
HeteroVisor: Exploiting Resource Heterogeneity
to Enhance the Elasticity of Cloud Platforms

Vishal Gupta
VMware

vishalg@vmware.com

Min Lee
Intel

min.lee@intel.com

Karsten Schwan
Georgia Institute of Technology

schwan@cc.gatech.edu

Abstract
This paper presents HeteroVisor, a heterogeneity-aware hy-
pervisor, that exploits resource heterogeneity to enhance the
elasticity of cloud systems. Introducing the notion of ‘elas-
ticity’ (E) states, HeteroVisor permits applications to man-
age their changes in resource requirements as state transi-
tions that implicitly move their execution among heteroge-
neous platform components. Masking the details of platform
heterogeneity from virtual machines, the E-state abstraction
allows applications to adapt their resource usage in a fine-
grained manner via VM-specific ‘elasticity drivers’ encod-
ing VM-desired policies. The approach is explored for the
heterogeneous processor and memory subsystems evolving
for modern server platforms, leading to mechanisms that can
manage these heterogeneous resources dynamically and as
required by the different VMs being run. HeteroVisor is im-
plemented for the Xen hypervisor, with mechanisms that go
beyond core scaling to also deal with memory resources, via
the online detection of hot memory pages and transparent
page migration. Evaluation on an emulated heterogeneous
platform uses workload traces from real-world data, demon-
strating the ability to provide high on-demand performance
while also reducing resource usage for these workloads.

Categories and Subject Descriptors D.4.0 [Operating Sys-
tems]: General

General Terms Design, Performance

Keywords Heterogeneous platforms, Cloud elasticity

1. Introduction
Elasticity in cloud infrastructures enables ‘on-demand’ scal-
ing of the resources used by an application. Resource scaling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VEE ’15, March 14–15, 2015, Istanbul, Turkey.
Copyright c© 2015 ACM 978-1-4503-3450-1/15/03. . . $15.00.
http://dx.doi.org/10.1145/2731186.2731191

techniques used by modern cloud platforms like Amazon’s
Elastic Compute Cloud (EC2), involving the use of differ-
ent types of virtual machines (VMs), however, are coarse-
grained, both in space and in time. This has substantial mon-
etary implications for customers, due to the costs incurred
for limited sets of fixed types of VM instances and the fre-
quencies at which heavy-weight scaling operations can be
performed. Customers could implement their VM-internal
solutions to this problem, but a truly elastic execution en-
vironment should provide ‘fine-grained’ scaling capabilities
able to frequently adjust the resource allocations of appli-
cations in an incremental manner. Given the competition
among cloud providers for better services, fine-grained re-
source management may prove to be a compelling feature of
future cloud platforms [1, 13].

An emerging trend shaping future systems is the pres-
ence of heterogeneity in server platforms, including their
processors, memories, and storage. Processors may differ in
the levels of performance offered [12, 24], like the big/little
cores commonly found in today’s client systems. Memory
heterogeneity can arise from the combined use of high speed
3D die-stacked memory, slower off-chip DRAM, and non-
volatile memory [11, 30, 40, 44]. Such heterogeneity chal-
lenges system management, but we view it as an opportunity
to improve future systems’ scaling capabilities, by making
it possible for execution contexts to move among heteroge-
neous components via dynamic ‘spill’ operations, in a fine-
grained manner and driven by application needs.

The HeteroVisor virtual machine monitor presented in
this paper hides the underlying complexity associated with
platform heterogeneity from applications, yet provides them
with a highly elastic execution environment. Guest VMs see
what appears to be a homogeneous, yet scalable, virtual
resource, which the hypervisor maintainsby appropriately
mapping the virtual resource to underlying heterogeneous
platform components. Specifically,HeteroVisor presents to
guests the abstraction of elasticity (E) states, which pro-
vides them with a channel for dynamically expressing their
resource requirements, without having to understand in de-
tail the heterogeneity present in underlying hardware. In-
spired by the already existing P-state interface [38] usedto

79

scale the frequency and voltage of processors, E-states gen-
eralizes that concept to address with one unified abstraction
the multiple types of resource heterogeneity seen in future
servers, including their processors and memory. As with P-
state changes, E-state transitions triggered by applications
provide hints to the hypervisor on managing the resources
assigned to each VM, but for E-state changes, guests can fur-
ther refine those hints via system- or application-level mod-
ules called elasticity drivers (like the Linux CPU governor in
the case of P-states) to indicate preferences concerning such
management. HeteroVisor uses them to better carry out the
fine-grain adjustments needed by dynamic guests.

