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Abstract—Big data applications are typically programmed us-
ing garbage collected languages, such as Java, in order to
take advantage of garbage collected memory management,
instead of explicit and manual management of application
memory, e.g., dangling pointers, memory leaks, dead objects.
However, application performance in Java like garbage col-
lected languages is known to be highly correlated with the
heap size and performance of language runtime such as
Java Virtual Machine (JVM). Although different heap resizing
techniques and garbage collection algorithms are proposed,
most of existing solutions require modification to JVM, guest
OS kernel, host OS kernel or hypervisor. In this paper, we
evaluate and analyze the effects of tuning JVM heap structure
and garbage collection parameters on application performance,
without requiring any modification to JVM, guest OS, host
OS and hypervisor. Our extensive measurement study shows
a number of interesting observations: (i) Increasing heap size
may not increase application performance for all cases and at
all times; (ii) Heap space error may not necessarily indicate
that heap is full; (iii) Heap space errors can be resolved by
tuning heap structure parameters without enlarging heap;
and (iv) JVM of small heap sizes may achieve the same
application performance by tuning JVM heap structure and
GC parameters without any modification to JVM, VM and
OS kernel. We conjecture that these results can help software
developers of big data applications to achieve high performance
big data computing by better management and configuration
of their JVM runtime.
1. Introduction

Big data computing platforms today are represented by
Hadoop HDFS/MapReduce [1], Spark [2] and Storm [3].
These platforms are delivering software as a service, writ-
ten in garbage-collected languages, e.g., Scala, Java, C#,
ML, JRuby, Python. The execution environment of garbage
collected languages typically involves allocation of portion
of memory to each application, and managing the allo-
cated memory and garbage collection (GC) on behalf of
the applications at runtime. This removes the burden of
explicit memory management from the developers, e.g.,
handling memory leaks, removing dangling reference point-
ers and dead objects. Thus, garbage collected languages,
such as Java, become increasingly popular and Java Virtual
Machines (JVMs) are recognized as a leading execution
environment for many big data software platforms today.

However, running applications on JVMs presents another
layer of abstract execution environment on top of hardware
virtualization (i.e., virtual machines and hypervisor) over a
physical hosting server platform. Thus, the dynamic sharing
of physical CPU and memory among multiple JVMs, com-
bined with the unpredictable memory demands from appli-
cations, creates some open challenges for JVM configuration
management. Most frequently asked questions include: (1)
How can applications balance the sizes of their JVM heaps
dynamically? (2) What type of heap structure can minimize
heap space errors? (3) Which set of JVM heap parameters
can we use to control the garbage collection overheads and
improve application runtime performance? (4) Can we speed
up the progress of application by enlarging the JVM heap
size?

Researchers have attempted to address some of these
questions. [4] shows that one can obtain the same per-
formance by either explicit memory management or using
garbage collection, provided that the garbage collected heap
is sized appropriately with respect to the application. How-
ever, keeping the heap an appropriate size and balancing
the heap sizes dynamically in a multi-application runtime
environment are extremely difficult. Small heap will trigger
frequent garbage collection, which results in performance
degradation. Also collecting heap too frequently increases
garbage collection (GC) cost. Moreover, small heap may
lead to more frequent heap space errors, causing the appli-
cation with dynamic memory demand to fail. On the other
hand, heap can only be set to larger size when memory
is plenty. Also too large a heap can induce paging, and
swapping traffic between memory and disk is several orders
of magnitude more expensive, significantly degrades the
performance of the system. Several resource management
technologies, such as memory overcommitment, heap re-
sizing, and virtual machine memory ballooning, are pro-
posed to address the problem of sudden changes in memory
demands of applications in a consolidated environment.
However, most of existing methods require modifications
to JVM, guest virtual machine kernel or host OS kernel and
hypervisor.

