fashion (see [9, 22] for additional detail).
A small-scale use case is depicted in Figure 1b, in which

a basic overlay is deployed on three sample servers hosting
nine VMs running multiple applications, including a Mapre-
duce application and a multi-tier web service code. The
CPU utilizations of VMs (i.e., VCPU utilizations) are col-
lected on each host. A central node gathering the data runs
the lightweight clustering algorithms described in [9]. Its
output is a list of potential VM ensembles, i.e., VMs that
probably communicate regularly. An ensemble spanning dif-
ferent racks is picked as a potential target for VM migration,
but before constructing a migration plan and carrying it out,
a PRN method is used to assess the actual amounts of traf-
fic they exchange. This involves creating a new overlay, on-
demand, targeting only this ensemble of VMs (a master VM,
two slave VM, and a Misc. VM). The new overlay gathers
IP package statistics from the VMs and analyzes total net-
work traffic by using Top-K flow analysis [26]. The analysis
finds the k flows that most contribute to the traffic between
any two VMs and their sizes. It eliminates any member of
the ensemble with coincidental correlations in terms of CPU
usage, and provides the flow data needed to better assess the
cost-benefits derived from VM migration.

4. SYSTEM DESIGN
The building block of the flexible Monalytics architec-

ture is the Distributed Computation Graph (DCG), a re-
configurable overlay that undertakes monitoring data col-
lection, exchange, and processing. As illustrated in Fig-
ure 2, a DCG is comprised of two types of basic entities,
Data Collector(DC) and Monitoring Broker (M-Broker). A
DC typically runs on the monitored node, invoking general
monitoring tools to collect run time states. Depending on
analysis needs, monitoring metrics can be gathered periodi-
cally as samples, continuously as traces, or in one-shot. DCs
send them to the M-Brokers to which they are attached, us-
ing local shared memory when the DCG is collocated with
monitored nodes (i.e., the collocated mode) or via the net-

work when the DCG is deployed in dedicated management
hardwares (i.e., the dedicated mode). M-Brokers are also
connected to each other through a topology for cooperative
analysis. A DCG achieves the flexibility needed for scal-

Figure 2: A sample DCG with three M-Brokers and four
data collectors (DCs). DCG controllers illustrated in Fig-
ure 3 can construct and manage DCGs dynamically.

able, autonomic management through three design features:
Flexible Analytics Containers (M-Brokers): An M-
Broker is the key analytics processing unit in Monalytics.
It aggregates the raw data, and passes aggregate results to
other M-Brokers for further aggregation for larger scope,
or into global states, or for cooperative analysis. Specifi-
cally, current M-Brokers maintain analysis state structured
as Look-Back Windows (LBWs) supporting on-line analysis.
They use these windows to store the monitoring data, to ag-
gregate data, or to maintain intermediate analytics results
for some period of time. Analysis actions operate on LBWs,
and they are updated as new data flows in. A M-Broker
can be deployed in collocation with the node monitored or
on dedicated management components such as management
blades and processors in the data center. As an analyt-



ics container, an M-Broker is able to hold various kinds of
analytics functions with associated DCGs. In other words,
multiple DCGs implementing different analytics may be con-
structed by the same set of M-Brokers and DCs.
On-Demand DCG Creation (DCG Controllers): An
important attribute of Monalytics is that DCs, M-Brokers,
and DCGs are dynamic entities which can be created, con-
nected to each other, and terminated on-the-fly. It is in
this fashion that new analytics functions can be initiated
and stopped on demand, and existing functions can be ad-
justed. This on-demand creation and management is done
by DCG controllers. A controller can create M-Brokers or
DCs on any node to which it has access, or reuse existing
ones. After that, it connects DCs and M-Brokers using a
DCG topology that could be predefined by users or auto-
generated based on given management policies. As soon as
the DCG is constructed, the DC will start pushing moni-
toring data into DCG and M-Brokers will process it. The
DCG can be terminated via signals issued by the controller,
or that task can be assigned to some M-Broker. The con-
troller also tracks the states of DCGs.
For example, in the ZIA use case described in Section 3.1,