With heterogeneous CPUs, E-states are used to provide
the abstraction of a scalable virtual CPU (vCPU) to appli-
cations desiring to operate at some requested elastic speed
that may differ from that of any one of the actual heteroge-
neous physical cores. Such fine-grained speed adjustments
are achieved by dynamically mapping the vCPUs in question
to appropriate cores and in addition, imposing usage caps on
vCPUs. For heterogeneous memories, E-states provide the
abstraction of performance-scalable memory, with multiple
performance levels obtained by adjusting guests’ allocations
of fast vs. slower memory resources.

E-states are challenging to implement. Concerning CPUs,
fine-grained E-state adjustments seen by the hypervisor
shouldbe honored in ways that efficiently use underlying
cores, e.g., without unduly high levels of core switching.The
issue is addressed by novel vCPU scaling methods in Het-
eroVisor. Concerning memory, previous work has shown
that application performance is governed not by the total
amount of fast vs. slow memory allocated to an applica-
tion, but instead, by the fast vs. slow memory speeds expe-
rienced by an application’s current memory footprint [27].
HeteroVisor addresses this by maintaining a page access-bit
history for each VM, obtained by periodically scanning the
access-bits available in page tables. This history is used to
detect a guest’s ‘hot’ memory pages, i.e., the current memory
footprints of the running applications. Further, by mirroring
guest page tables in the hypervisor, it can manipulate guest
page mappings in a guest-transparent manner, thus mak-
ing possible hot page migrations (between slower vs. faster
memories), by simply changing mappings in these mirror
page tables, without guest involvement. A final challenge is
to decide which resources should be scaled to what extent,
given the potential processor- vs. memory-intensive nature
of an application. HeteroVisor’ssolution is to permit guest
VMs to express their scaling preferences in per-VM ‘elas-
ticity drivers’.

HeteroVisor’s implementation in the Xen hypervisor [4]
is evaluated with realistic applications and workloads onac-
tual hardware, not relying on architectural simulators. CPU
and memory controller throttling are used to emulate pro-
cessor and memory subsystem heterogeneity. For workloads
derived from traces of Google cluster usage data [18], exper-

imental results show that by exploiting heterogeneity in the
unobtrusive ways advocated by our work, it becomes possi-
ble to achieve on-demand performance boosts as well as cost
savings for guest applications with diverse resource require-
ments. The CPU and memory scaling mechanisms provide
up to 2.3x improved quality-of-service (QoS), while also re-
ducing CPU and memory resource usage by an average 21%
and 30%, respectively. Elasticity drivers are shown useful
via comparison of two different guest usage policies, result-
ing in different trade-offs between QoS and cost.

2. Elasticity via Heterogeneity
2.1 Elasticity in Clouds
Elasticity, i.e., the ability to scale resources on-demand to
minimize cost, is an attractive feature of cloud computing
systems. Resources can be scaled in a ‘scale out’ or ‘scale
up’ manner. Table 1 shows a comparison summary of these
two approaches. Scale-out varies the number of VM in-
stances used by an application. It is used in commercial
cloud services like Amazon EC2 AutoScaleto increase ca-
pacity in the form of additional VMs of fixed instance types,
where instances can be rented in the order of several minutes
to a full hour, and users are charged for the whole instance
even if it is only partially used. Thus, scale out is a rather
heavy-weight and coarse-grained operation with high end-
user cost implications.

Table 1: Elastic resource scaling in clouds

Scale out Scale up
Scaling Method VM Instances Resource Shares

Resource Granularity Coarse Fine
Time Granularity Slow Fast
Software Changes High Minimal

‘Scale up’ operations entail adjusting the shares of plat-
form resources to which a VM is entitled. Such fine-grained
elasticity enables a user to start a VM with some basic con-
figuration and dynamically alterthe platform configuration it
needs. Such scaling may be sufficient for and in fact, prefer-
able to VM-level scaling, e.g., when a VM experiences sud-
den short bursts requiring temporarily higher levels of re-
sources. For current cloud users, the presence of such func-
tionality would mean shorter rent durations (on the order of
seconds)and reduced costs. Another advantage is that such
scaling can be transparent to the VM, not requiring sophis-
ticated software changes or VM-level management methods
to deal with varying resource needs.