In this paper, we evaluate and analyze the effects of tun-
ing JVM heap structure parameters and garbage collection
parameters on application performance, without requiring
any JVM, guest OS, host OS or hypervisor modification.
Through our extensive measurement study, we show a num-



ber of valuable observations that help answering the set
of questions listed above. First, we show that there is a
direct correlation between application performance and its
heap size. However, after heap size reaches a certain value,
increasing heap size no longer improves the application
performance in terms of the amount of actual work done.
Second, we show that heap space error does not necessarily
correspond to the conclusion that heap is full and all objects
residing in heap are alive. Also, heap space error can be
resolved by tuning JVM heap strcuture parameters. Third,
dynamic configuring of JVM heap structure parameters and
GC parameters may help minimizing GC overheads and im-
proving application runtime performance. Our experiments
also show that smaller heap sizes can achieve the same
level of application performance as some of the larger heap
sizes. Finally, we show that most of our measurement results
are not specific to any garbage collection algorithm or any
specific garbage collector implementation. We conjecture
that these measurement results can help software developers
of big data applications to better manage and configure
their JVM runtime, achieving high performance big data
computing at ease.
2. Related Work

Memory management research related to JVM perfor-
mance can be broadly categorized into three categories:
Memory overcommitment techniques, heap resizing algo-
rithms and memory bloat management.

Memory overcommitment. Memory overcommitment
is used at hardware virtualization layer by enabling virtual
machines (VMs) to inflate and deflate memory using Bal-
loon driver [5]. However, sharing policies are insufficient
to determine when to reallocate memory and how much
memory is needed. [6] proposes Memory Balancer (MEB),
which dynamically monitors memory usage of each VM,
and reallocates memory by predicting memory need of
each VM. [7] proposed an application level ballooning
technique, which enables resizing JVM heap dynamically,
by modifying heap structure. However, they do not provide
any sharing or resizing policy. [8] described a JVM bal-
looning by allocating Java objects. Balloon objects are then
inflated/deflated depending on the resizing decision.

Heap Resizing. Independent but complimentary to the
development of Java ballooning mechanism, several research
efforts have been devoted to heap resizing policies. [9]
evaluated JVM metrics as application performance indica-
tor, and proposes a memory sharing policy by considering
applications memory demands and available physical mem-
ory. [10] proposed CRAMM to track memory demands of
applications at runtime, and predict appropriate heap sizes,
aiming at garbage collection without paging or minimizing
paging while maximizing application throughput. [11] pre-
sented a resource aware garbage collection technique with
different heap resizing policies. [12] proposed Ginkgo, a
policy framework to correlate application performance and
its memory demand by using runtime monitoring. However,
few existing efforts have conducted a systematic study on
JVM configuration management with respect to heap struc-
ture parameters and GC parameters, such as showing the
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Figure 1: JVM Structure

effect of changing the size ratios between young generation
and old generation, and understanding the root cause of heap
space errors.

Memory Bloat Management. To improve the runtime
efficiency of JVM heap, researchers have identified different
classes of memory bloats caused by data type design [13],
[14] and proposed new design for JVM data types that can
minimize or remove undesirable memory bloats.

3. Overview and Observations
3.1. JVM Heap Structure

In JVM, memory management is done by partitioning
the memory region, called JVM heap, into groups, where
each group consists of one or more regions and is called a
generation. Objects in one generation are of a similar age.
Figure 1 shows JVM memory structure. Most commonly,
there are two major types of generations: young and old.
In young generation, recently created objects are stored.
Typically, young generation is further partitioned into 3
major spaces (regions): eden space and two survivor spaces:
to and from. New objects are first allocated in eden space.
The allocation is done contiguously, enabling fast place-
ment. Minor GC is triggered on allocation failure, whereas
Full GC is triggered when meeting a threshold, i.e., some
percentage of old generation has been filled. Upon a minor
GC, objects that are not matured enough to move to old
generation, but survived at least one garbage collection are
stored in from survivor space. The To survivor space is
unused.

In old generation, objects that are survived a certain
number of garbage collection are stored. By default the old
generation is twice as big as young generation. Keeping
young generation small makes it collected quickly but more
frequently. Old generation grows more slowly but when
reaches to certain threshold value, a full (heap) garbage col-
lection (GC) will be triggered. The reserved region in both
young and old generations and the permanent generation
are to allow JVM to expand its heap. The default setting of
old/young capacity ratio is fixed and 2. However, capacities
of spaces in young generation may vary from one garbage
collector to another. For derby workload with heap size of
1024 MB, Figure 2 shows that while the default capacity
ratio of eden and survivor spaces is fixed for Serial GC or
Concurrent Mark Sweep (CMS) Garbage Collector, but the
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(a) SerialGC
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(b) ParallelGC

0 5 10 15 20 25 30 35 40 45
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

K
B

1e5

S0C S1C S0U S1U EC EU

(c) ParallelOldGC
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Figure 2: Capacities and Utilizations of Young Generation
(S0C/SIC: capacity of survivor space 0 / survivor space 1, EC/EU: eden space

capacity/utilization, S0U/S1U: utilization of survivor space 0 / survivor space 1).

capacities are dynamically changing at runtime for Parallel
GC Collector or Parallel Old Garbage Collector.