we initially create DCs on each host to collect application-
level monitoring data through JMX and system level met-
rics using Syststat. Those DCs are attached to M-Brokers
that are created and constructed into a hierarchy. Each
M-Broker is equipped with the EbAT [38, 39] functions for
anomaly detection. When an anomaly is caught, a new DCG
is created with DCs on the suspicious nodes and a single M-
Broker. The formers trace network flows and relay the data
to the latter, which uses a causal path inference engine [6]
to analyze the data. When the causal inference process fin-
ishes, the DCG is terminated, and the associated DCs and
M-Broker can be reclaimed.
Flexible Topologies: The third aspect of the DCG is its
ability to use multiple topologies across M-Brokers to meet
various analytics requirements in the data center, and to
also meet various performance and cost needs. These topolo-
gies include the traditional ones used in previous monitor-
ing/aggregation systems. In addition, we propose what we
term hybrid DCGs that consist of heterogeneous topology
structures adapted to different regions of the data center,
and interconnected through an inter-region topology. Each
region can have its own local topology among the M-Brokers,
and the leader M-Brokers of respective regions can be in-
terconnected with another topology. This is very effective
at large scale, where the use of a single, static topology to
implement various analytics characteristics has substantial
negative effects on performance/cost, as shown in Section
6. The hybrid approach also makes it easier for the ana-
lytics system to scale-up and scale-down, and to support
multiple heterogeneous services and data center structures.
In addition, it lends itself to scalability of DCG controllers,
as shown in Figure 3. At larger scale, a federation of con-
trollers can be used, where each controller manages a region
of the DCG. Finally, we note that DCGs and their regions
need not correspond to ‘physical zones’ in the data center.
For example, there could be a 1:1 mapping of DCG regions
to zones, or there could be multiple DCG regions within a
zone, or a DCG region could span multiple zones if zones
are small or if large applications run across all of them.
Figure 3 depicts a typical initial deployment of Monalyt-

ics, where there are four DCG regions assigned onto 4 racks,

respectively. Each region has a leader talking to leaders from
other regions. This is a hybrid DCG because each region can
deploy a different topology, and the topology between lead-
ers can be arbitrary, as well. There is one DCG controller
for each rack; they have access to the M-Brokers in their own
rack; and they cooperate with each other to jointly manage
DCGs. Our current Monalytics prototype implements one
controller for a single region; the development of federation
support for controllers is in progress.

Figure 3: A typical Monalytics deployment on 4 racks

5. MODELING DCG TOPOLOGIES
This section presents a systematic modeling approach to

understand Monalytics at scale. These models provide ra-
tional estimations and compare the various topologies that
Monalytics can create in large scale (from 1000 to 1 million
nodes). They are based on real world parameters (network
bandwidth, latency, number of nodes, etc.) seen in commer-
cial data centers, and evaluated in realistic configurations,
e.g., scale, region size, run times of functions.

Models serve as a sound foundation for the elements of
flexibility part of the DCG design. Further, the results ob-
tained from their use reveal new insights on combining mon-
itoring and analytics, including validation of Monalytics’ au-
tonomic features like the PRN methods described earlier.

5.1 Traditional Topologies and Hybrid DCGs
Topologies of previous monitoring/aggregation works can

be generalized into three types: centralized, hierarchical tree
and binomial swap forest. In a centralized topology, moni-
toring data is collected on each node but sent to a central
node for analysis. Most of the analysis systems and small
to moderate monitoring systems use this approach. Hier-
archical trees [40, 33] are widely used in monitoring and
aggregation systems, where nodes are organized into a bal-
anced tree (or balanced forest where each tree is according
to a different set of attributes), usually with some moderate
fanout factor, e.g., 16 [33]. BSF is proposed in [13]. Nodes
exchange monitoring data with each other in order and the
last two swapping nodes yield the global aggregate data.

Monalytics is capable of creating any of those traditional
topologies and in addition, the hybrid DCGs that have sig-
nificantly higher cost effectiveness in large scale systems,
compared to traditional topologies.

5.2 Assumptions
We model the TTI of each topology and the associated

management cost. For generality, TTI is defined as the
latency between when one monitoring sample (indicating
event of interests) is collected on each node and when the
analysis on all of those monitoring samples has completed.