2.2 Resource Heterogeneity
HeteroVisor enhances the scaling capabilities of future cloud
computing systems by exploiting the increasing levels of
resource heterogeneity seen in server platforms. Evidence
of such heterogeneity abounds. Heterogeneous processors,
i.e., CPU cores that differ in their performance/power ca-

80

pabilities (as shown in Figure 1), are known to be energy-
efficient alternatives to homogeneous configurations [12, 24,
48], underlined by commercial implementations from CPU
vendors [16, 35]and encouraged by research demonstrat-
ing the utility of low-powered cores for datacenter applica-
tions [3, 20] and by methods that efficiently utilize brawny
cores [5, 26]. Schedulers for heterogeneous cores have seen
extensive exploration [23, 24, 39, 41, 45].

Core-heterogeneity

Socket-heterogeneity

Fast
On-chip
Memory

Low-capacity
3D Die-stacked

Memory

H
ig

h
-ca

p
a
city

O
ff

-ch
ip

 M
e
m

o
ry

Multicore Processor
High-latency
interconnect

Core

Core

D
isa

g
g
re

g
a
te

d
 / P

e
rsiste

n
t

M
e
m

o
ry

High speed
Bus

Core

Core

Heterogeneous Processors Heterogeneous Memory

Figure 1: Platforms with heterogeneous resources

Heterogeneity in memory technologies has gone be-
yond the NUMA properties seen in high-end server plat-
forms.New memory technologies like die-stacked 3D mem-
ories and non-volatile memories, in addition to traditional
DRAM, can result in a hierarchy of heterogeneous memory
organization, as shown in Figure 1. 3D stacked memories
can provide lower latency and higher bandwidth, in com-
parison to traditional off-chip memories [29]. But since the
capacity of such memories is limited [30], future servers ex-
pect to have a combination of both fast on-chip memory and
additional slower off-chip memory. Moreover, inclusion of
disaggregated memory or persistent memory technologies
will further extend memory heterogeneity [11, 28, 40, 44].

Heterogeneity is already present in storage subsystems
when using local vs. remote storage, SSDs vs. hard drives,
andfuture persistent memory. HeteroVisor is concerned with
heterogeneity in platforms’ CPU and memory subsystems,
but its general approach is applicable to other resources, as
well.

2.3 Exploiting Heterogeneity

Slower

Q
oS

 (
pe

rf
or

m
an

ce
)

Single Component Scaling

Spill up

Spill down

Heterogeneous Components

Q
oS

 (
pe

rf
or

m
an

ce
)

Multiple Component Scaling

Memory
scalingMedium Faster

Processor
scaling

Elasticity
Range

Figure 2: Using heterogeneity to enable resource scaling

HeteroVisor enhances a server’s elastic resource scaling
capabilities with an approach in which ‘spill’ operations
change the heterogeneity of VMs’ resource allocations. Con-
sider a resource like memory with heterogeneous compo-
nents with three different performance characteristics, i.e.,

die-stacked DRAM as the fast resource, off-chip DRAM as
the medium-performance resource, and non-volatile mem-
ory as the slow resource. With each of these components
supporting a different performance range, the performance
of the memory subsystem seen by each guest VM can be
adjusted across a wide range, by varying the allocation mix
given to the application. As a higher share of a VM’s re-
sources are allocated in faster memory (e.g., by moving ap-
plication data to on-chip memory from off-chip DRAM), its
performance increases. This is denoted as a ‘spill up’ op-
eration, as shown in Figure 2. Similarly, by ‘spilling down’
the application resource (e.g., ballooning out VM pages to
persistent memory), performance can be lowered, perhaps
in response to an application-level decrease in the memory
intensity of its activities. In this manner, the hypervisor pro-
vides to guest VMs the abstraction of scalable memory, in-
ternally using spill operations over the underlying heteroge-
neous components. Further, by appropriately allocating var-
ious amounts of slower vs. faster memory to applications,
memory scaling can extend beyond the three different phys-
ical speeds present in physical hardware (i.e., 3D die stacked
RAM, off-chip DRAM, NVRAM) to offer what appear to be
finer grain scaled memory speeds andbandwidths.