Figure3, produced using Visual VM [15], shows the
utilization of eden and survivor spaces in young generation
and the utilization of old generation for Dacapo h2 work-
load with heap sizes of 1024 MB and 384 MB. We make
three observations: (1) For heap size of 1024MB, in young
generation, Eden space is 94% full (257.670/273.062=0.94)
and Survivor 1 is 74% full (25.237/34.125=0.739) while
Survivor 0 is empty. The utilization of old generation is 27%
(183,830/682.688=0.269). (2) For heap size of 384 MB, in
young generation, Eden space is 85% full, while the utiliza-
tion of old generation is over 81% (208.300/256.000=0.813).
(3) In both cases, a number of minor GC and full GC are
performed and the time spent on minor GC and full GC are
also measured: 92 minor GCs are performed for heap size
of 384 MB, compared to 29 minor collections for heap size
of 1024 MB, though both have 10 full GCs.
3.2. Garbage Collection (Minor GC vs Full GC)

Garbage collection is the process of identifying dead
objects, which are no longer referenced by application
and reclaim their heap space. Garbage collector is also
responsible for object allocation and it can be performed
on generations separately or on the entire heap.

Young generation Minor GC is triggered when new
object allocation fails because there is insufficient space
in young generation. During Minor GC, dead objects are
identified, and live objects in eden space, which are not
mature enough to move to old generation, are moved to
the survivor to space, which was previously unusued. Live
objects in the survivor from space are moved either to to
space or old generation based on their ages. After minor
GC, survivor from space becomes the survivor to space, and
vice versa. In our experiments, Serial Garbage Collector is

(a) Heap Utilization with Heap Size=1024MB

(b) Heap Utilization with Heap Size=384MB

Figure 3: Heap Utilization of Dacapo h2 Workload

used during Minor GC by default. Figure 4 illustrates how
it works when Minor GC is triggered. Allocation triggers
minor GC in young generation when there is insufficient
space in Eden to place a new object. Threshold triggers full
GC in old generation when heap usage in old generation
reaches a specified threshold, Full GC is performed on en-
tire heap, the most costly collection compared to Minor GC.
It is also more complex because there is no helper space,
like survivor space for Minor GC, to enable compaction.
A popular policy used in Full GC is called mark-sweep-
compact, in which dead objects are identified first and live
objects are moved to the head of old generation. Once they
are placed contiguously, the rest of the heap is reclaimed.
Both Minor GC and Full GC suspend applications from
executing and take full control of CPU when switched on.
Figure 5 shows CPU usage of application (blue curve) and
garbage collection (yellow curve) running concurrently for
h2 workload with heap sizes of 1024 MB and 384 MB.
3.3. Garbage Collection Overhead

Full GC and minor GC both stop the execution of JVM
applications when performing garbage collection. There are
a number of factors contribute to the GC overhead. For
simplicity, we focus our discussion on young generation
collections. As stated earlier, minor GC is performed when
an allocation fails, namely, when there is insufficient space
in the eden space to meet the allocation request. Depending
on the size of the new object, minor GC can be triggered
with varying sizes to be collected from the eden space. Since
both object allocations and GC preserve compaction of the
heap regions, GC is performed only on the utilized portion
of the Eden space. Hence, GC overhead depends on the
frequency of allocation failure and the eden space utilization.

In general, GC is more centered on identification of alive
objects, instead of dead ones. For the sake of compaction, it
involves copying alive objects from eden to survivor, or from
young generation to old generation. As a result, copying cost
emerges as the third factor in GC overhead.
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TABLE 1: Garbage Collection Details

Eden Util. (kb) Alive Size (kb) Garbage Size (kb) GC Cost (msec)
139776 9877 129899 68,1877
139776 10291 129485 73,4889
139776 10691 129085 71,1739
139776 10798 128978 84,3332
157248 10163 147085 124,8909
157248 12556 144692 148,5655
157248 17472 139776 221,4381

These factors can be validated by GC report, which can
be obtained by adding -XX:+PrintGCDetails parameter to
the run command. In Table 1, we present some GC de-
tails performed on young generation for compiler.compiler
benchmark application with heap size of 512MB. It shows
that 1 time GC cost is proportional to utilized eden space
and size of the alive data.