Table 2: Parameters

Parameter Notation Example value
Number of Nodes N 100− 106[17]
Network Latency l 0.25ms[17]

Bisection Bandwidth B 1 Gbps[7]
Bandwidth Budget (in %) b 0.1% - 1%

Size of Monitoring Data per Node s 100KBytes
Number of Metrics n 1890

Processing Time per Metric a 3.5 ∗ 10−8seconds
Capital Cost per Server c $1000[3]

Fraction of Mgmt Cost Per Server α 1/16[3]
Region Size Nr 1000

Management cost is modeled as the capital cost for man-
agement hardware and associated software, i.e., the dollar
amount for purchasing management hardware/software re-
sources. We study topologies with dedicated mode and col-
located mode in large scale. To the best of our knowledge,
our work is the first to model capital cost for management
infrastructures in large scale data centers.
Models are based on real word parameters in data cen-

ters, as listed in Table 2. The bandwidth resource for each
M-Broker in collocated mode is estimated as the product
of the bisection bandwidth B and the bandwidth budget b.
This estimate reflects the common fact that in many mod-
ern data centers, the applications and the monitoring overlay
share the same network. It extends on previous models [13]
that assume full bandwidth to be available to content ag-
gregation overlays. Further, since monitoring is continuous,
which means that it continuously uses the network resource,
its bandwidth consumption should be a small fraction of the
total bandwidth available in order to confine its interference
with applications. Similarly, it is intuitive that on each node,
a small portion of resource is used for monitoring/analysis,
as captured by a fraction α of its capital cost.
We assume DCs are reporting one monitoring sample at a

time. Each sample has a size s due to its use of some num-
ber of metrics n. We estimate an intermediate/aggregation
result has size s and n metrics as well 2. We also assume
there is support for buffering of raw and aggregated mon-
itoring data throughout the data center, and that there is
enough bandwidth provisioned for monitoring for both the
dedicated and collocated strategies. M-Brokers failures and
associated costs are beyond the scope of this paper.

5.3 Traditional Topologies
Centralized: In a centralized topology, monitoring data
collected from each node is sent to a centralized server for
analysis. The TTI, noted TC(N), consists of data delivery
time and data processing time. When the aggregate band-
width of the nodes is smaller than the maximum bandwidth
of the central server, the data delivery time is s

B∗b + l, oth-

erwise it becomes s∗N
B

+ l (central node has full bandwidth
because it is dedicated). The processing time is formulated
as a function F(n, M), where n is the number of metrics to
monitor, and M is the number of instances of each metric.
In our analytical models, we assume each node collects n
metrics, and uses one instance per metric for analysis, for
generality purpose. We can set M to other value represent-

2In extreme cases, the intermediate result can be much
larger than s, without aggregation, or much smaller, with
higher ’compression’ effect. We believe it is reasonable to
pick a value in the middle as an estimation.

ing a different number of instances for analysis, and this
will not affect the comparison results shown in Section 6.
Therefore, the TTI for centralized DCG is:

TC(N) =
s

B ∗ b + l+ F (n,N), ifB > B ∗ b ∗ N

or =
s ∗N
B

+ l+ F (n,N), ifB ≤ B ∗ b ∗ N

The management cost for the centralized topology has two
parts. The first part is the dedicated central server, with cost
of C, and the second part is the fraction of management cost
on each node. According to empirical experience [3], there
is usually one additional dedicated management server for
every 1000 nodes added to the data center. Therefore, the
cost measurement CC(N) is:

CC(N) = ⌈ N

1000
⌉ ∗ c+ N ∗ c ∗ α

Hierarchical Tree (HT): In a hierarchical tree, internal
nodes have similar fanout of at most d, and the leaf nodes
have depth of at most ⌈logd N⌉ for a system of N nodes.
Starting from the leaf level, the nodes at each level can be
divided into groups with at most d members. A group can
be treated as a centralized topology where children report to
their parent. The groups at the same level process data in
parallel. Hence, the processing time is d∗s

B
+ l+F (n, d). For

the top single group level with the root as the central server,

the processing time is
⌈ N

d⌈logd N⌉−1
⌉∗s

B
+l+F (n, ⌈ N

d⌈logd N⌉−1 ⌉).
A parent analyzes its children’s data and sends the results to
the next parent at the higher level. This data flow between
levels is sequential. Hence, the TTI in dedicated mode is:

THT(N) =(⌈logd N⌉ − 1) ∗ (d ∗ s
B

+ l+ F (n, d))+

⌈ N

d⌈logd N⌉−1 ⌉ ∗ s
B

+ l+ F (n, ⌈ N

d⌈logd N⌉−1
⌉)

If HT is collocated with the monitored system, the band-
width resource for each node for aggregation is limited. There-
fore, the TTI T̄HT(N) is:

T̄HT(N) =(⌈logd N⌉ − 1) ∗ ( d ∗ s
B ∗ b + l+ F (n, d))+

⌈ N

d⌈logd N⌉−1 ⌉ ∗ s
B ∗ b + l+ F (n, ⌈ N

d⌈logd N⌉−1
⌉)

The management cost for dedicated mode CHT(N) is the
total cost of its internal nodes, of the root, and the inherent
cost on each node. The number of parents with N leaves is∑⌈logd N⌉

i=1 ⌈ N
di
⌉:

CHT(N) =

⌈logd N⌉∑
i=1

⌈N
di
⌉ ∗ c+ N ∗ c ∗ α

In collocated mode, the only cost for management is the
fractional management cost on each node:

C̄HT(N) = N ∗ c ∗ α

Binomial Swap Forest (BSF): In a Binomial Swap Forest
(BSF) [13] topology, each node computes an intermediate
result by repeatedly swapping (exchanging) data with other
nodes. Two nodes swap data by sending to each other the
intermediate results they have so far, letting each to compute
the new results of both nodes’ data. The swaps are organized
so that a node only swaps with one other node at a time,
and each swap roughly doubles the number of nodes whose



data are processed a node’s intermediate result, so that the
nodes will compute the global result in roughly log(N) swaps.
The sequence of swaps performed by a particular node form
a binomial tree with that node at the root. BSF runs in
collocated mode and its TTI and cost are:

TBSF(N) = ⌈log2 N⌉ ∗ ( s

B ∗ b + l+ F (n, 2))

CBSF(N) = N ∗ c ∗ α

5.4 Hybrid DCGs
In hybrid DCGs, any of the traditional topologies de-

scribed above (centralized, hierarchy, BSF) can be used lo-
cally within regions, and also to interconnect region leaders.
The resulting graph is thus a hybrid of multiple traditional
topologies, same or different, interconnected together. For a
hybrid DCG that consists of m regions which process their
local monitoring data in parallel, the time for leaders to
receive the aggregated data would be maxm

i=1 TINTRA(Ri),
where TINTRA(Ri) is the TTI for region i, and Ri is the
number of nodes in region i. The region leaders then co-
operate to perform the next level processing in a time of
TINTER(m). Therefore, the TTI and capital cost of a hybrid
DCG are formulated as follows:

THYBRID(N) =
m

max
i=1

TINTRA(Ri) + TINTER(m)

CHYBRID(N) =

m∑
i=1

CINTRA(Ri) + CINTER(m)

(N =

m∑
i=1

Ri)

In practice, there could be numerous topology combina-
tions for a hybrid DCG. For purposes of modeling and eval-
uation, we pick three representative ones: (1) Centralized-
BSF Monalytics (CB) uses a centralized topology within
each region and a BSF topology inter-region; (2) Centralized-
Hierarchy-BSF Monalytics (CHB) has centralized or hier-
archical topologies within regions and a BSF topology to
connect these regions; and (3) BSF-BSF Monalytics (BB)
uses a BSF topology both intra- and inter-region, and is
also ‘hybrid’ in the sense that the sizes of the intra-region
BSF and the inter-region BSF topologies are different. The
formulation for the TTI and capital cost for these exam-
ples can be obtained by substituting appropriate formula-
tions for centralized, hierarchical, and BSF topologies in the
THY BRID(N) and CHY BRID(N) equations above. For ex-
ample, assuming all regions have same size Nr for simplicity,
the formulations for TTI and capital cost for the Centralized-
BSF hybrid DCG would be:

TCB(N) = TC(Nr) + TBSF(⌈
N

Nr
⌉)

CCB(N) = ⌈ N

Nr
⌉ ∗ CC(Nr) + CBSF(⌈

N

Nr
⌉)

6. EXPERIMENTS AND EVALUATIONS
We have implemented a prototype of Monalytics in C/C++

using the EVPath library [18]. Experimental evaluations at
smaller scale use a virtualized environment with 36 virtual
machines on 12 physical hosts, complemented by a set of
large-scale analytical evaluations to up to 1 million nodes.
The results support three main conclusions. First, Monalyt-
ics’ PRN deployment feature results in substantial TTI re-
duction compared to traditional approaches. Second, Mon-

alytics has significantly lower cost and interferes less with
applications, compared to static systems watching every-
thing all the time. Third, the flexible, hybrid DCG design
provides promising advantages in terms of performance and
cost, compared to static, single topology solutions (up to
92% TTI reduction and 86% lower cost).