The scaling mechanisms outlined for memory above
can be applied to other platform resources, including pro-
cessor andstorage components, to provide an overall ex-
tended elasticity range to an application, as shown in Fig-
ure 2. Furthermore, this elasticity extends across multiple
resource types,so that HeteroVisor can offer guest VMs
slow processors with rapidly accessible memory for data-
intensiveapplications, while a CPU-intensive guest with
good cache behavior may be well-served with slower mem-
ory components. When doing so, the different components’
use is governed by spill operations: (i) processor scaling is
achieved by appropriate scheduling of vCPUs to heteroge-
neous cores and capping their usage of these cores to achieve
a target speed, and (ii) memory spill operations manage
memory usage. Note that considerable complexity for the
latter arises from the facts that page migrations may incur
large overheads and more importantly, because the hyper-
visor does not have direct visibility into a VM’s memory
access pattern (to the different memory allocated to it) deter-
mining its performance. HeteroVisor addresses this issue by
developing efficient mechanismsto detect a guest VM’s ‘hot’
pages, i.e., frequently accessed pages, and then moving those
between different memories without guest involvement. The
next section describes the various mechanisms incorporated
into HeteroVisor to implement resource scaling.

3. Design
Using heterogeneous platform resources, HeteroVisor pro-
vides fine-grained elasticity for cloud platforms. To incorpo-
rate heterogeneity into the scaling methods, there are several
principles that we follow in our design.

81

Virtual
Machine
Monitor
(VMM)

Heterogeneous Platform

Power
Accounting

Performance
Monitoring

Management
Domain

vCPU

E-states

Small

Big core

 core
Small
 core

O
ff-

ch
ip

M

em
or

y

Guest
Domain

O
n

-c
h

ip
M

em
or

y

Big core

Elasticity
Driver

vCPU vCPU

Guest
Domain

Elasticity
Driver

Elastic-CPU
Manager

Elastic-Mem
Manager

Resource
Share Manager

HETERO
VISOR

QoS
Mgmt.

QoS Levels

Figure 3: System architecture for HeteroVisor

• Adhering to the philosophy that cloud platforms should
sell resources and not performance, VMs should explic-
itly request resources from the cloud provider. This de-
sign requiring application VMs to specify their resource
requirements is common to IaaS platforms where users
select different types of VM instances.

• Typically special software support is required for manag-
ing heterogeneity. Diversity across vendors and rapidly
changing hardware make it difficult for operating systems
to incorporate explicit mechanisms for managing these
components. Thus, the complexity of managing hetero-
geneous components should be hidden from the users.

• The resource scaling interface should be generic and ex-
tensible to allow its use on various platforms with differ-
ent heterogeneous configurations. It should allow scaling
of resources in incremental ways and should be light-
weight in nature for frequent reconfiguration. It should
also work with multiple resources.

Figure 3 depicts HeteroVisor, its various components, and
their interactions. The underlying server platform consists of
heterogeneous CPUs and memory, and it provides capabili-
ties for online performance and power monitoring. The plat-
form is shared by multiple guest virtual machines, where
each VM communicates with the hypervisor about its re-
source requirements through the elasticity (E) state inter-
face (detailed in Section 3.1). E-states are controlled by an
E-state driver module, allowing the guest VM to commu-
nicate its changing resource needs and usage as state tran-
sitions. The hypervisor contains heterogeneity-aware elastic
resource managers including a CPU scheduler and, memory
manager. It also contains a resource share manager which
is the higher-level resource allocator that takes into account
various E-state inputs from the VMs and QoS related pol-
icy constraints from the management domain, to partition re-
sources across all VMs, whereas the CPU and memory man-

agers enforce these partitions and manage them efficiently
for each VM. These components are described in more de-
tail next.

3.1 Elasticity States
Inspired by the P-state (performance-state) interface [38]
defined by the ACPI standard and used to control CPU
voltage and frequency (DVFS), the E-state (elasticity-state)
abstraction permits VMs to provide hints to the hypervisor,
governed by VM-specific E-state drivers.

Ve
rti

ca
l S

ca
lin

g
(V

)

Horizontal Scaling (H)

Emn

1U
CPU

M
em

or
y

Base

1U = 1 vCPU (H), 0.2 GHz (V)

1U
 =

 5
12

M
 (H

),
64

M
 (V

)

YU

NU

Ehv
1U

Base

XU

M
U

E00

St
or

ag
e

1U
 = 10

G (H
), 1

G (V
)