Parameter Tuning for Heap Structure and GC. JVM
heap structure and garbage collection can be configured by
tuning the following JVM parameters:

-Xmx, -Xms parameter specifies the maximum and minimum
heap size that JVM can manage respectively.

-XX:NewRatio=n sets ratio of old/young generation sizes to
n. Default NewRatio value is 2.

-XX:+UseSerialGC enables the serial garbage collector. -
XX:+UseParallelGC activates parallel garbage collector for the
young generation.

-XX:+UseParallelOldGC enables the parallel garbage collec-
tor for both of the young and old generations.

-XX:+UseMarkSweepGC activates concurrent mark sweep
garbage collector for the old generation.

4. Experimental Method
4.1. Experimental Environment

In all of our experiments, we disable UseGCOverhead-
Limit parameter since we want to focus on application
performance in any case unless it results in heap space error.
We use Oracle’s HotSpot Java Runtime Environment with

version 1.8.0 65. In addition, we use jstat and VisualVM to
monitor heap usage and CPU usage of our benchmark appli-
cations (see next subsection). Measurement period is set to
1 second. Unless otherwise is stated, in our experiments we
use Serial Garbage Collector with default newRatio value
2. The hardware platform is a Mac OSX Yosemite 10.10.5,
with two physical cores of 2.9 GHz Intel i5 and 1867 MHz
DDR3 memory of 8 GB.
4.2. Test Programs

We select 4 benchmark applications from DaCapo [16]
and SPECjvm2008 [17] benchmark suites without any mod-
ification. Here are the chosen benchmarks:

h2: As part of DaCapo suit, h2 executes a JDBCbench-
like in-memory benchmark, executing a number of trans-
actions against a model of a banking application. Unless
otherwise is stated, h2 benchmark is run 10 times.

derby: This benchmark uses an open-source database
written in pure Java. It is synthesized with business logic to
stress the BigDecimal library. The focus of this benchmark
is on BigDecimal computations and database logic.

serial: This benchmark serializes and deserializes prim-
itives and objects, using data from the JBoss benchmark.
The benchmark has a producer-consumer scenario where
serialized objects are sent via sockets and deserialized by a
consumer on the same system.

compiler.compiler: This benchmark uses OpenJDK
front end compiler to compile a set of .java files. The code
compiled is javac itself and the sunflow sub-benchmark from
SPECjvm2008.
4.3. Collectors and Configuration Parameters

In all experiments, SerialGC is used as the baseline col-
lector. It uses a single thread with copying and compaction
preserving mechanisms for young generation. It stops all
applications when performing minor GC. We compare Se-
rialGC with ParallelGC, ParallelOldGC and the Concurrent
Mark-Sweep (CMS) Collector. ParallelGC is similar to Se-
rialGC but performing minor GC using multiple threads
instead of single thread. ParallelOldGC uses copying and
compaction preserving mechanisms for GC in both young
generation and old generation and is multi-threaded. The
CMS Collector marks the reachable objects and then sweeps
across the allocation region to reclaim the unmarked objects
(spaces). It is non-copying and non-compacting in that it
does not move allocated objects and neither compact them.
In contrast, copying collectors proceed by copying reachable



objects to an empty copy space. Also upon GC, it suspends
application only at the beginning and end of the collection
marking and sweeping phases. CMS GC are concurrent with
the application executions (no stop-the-world) and it uses
multiple threads.
4.4. Metrics

The first performance metric is the ratio of old gener-
ation over the new generations. By default of 2, it states
that the old generation is doubled the size of the young
generation. In most of our experiments, we vary this ratio
from 1 to 21. Another important metric is the GC overhead,
consisting of three components: allocation failure frequency,
utilization of corresponding generation, and size of alive
objects that will create cost of copying. Let n denote number
of GC as a frequency indicator, αi denote the size of garbage
data and βi denote the size of alive objects in the ith GC
event. Let c1, and c2 denote machine specific constants for
scanning and copying heap unit respectively. Then we can
calculate GC overhead as follows:

GC Overhead =

n∑
c1(αi + βi) + c2(βi)

Other metrics in our measurement study include heap size,
heap utilization, execution time, CPU utilization.