6.1 Experimental Evaluations
Setup: Our testbed consists of 12 blade servers, each host-
ing 3 VMs. We realize the two use cases described in Sec-
tion 3, using our Monalytics prototype to monitor/analyze
two application benchmarks: (1) RUBiS[14] representing In-
ternet services and (2) Hadoop[1] representing MapReduce
applications. We use the 32 out of total 36 VMs as the mon-
itored nodes running RUBiS and Hadoop instances. The re-
maining 4 VMs are used to emulate user requests to RUBiS
and for PRN deployments of new M-Brokers.

The initial DCG is a hierarchical tree with max fanout of
8. The 32 VMs are leaves, each having one DC and one M-
Broker deployed. Some of them are also reused as internal
M-Brokers as 1 root and 4 parents. Lightweight anomaly
detection [38, 39] and on-line clustering [9] approaches are
running on the hierarchy continuously and throughout the
experiment. As described in Section 3, the DCG controller
creates new centralized DCGs to run deeper analysis func-
tions, causal path inference or Top-k, on demand. Causal
path inference needs to gather and merge a considerable vol-
ume of traces collected from ‘suspicious’ VMs, so the trans-
mission of monitoring data has an important effect both on
TTI and on application interference, which we will discuss
next. The Top-K approach analyzes IP packets locally on
each candidate cohort member, so the network overhead is
low. However, since it parses every input and output IP
packet, its CPU consumption is high, which again, can sig-
nificantly interfere with the applications, especially when
running it on every node all the time.

Experiments measure the TTI, monitoring data volume,
and interference with applications. We compared our PRN
solution with brute-force solutions that ‘turn on’ analytics
functions all the time or on every node. To be more specific,
the brute-force ZIA approach collects network traffic trace
from all the nodes involved because it does not have the
’zoom-in’ capability. By the same token, brute-force VMC
runs Top-K functions all the time on a VM ensemble. results
show that the PRN and in situ approaches result in up to
86% TTI reduction and considerably less interference with
application performance. The data size needed for Mona-
lytics is also up to 95% smaller than that of brute-force.
Results: Zoom In Analysis In the ZIA use case, the
data center hosting multiple Internet services is monitored,
and one of those services has performance problems that
requires further analysis via casual path inference. We emu-
late those problems by injecting anomalies described in [38].
In the experiment, each Internet service is a RUBiS instance
embedded in 4 VMs running 1 Apache web server, 2 Tomcat
application servers, and 1 MySQL database server, respec-
tively. We vary the system scale from 8 VMs (2 services) to
32 VMs (8 services). Monalytics deploys a DCG on the 4
VMs running the problematic service, on-demand and when
needed, while the brute force approach triggers data col-
lection and transmission on all of the VMs. The TTI of
Monalytics, then, is significantly shorter than that of the
brute force approach, as shown in Figure 4a. As the scale
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Figure 4: ZIA Results (a), (b), (c) and VMC Result (d)

increases, the TTI gap grows rapidly, indicating even bet-
ter performance of Monalytics at larger scales, with a 86%
TTI reduction on 32 VMs. In addition, the amount of data
collected, transmitted, and processed remains low even as
the system scales, with the consequent benefits shown in
Figure 4b, in comparison to the brute force approach in
which the data size increases with increased system scale.
Results showing the degree of interference with application
performance are encouraging, as well. Here, we measure
the average throughput of all RUBiS services as an indica-
tion of performance. In Figure 4c, the baseline bar is the
average throughput without monitoring/analysis deployed.
The Monalytics and brute force bars represent the average
throughput for RUBiS with continuous monitoring/analysis.
We can see that as the scale increases, the brute force ap-
proach results in high interference with application, severely
reducing their throughput. This is because the brute force
approach consumes substantial network bandwidth to trans-
mit the larger volumes of monitoring data collected, which
in turn slows down the performance of the applications shar-
ing the same network. The Monalytics approach has overall
lower interference than the brute force approach (up to 44%
higher throughput), and the effect of interference decreases
as system scales (due to the increased availability of total
network bandwidth).
Results: Virtual Machine Clustering In the VMC use
case, we run a distributed MapReduce program that uses a
BBP-type method to compute the exact binary digits of π
[1]. It is run on an infrastructure that scales from 4 VMs
to 32 VMs. Figure 4d shows the job completion times when
the total workload of the application is fixed, i.e., the work-
load on each VM is reduced as the system scales. Figure 5a
depicts the job completion times when the workload on each
slave VM is fixed. In both scenarios, Monalytics incurs much
less interferences than the brute force solution, because the
former turns on the CPU consuming Top-K functions only
when needed, whereas the latter runs them all the time,
thereby unnecessarily stealing CPU cycles from the Hadoop
application. When total workload is fixed, the completion
time deceases as the system scales due to the parallel execu-
tions on more slaves. The baseline bars in Figure 4d reflect
this trend. Accordingly, the effects on completion time de-
crease, because the application’s workload can be finished in
a few CPU time slots without interruption. When the per
slave workload is fixed, the baseline does not change much
because slaves run in parallel, and the job completion time is
largely determined by the running time of a slave. Because
a slave needs to run a relatively longer time, the brute force
approach drags down its performance by running the Top-
K algorithm throughout the Hadoop execution. Monalytics
induces much less interference on job completion time (an