Figure 4: Elasticity state abstraction for resource scaling

The E-state interface defines multiple states, where each
state corresponds to a different resource configuration. E-
states are arranged along two dimensions, corresponding to
horizontal and vertical scaling as shown in Figure 4. Hori-
zontal scaling makes it possible to add virtual resources to
the application, using hot-plug based mechanisms; vertical
scaling implies boosting the performance of existing plat-
form resources. Both horizontal and vertical scaling are scale
up methods, separate from the scale out methods varying the
number VM instances. As in the case of P-states, a higher
numbered E-state (Emn) represents a lower resource configu-
ration, while a lower numbered E-state (E00) implies a higher
performance mode. Further, these states are specific to each
scalable component, resulting in separate state specifications
for processor, memory, and storage subsystems. For all re-
source types, however, a change in E-state implies a request
to change the allocation of resources to that VM by a cer-
tain number of resource units (U). For the CPU component,
a horizontal E-state operation changes the number of vC-
PUs, while vertical scaling adjusts vCPU speed in units of
CPU frequency. Similarly, for the memory subsystem, hor-
izontal scaling is achieved by changing its overall memory
allocation, while vertical scaling adjusts its current alloca-
tion in terms of usage of fast/slow memory (at page gran-
ularity). HeteroVisor’s current policies are concerned with
vertical scaling in the presence of heterogeneous resources,
explainedin more detail next.

3.2 Elastic CPU Manager
Heterogeneous resources consisting of components with dif-
ferent performance levels can be used to provide a virtual,
highly elastic server system. We next describe how this can
be achieved for heterogeneous cores,with a formulation spe-
cialized for the case of two different types of cores (this can

82

be generalized to multiple performance levels). Section 3.3
extends the approach to heterogeneous memory systems.

3.2.1 Virtual Core Scaling:
Given a platform configuration with heterogeneous cores,
the objective of the elastic CPU manager is to provide to
a guest VMhomogeneous virtual cores running at some de-
sired speed that may be different from the speeds of the phys-
ical cores being used. This can be achieved by appropriate
scheduling of the vCPUs on these heterogeneous cores and
assigning a usage cap to each vCPU, limiting its usage of
physical resources. For such scaling, our current approach
schedules all vCPUs on slow cores initially, with fast cores
kept idle, the assumption being that slow cores have lower
ownership costs for the cloud usersrequesting resources for
their VMs. As vCPUs are scaled up, the slow core cap of
vCPUs is increased to meet the desired scaling speed.When
slow core cycles are saturated, further scaling results in vC-
PUs being scheduled to fast cores, providing higher scaled
speeds than what is possible with slow cores only.

0.0 0.5 1.0 1.5 2.0
Elastic Speed

0

200

400

600

800

Ag
gr

eg
at

e
Po

ol
 U

sa
ge Slow

Fast

(a) 6 vCPU VM

0.0 0.5 1.0 1.5 2.0
Elastic Speed

0

200

400

600

800

Ag
gr

eg
at

e
Po

ol
 U

sa
ge Slow

Fast

(b) 12 vCPU VM

Figure 5: Models for vCPU scaling using heterogeneity

The expressions for the corresponding usage caps of var-
ious cores for achieving a given effective processing speed
can be obtained by formulating a linear optimization prob-
lem, solvable using standard solvers. Since allocations must
be computed in kernel-space, instead of relying on external
solvers, we obtain a closed-form solution for the special case
of two types of cores, slow (s) and fast (f), where slow cores
have lower ownership cost than fast cores, thereby priori-
tizing allocations to use slow cores before using fast cores.
We omit the formulation and derivation of these expressions
due to space constraints. Instead, Figure 5 plots the resul-
tant equations for a configuration with 8 slow cores with 1x
speed and 4 fast cores with 4x speed. The figure shows the
aggregate slow and fast pool usage for a VM (total percent-
age utilization caps are assigned collectively to all vCPUs)
as we vary the elastic core speed. Two different VM config-
urations are plotted, by varying the number of vCPUs in the
VM to 6 and 12.