5. Experiments and Analysis
In this section, we evaluate the effect of JVM heap size,

structure and GC algorithm on memory intensive benchmark
applications by tuning above JVM parameters.
5.1. Heap Utilization Heap Space Error

In this set of experiments, we analyze the scenarios that
causes heap space error. One may think that the reason
behind heap space error is failing object allocation because
the entire heap is filled and all the objects in it are alive and
no additional space to reclaim. However, our experiments
show that depending on the GC algorithm, the size of the
survivor and eden spaces may change at runtime. Since
object is allocated only in eden space or old generation,
allocation may fail when eden space or old generation is
filled, resulting a heap space error. However, there could
be some unused survivor spaces that are not small. Table 2
illustrates this observation, where we set newRatio value to
1, and heap size to 256MB for h2 and derby benchmarks,
and 128 MB for compiler.compiler.
5.2. Effect of Heap Size and GC Overhead

The most straightforward approach to eliminate Heap
Space Error is to increase JVM heap size. Figure 6(a)(b)
show that (i) JVM crashed for heap size of 256MB, and (ii)
increasing heap size from 256MB to 384MB resolves Heap
Space Error, for h2 workloads with Parallel and ParallelOld
GC respectively. Figure6(c)(d) show that JVM crashed for
heap size of 128MB, and (ii) increasing heap size from
128MB to 256MB resolves Heap Space Error for com-
piler.compiler benchmark. In all these figures, the smallest
heap size is too small to run the respective benchmark,
which causes heap size error and crashed.

Next we examine the effects of heap size. Increasing
heap size leads to less frequent allocation failure and im-
proves application performance by reducing GC frequency
and thus overall GC overhead. Figure 7a and Figure 7b show
that by increasing heap size from 256MB to 384MB, it re-
duces GC overhead drastically for derby and h2 workloads.
We also see similar result in Figure 7d for compiler.compiler
benchmark when we increase heap size from 128MB to
256MB. We also observe that after some point, increasing
heap size no long reduces GC overhead, nor improve appli-
cation performance. In summary, we showed that increasing
heap size may eliminate Heap Space Error, and improve ap-
plication performance by reducing GC overhead. However,
increasing heap size may not be possible in a consolidated
environment where memory is a primary bottleneck. This
motivates us to examine other tuning options that explore
more efficient heap utilization.
5.3. Tuning newRatio Parameter

Another cause for Heap Space Error is due to poor
heap utilization in JVM. This is the case when Heap Space
Error is experienced but we can still observe some large but
unused survivor spaces as shown in Figure 3. Our goal is
to reduce the size of unused survivor spaces, so that more
portion of the heap is used for allocation to objects. One way
to achieve this goal is to increase the parameter newRatio
value, which will increase the size of old generation and
decrease the size of young generation. Since survivor spaces
are sub-partitions of the young generation, increasing the
parameter newRatio will decrease the size of young gener-
ation and thus the size of survivor regions. In this set of
experiments, we use h2, derby, and serial benchmarks with
heap of 256MB, and compiler.compiler benchmark with
heap of 128MB. Figure 9a shows that increasing newRatio
value from 1 to 21 improves the runtime performance of
application by reducing GC overhead. Figure9b, Figure9c,
and Figure9d show that GC overhead is lower (i) for derby
benchmark when newRatio is 8, (ii) for serial benchmark
when newRatio is 3, and (iii) for compiler.compiler when
newRatio is 8. Table 3 shows the number of Minor GCs
and Full GCs, the time spent on Minor GC and Full GC
with varying newRatio values for derby benchmark with
heap of 256MB. We observe that as Minor GC overhead
increases, Full GC overhead will decrease, as we increase
the parameter newRatio value. However, the total GC over-
head decreases until the newRatio value reaches 8 for derby
benchmark. When newRatio value increases to 13 or higher,
the total GC overhead increases, showing that there exists
a newRatio value that minimizes total GC overhead. This
set of experiments shows that depending on the application
behavior and lifetime of the objects, newRatio value can
be set appropriately for achieving optimal JVM runtime
performance.
5.4. Effects of Garbage Collectors

This section compares benchmark performance under
varying garbage collectors. In this set of experiments, we
run h2, derby and serial benchmarks with heap sizes of
1024MB and 256MB. We run compiler.compiler benchmark