Table 3: F (n,M) Functions Representing Two Types of An-
alytics, a is the processing time of one metric, and n ∗M is
the total number of metrics

Types of Analytics F (n,M)
Linear-Time Approach a ∗ n ∗M

Quadratic-Time Approach a ∗ n2 ∗M2

Table 4: Abbreviations used for the Monalytics topologies

Centralized Centralized
Hierarchical Tree (Collocated) HT
Hierarchical Tree (Dedicated) HT-Dedicated

Binomial Swap Forest BSF
Centralized-BSF CB

BSF-BSF BB
Centralized-Hierarchy-BSF CHB

average 12% increase) than brute force (85% increase).

6.2 Analytical Evaluations at Large Scale
In this section, we evaluate the Monalytics DCG topolo-

gies at scale using the models described in Section 5.
Parameters and Estimations: The parameter values used
are based on real world practices, and are shown in Table 2
(third column). The characteristics of monitoring data were
determined using several runs of a microbenchmark consist-
ing of over 15 well known system monitoring tools. This
was used to estimate the monitoring data size and number
of metrics per node and per data collection interval3. The
data processing time on each node, represented by F(n, M),
can have various values due to the variety of analytics func-
tions possible. Since it is impossible to exhaust all pos-
sibilities, we instantiate F(n, M) for our evaluations with
two straight-forward and representative run time functions,
shown in Table 3. For simplicity, the hybrid DCGs in our
evaluations are assumed to have the same region sizes.
Evaluation Results: We compare the TTI and capital
cost of various topologies that can be created by Monalyt-
ics (see Table 4 for acronyms). The flexibility offered by
hybrid DCGs results in better performance with low cost
at scale. In particular, Figures 5b, 5c, and 5d compare the
Monalytics’ hybrid topologies with traditional HT and BSF
topologies when using linear-time and quadratic time anal-
ysis functions. As shown in Figure 5b, Monalytics CB pro-
vides the second shortest TTI for linear-time analysis.

At the scale of 1 million nodes, the Monalytics CB ex-
hibits a 61% TTI reduction over collocated HT topology.
The dedicated HT has the best TTI but also has the high-

3Note that some previous works [13] have used larger es-
timates of data sizes, dependent on number of application
metrics. We did model evaluations with larger data sizes, as
well, and found similar results and conclusions.
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Figure 6: TTI and Cost of Centralized and HT-Dedicated

est capital cost, as depicted in Figure 5d(normalized capital
cost with respect to HT-Dedicated cost at scale 1 million).
Hybrid DCGs have significantly lower cost, over 85%.
For quadratic-time analysis, Figure 5c shows that Mona-

lytics BB yields the best performance, with a significant 92%
smaller TTI than that of the dedicated HT. CB, not shown
in Figure 5c, has the highest TTI(over 200 seconds). The
computation at each M-Broker dominates TTI for quadratic-
time analysis. Since BSF has much less data to compute
per node than what HTs have, BSF and Monalytics BB
both yield shorter TTI. Conversely, with linear run time,
the communication overhead dominates, so the dedicated
HT with larger bandwidth out-performs others.
Other hybrid DCGs can perform comparably better than

traditional topologies, as well. The Monalytics CBH has
better performance than the collocated-HT in both linear
and quadratic runtime, and its maximum cost is slightly
higher than that of collocated HT, BSF, BB, and HB, but
much lower than dedicated-HT, about 86%.
Hybrid DCGs are more effective due to their ability to