In both the cases, slow pool usage first increases linearly
as we increase the elastic core speed (solid lines). Once slow
cores are saturated at usage values 600 for 6 vCPUs and
800 for 12 vCPUs (constrained by 8 physical slow cores),
fast pool usage gradually increases (see the dotted lines) to
obtain the requested elastic scaling. For example, a VM with

12 vCPUs at speed 1U exhibits 800% slow pool utilization
(8 slow cores fully utilized) and 100% fast pool usage (1 fast
core with speed 4x). We also see jumps in the CPU usage
with vn equal to 6 at speed 1 and 1.5, which happens due to
the shift of a slow pool vCPU to the fast pool.

vCPU
exchange

to minimize
imbalance

S1

D

F1

vCPUs

pCPUs
(S=slow, F=fast)

A C
A

B

Scale up
vCPUs

Fill up small cores to
minimize fast core usage

S2 S1 S2 S3

C

D

Load
Balancing

B
Slow
Pool

Fast
Pool

Figure 6: Virtual core scaling using heterogeneous cores

For elastic scaling, vCPUs are partitioned into two pools,
one corresponding to the each type of core, i.e., slow and
fast pool. Each vCPU executes within a particular pool and
is load-balanced among other vCPUs belonging to that pool,
as shown in Figure 6. Because of this partitioning of vCPUs
into pools, there may arise performance imbalances among
vCPUs. To deal with this, a rotation is performed periodi-
cally among pools to exchange some vCPU, thus giving ev-
ery vCPU a chance to run on the fast cores, resulting in better
balanced performance. Such migrations have very little cost
if done infrequently and particularly if the cores involved
share a last-level cache.

3.2.2 Implementation:
Virtual core scaling is implemented by augmenting Xen’s
CPU credit scheduler by adding two different types of cred-
its: slow and fast. Credits represent the resource right of a
VM to execute on the respective types of cores and are dis-
tributed periodically (30ms) to each running VM. A vCPU
owns one type of credits during one accounting period. As
the VM executes, its credits are decremented periodically
(every 30ms) based upon the type of cores it uses. A vCPU
can execute as far as it has positive credits available. Once it
has consumed all credits, it goes offline by being placed into
a separate ‘parking queue’ until the next allocation period.
At this point, the credits are redistributed to each VM, and
its vCPUs are again made available for scheduling. Further,
a circular queue of vCPUs is maintained to periodically ro-
tate vCPUs between slow and fast cores.We find it sufficient
to use a granularity of 10 scheduler ticks, i.e., at a frequency
of 300ms, for this purpose,for the long-running server work-
loads used in our experimental evaluation.

3.3 Elastic Memory Manager
HeteroVisor realizes performance-scalable memory by chang-
ing a VM’s memory allocation across underlying hetero-
geneous components, i.e., use of fast memory for high-
performance E-states and slow memory for slower E-states.
This section describes elasticity management for heteroge-

83

neous memories involving fast die-stacked memory and slow
off-chip DRAMs. Since die-stacked memoryis small in ca-
pacity in comparison to off-chip DRAM, a subset of pages
from the application’s memory must be chosen to be placed
into stacked-DRAM. For this purpose, it is important to de-
tect and manage the application’s ‘hot’ pages that are critical
to its performance. This requires the hypervisor to efficiently
track each guest’s memory accesses.

3.3.1 Memory Access Tracking:
Modern processors provide only limited hardware support
for detecting application’ memory access patterns. On the
x86 architecture, each page table entry has an access bit,
which is set by the hardware when the corresponding page
is accessed. Software is responsible for clearing/using this
bit. We use this single-bit information to build an access bit
history to determine a VM’s memory access pattern. Specif-
ically, we periodically scan and collect the access bits, form-
ing a bitmap, called an ‘A-bit history’ (access-bit history),
shown in Figure 7. A 32-bit word and a 100ms time interval
is used for scanning, implying 3.2 seconds of virtual time
corresponding to one word. If the A-bit history has many
ones, i.e., it is a dense A-bit history, this indicates that the
page is hot and frequently accessed. A threshold of 22, ob-
tained experimentally, is used in our work for marking a page
as hot.

P20

P21

P23

P25

P28

P30

P31

P33

00010100

10101101

00111010

11010010

01000101

01101101

11100011

10000111

Physical
Pages

Access-bit
History

Count(x)

 2

 5

 4

 4

 3

 6

 5

 4

Access count
Table

Select N
pages

P21

P30

P31

Hot Page
List

P21

P30

Stacked DRAM
Set

>

threshold
(4)

Figure 7: Tracking hot pages using access-bits

Since application processes within a guest VM run in vir-
tual time, page tables are scanned over virtual time – ev-
ery 100ms –rather than wall-clock time, for an accurate A-
bit history.For accurate accounting, events like timer tick
(TIMER), address space switches (NEW CR3), and vCPU
switches (SCHEDULE) are also taken into account.Our im-
plementation collects and maintains an A-bit history for all
machine frames for all guest VMs, including the manage-
ment domain.