TABLE 2: Heap Utilization at the time of Heap Space Error

Benchmark GC Eden Cap. Eden Used Surv. 0 Cap. Surv. 0 Used Surv. 1 Cap. Surv. 1 Used Old Cap. Old Used
h2 ParallelGC 44032.0 44032.0 16384.0 0 43520.0 0 131072.0 131072.0
h2 ParallelOldGC 44032.0 44032.0 16384.0 0 43520.0 0 131072.0 131072.0

derby ParallelOldGC 88064.0 88064.0 19968.0 0 20992.0 0 131072.0 131040.6
compiler.compiler ParallelGC 22528.0 22528.0 21504.0 0 21504.0 0 65536.0 65493.5
compiler.compiler ParallelOldGC 22528.0 22527.3 21504.0 0 21504.0 0 65536.0 65533.6
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Figure 6: Heap Space Error Elimination by Increasing Heap Size
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Figure 7: Heap Size vs Running Time (SerialGC)
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Figure 8: Heap Size vs Running Time (ParallelGC)
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Figure 10: Garbage Collector vs Runtime (h2 and derby)
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Figure 11: Garbage Collector vs Runtime (serial and compiler)
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Figure 12: Heap Size & Structure vs Actual Work & GC Overhead (SerialGC)
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Figure 13: Heap Size & Structure vs Actual Work & GC Overhead (ParallelGC)



TABLE 3: GC Overhead with Varying NewRatio Values

newRatio # of YoungGC YoungGC Cost # of FullGC FullGC Cost Total GC Cost
1 18 0.383 824 121.720 122.103
2 36 0.510 752 107.006 107.516
3 63 0.617 717 98.442 99.059
5 1192 2.315 12 1.499 3.815
8 1788 2.946 6 0.704 3.650

13 2788 4.365 4 0.357 4.722
21 4344 5.926 4 0.354 6.280

with heap size of 512MB and 128MB. Figure 10a and
Figure 10b show that similar performance can be obtained
when large heap is used for h2 benchmark. However, when
heap is small, Serial and ConcMarkSweep GCs outperform
Parallel and ParallelOld GCs. Figure10c shows similar re-
sults for derby benchmark with large heap. However, in
contrast to h2 benchmark, when heap is small, Figure 10d
shows Parallel and ParallelOld GCs outperform Serial and
ConcMarkSweep GC. For compiler.compiler benchmark,
Figure 11a and Figure 11b show that serial benchmark
exhibits similar behavior as to h2. Figure11d shows that
with small heap, Serial and Mark-Sweep GCs have lower
GC Overhead and higher performance for compiler.compiler
benchmark. Furthermore, for compiler.compiler workload,
performance may differ even with larger heaps as shown
in Figure 11c. In summary, the performance of collectors
may vary with respect to different heap size and different
application behavior. Additionally, heap space error can
be a result of poor selection of garbage collector or poor
setting of the newRatio parameter in addition to out of heap
memory. Note that eden and survivor regions are fixed in
size for Serial GC and ConcMarkSweep GC, but they are
dynamically changing in Parallel and ParallelOld GCs.
5.5. Effect of Heap Size on Applications

This section investigates whether GC overhead and ac-
tual work of an application are highly correlated or com-
pletely independent processes. Given that object allocation
and data access are parts of application’s actual work, we
want to analyze the effect of heap size, newRatio values on
the time spent for performing actual work. In this set of
experiments, we run h2, derby, and serial benchmarks with
heap size varying from 256, 384, 512, to 1024 MB, and run
compiler.compiler benchmark with heap size varying from
128, 256, 384 to 512 MB. We also vary newRatio value from
1 to 21. Figure12a, Figure12b, Figure12c and Figure12d
present results for h2, derby, serial and compiler.compiler
benchmarks respectively. These figures show time spent on
performing actual work for specific application is the same
regardless of the heap size or heap structure. The reason is
that the data access cost is fixed, since they are all regular
memory access, and the cost of object allocation is fixed
because of compaction preserving feature of JVM. Figure13
shows similar results when using ParallelGC.
6. Conclusion

We have studied the effects of tuning JVM heap structure
parameters and garbage collection parameters on application
performance, without requiring any JVM, guest OS, host
OS or hypervisor level modification. Our extensive mea-
surement study shows a number of interesting observations:
(1) Increasing heap size does not increase application per-
formance after a certain point. (2) Heap space error does
not necessarily indicate heap is full and all objects in the
heap are alive and heap space errors can be resolved by

tuning JVM parameters. (3) By tuning JVM heap structure
and GC parameters, we can achieve the same application
performance using smaller heap sizes. Most of our mea-
surement results are not specific to any garbage collection
algorithm or any specific garbage collector implementation.
We conjecture that our results can help software developers
of big data applications to achieve higher performances by
better management and configuration of their JVM runtime.
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