mix and match the best topologies that meet local analytics
requirements and that also perform best at varied local scale
levels. In Figure 6a, the completion time of the centralized
topology is linear to the scale of data centers, which makes
performance prohibitively low at a large scale like 1 mil-
lion nodes. However, this topology is not always the worst
choice because for less than about 2000 nodes, its TTI is less
than that of collocated HT and BSF because it has only one
level of hierarchy. It also has much lower cost than the dedi-
cated HT, as shown in Figure 5d. Hence, using a centralized
topology at appropriate scale may yield good performance.
This insight is leveraged to build hybrid CB with encour-
aging cost-effectiveness in Figure 5b, because for CB, the
intra-region centralized topology has smaller TTI than the
collocated HT and BSF when the number of nodes is within
2000, and inter-zone processing time is the second smallest.
We also study how topology configurations like fan-out

factors affect performance and cost. Figures 6b and 6c reveal

that smaller fan-out contributes to smaller TTI. That’s be-
cause each internal node processes less data with smaller fan-
out. Although the height of the tree is larger with smaller
fan-outs, the increase has much less effect than that of input
data processed by each parent. The improved performance,
however, comes with higher cost. As shown in Figure 6d,
the dedicated HT with smaller fan-out factors have higher
management server costs, because the number of internal
nodes increases. The results tell us that configuration may
have substantial impact on performance, and the trade-off
between performance and cost. Flexibility in DCGs can re-
sult in on-demand changes in configurations to meet these
different trade-off needs.

Finally, evaluations also show that there is hardly a ‘one
size fits all’ topology for all scale and analysis needs. For
example, dedicated HT and Monalytics CB which has best
performance in linear runtime analysis are among the worst
in quadratic time, which suggests that, instead of using a
static, single topology, a dynamic hybrid topology should
be applied to meet the changing analytics requirements.

7. RELATED WORK
Monitoring systems [31, 21, 8, 35, 20] are designed to

monitor the status of large networked systems or large clus-
ter machines. Some of these leverage hierarchical architec-
tures for scalability. Ganglia [31], in particular, uses multi-
cast messages inside a cluster and federations between clus-
ters. While they are widely used and exhibit high perfor-
mance in reporting states at large scale, their analysis capa-
bilities are limited.
Aggregation systems [30, 13, 40, 37, 33] aggregate dis-

tributed data with large volumes, and usually provide mech-
anisms to query the runtime aggregate states. While Mon-
alytics is similar in its ability to perform in-network, dis-
tributed processing, there are two major differences. First,
Monalytics provides the flexibility to dynamically create,
change, and terminate new topologies to meet varying anal-
ysis needs. Second, the analysis functions supported by ag-



gregation systems are typically limited to those with the
specific computational properties [30] suitable for aggrega-
tion, while Monalytics is designed to support a variety of
analytics without the restrains.
Analytics solutions [5, 6, 10, 11, 15] are promising so-

phisticated analysis of system behaviors with high accu-
racy and significantly reduced human intervention. How-
ever, they rarely support analytics on-demand and at large
scale. In addition, they are often application-specific rather
than supporting the general class of utility data center ap-
plications targeted by our work.

8. CONCLUSIONS AND FUTURE WORK
We presented the Monalytics software architecture for in-

tegrating monitoring and analytics in large scale data cen-
ters, with flexibility for supporting a variety of analytics
functions. We introduce pro re nata(PRN) methods and
experimental evaluations are carried out with a Monalyt-
ics software prototype implemented in small scale data cen-
ter running three tier enterprise applications and Hadoop
codes. Results clearly show the importance of using PRN,
along with the ability of the current Monalytics prototype to
support the multiple and sophisticated monitoring/analysis
functions required by two realistic use cases. We contribute
novel analytical formulations modeling DCG’s effects on both
the performance and the capital costs of monitoring/analysis,
with extensive analytical evaluations in large scale.
Our ongoing work is extending experimental evaluations

to scale to multiple thousands of cores and with more com-
plex sets of applications representing modern utility or cloud
computing data centers. We are also working on specific
extensions of Monalytics software, including federation sup-
port for multiple regions and automatically determining ap-
propriate DCGs for specific fault patterns or cost/effectiveness
needs. Plus, the resource management/scheduling for con-
current analytics requests in Monalytis is an interesting topic
to investigate in the future. Our goal is to routinely run the
Monalytics software stack in the data center to better un-
derstand actual usage patterns, e.g. finding ways to reduce
data center energy use [34].
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