3.3.2 Hot Page Management:
Detected with the A-bit history, hot pages are actively man-
aged by moving them in and out of fast/slow memories.
There are four categories of pages and associated actions,
depending on their residencies and status, as shown in Ta-
ble 2. Active hot pages should be migrated to or maintained
in fast memory, and inactive cold pages should be discarded.

While Cases 2 & 3 are relatively easy tasks, Actions 1 and 4
are the primary determinants of the overhead of page migra-
tions, handled as described below.

Table 2: Hot page management actions

Residency Status Action
1 Off-Chip Active Migrate to on-chip DRAM
2 Off-Chip Inactive Drop from the list
3 On-Chip Active Keep in on-chip DRAM
4 On-Chip Inactive Migrate to off-chip DRAM

Hot pages are managed to form a linked list (see Fig-
ure 8). Since this list can be quite long, its inspectioncan
cause substantial overheads for scanning and migrating such
pages. To efficiently manage this list, only parts of the list
are considered at one time, where MAX SCAN (currently
512) determines the number of pages that are scanned in a
time window (every 100ms). Further, the removal of inactive
pages may incur page migrations to off-chip memory, caus-
ing potentialperturbation seen by co-running applications. In
addition, since pages freed by the guest are likely to be used
again by the next job(since memory allocators in guest VMs
often reuses previously freed pages), it is beneficial to em-
ploy ‘lazy’ page migrations, that is, to delay the eviction of
selected pages from stacked DRAM. We do so by migrat-
ing only MAX MFNS pages from the hot page list every
time the list is scanned. Finally, TIME WINDOW macro
(3000ms) defines when a page in the list becomes inactive.
Thus, if a page in the list is not accessed for 3000ms, it is
considered inactive and eventually discarded.

H H

Head Tail

 ……

MAX_SCAN

H

Cold page on off-chip
(to be dropped)

Hot page on off-chip
(to be migrated)

Hot page on on-chip
(to be kept) H

H H H

H

Cold page on on-chip
(to be migrated)

Scan direction

Figure 8: Hot page management and associated actions

A final note concerning hot page list management is that
scanning happens in the reverse direction, as new pages are
added to the front of the list, and the tail typically contains
the oldest pages. This further reduces overhead, since it
avoids unnecessary page migrations.

3.3.3 Transparent Page Migration:
Memory spill operations are performed by migrating pages
between different memories. Such migrations require remap-
ping guest page tables, which are hidden from the hypervi-
sor. In order to do this in a guest-transparent way, Hetero-
Visormirrors guest page tables.For para-virtualized guests,
page tables are write-protected and require the hypervisor’s
involvement in updating page table entries through a hyper-
call. We simply intercept these calls and re-create a mirror

84

version of the page tables as shown in Figure 9 and install
them in the CR3 hardware register, forcing the guest to use
these mirrors. This allows us to freely change virtual-to-
physical mappings, without any changes to the guest OS. For
fully virtualized guests, these mechanisms may be simplified
by hardware supports such as NPT (nested page table) or
EPT (Extended page table). These architectural extensions
implement an extra level of address translation so this extra
layer can be used to implement transparent page migrations.

Guest

Hypervisor

4KB	
 page	

(page	

table)	

struct	

address	

space	

=process	

struct	

page	

table	

L1 L2 L3 L4

L1 L2 L3 L4 L1 L2 L3 L4

bitmap

Mirrored page table Linked list based tree

Guest’s page table

Figure 9: Mirror page tables for page migrations

Additional optimizations serve to minimize negative im-
pacts on cache behavior. Rather than scanning page tables
completely, separate metadata structures using linked lists
and pointers (see Figure 9) are used for easy iteration over
page table entries, optimizing page table scanning for access
bits. Without this optimization, the whole 4KB of each page
table would be scanned, thus trashing cache real estate (i.e.,
4KB-worth cache lines). This is particularly important for
interior (L2, L3, L4) page tables. Further, only existing map-
pings are managed in this list, thereby effectively eliminatin-
gunnecessary scans. Finally, L1 page tables (leaf node) use
a bitmap to quickly detect present pages. This again elimi-
nates unnecessary scans on the L1 page table and prevents
valuable cache lines from being evicted.

3.3.4 Handling Shared Pages:
Since any machine frame can be shared between multiple
processes/guests, all of the corresponding page table entries
must be updated when migrating such a page. To do this
efficiently, we employ reverse maps (Rmaps) that store this
reverse mapping information,i.e., from a page in physical
memory to entries in various page tables. We can iterate over
this Rmap list to find all of the mappings to a given page,
thus enabling efficient remapping for any given page. Each
machine page (mfn) is associated with one Rmap list that
contains pointers to page table and page table index.

3.4 Elasticity Driver
Elasticity drivers are the guest-specific components of the
HeteroVisor stack, allowing guest VMs to guide resource al-

location by triggering E-state transitions, in a manner simi-
lar to the CPU governor making P-state (performance-state)
changes in the context of DVFS (dynamic voltage and fre-
quency scaling) [38]. Interesting resource management poli-
cies can be implemented by using different implementations
of the driver, thus permitting each application (i.e., guest
VM orsome set of guest VMs – a VM ensemble) to choose
a specific driver catering to its requirements. Various solu-
tions (e.g., RightScale) are already available to implement
resource scaling controllers for applications,and by making
it easy to employ such solutions, the E-state driver is a step
forward in giving applications fine-grained controlover how
their resources are managed. HeteroVisor does not require
guests to specify E-state drivers, of course, thus also able to
support traditional VMs with static configurations, but such
VMs will likely experience cost/performance penalties due
to over/under-provisioning oftheir resources.

We note that it should be clear from these descriptions
that guest VMs can use custom and potentially, quite so-
phisticated controllers in their E-state drivers, including
prediction-based mechanisms [42] that model application
behavior to determine the resultant E-state changes. The E-
state driver used in our current work implements a simple
reactive heuristic for illustration. The driver performs the
scaling in two steps:

Step 1: First pick a resource for scaling (CPU, memory)
for the current epoch

Step 2: Request scaling operation (up, down, or no
change) for the selected resource

To select a resource for scaling, it needs to consider two
factors in making this decision: the application’s sensitivity
to the resource and the cost of the resource to obtain best
performance for minimum cost. The current driver uses IPC
(instructions-per-cycle) as the metric to determine an appli-
cation’s sensitivity to CPU or memory. If IPC is high, scaling
is performed along the CPU axis for that epoch; otherwise,
it picks the memory resource for scaling. It currently assigns
equal cost to both types of resources (CPU and memory), but
any cost values can be incorporated in the heuristic to obtain
the desired cost/performance trade-off.

The scaling heuristic used employs a combination of util-
ity factor (util) and application performance (qos) to form
the E-state transition logic shown in Algorithm 1. The util-
ity factor is analogous to CPU/memory utilization, i.e., the
percentage of resources (CPU usage cap or memory pages)
consumed by a VM against its assigned usage. Similarly, the
QoS metrics, such as response time or response rate, can be
obtained from the application. Specifically, for these metrics,
the E-state driver defines four thresholds: qoshi, qoslo, utilhi,
and utillo. If qos is lower than the minimum required perfor-
mance qoslo or if the utility factor is higher than utilhi mark,
an E-state scaleup operation is requested. Scale down logic
requires qos to be higher than qoshi and util to be lower than
the utillo threshold.

85

Intuitively, if the application performance is lower than its
SLA or if the utility factor is too high, which may cause SLA
violations, a scale up operation is issued to request more
resources. On the other hand, if application performance is
higher than its desired SLA, a scale down operation can be
issued, given that the utility factor is low to avoid violations
after scaling. In order to avoid oscillations due to transitory
application behavior, history counters are used to dampen
switching frequency. Specifically, a switch is requested only
after a fixed number of consecutive identical E-state change
requests are received. The history counter is a simple integer
counter, which is incremented whenever consecutive inter-
vals generate the same requests and reset otherwise.

Algorithm 1: Elasticity-Driver Scaling Heuristic
if util > utilhi OR qos < qoslo then

Enext ← Ecur−1 ; // Scale up

else if util < utillo AND qos > qoshi then
Enext ← Ecur+1 ; // Scale down

else
Enext ← Ecur ; // No change

The E-state driver is implemented as a Linux kernel mod-
ule that periodically changes E-states by issuing a hypercall
to Xen. The driver uses a QoS interface in the form of a
proc file to which the application periodically writes its QoS
metric. In addition, it reads the VM utility factor from the
hypervisor through a hypercall interface. The E-state driver
runs once every second, with a value of three for the history
counter and 1.25 as the IPC cut-off for resource selection.

3.5 Resource Share Manager
HeteroVisor uses a tiered-service model where different
clients can receive different levels of quality of service.
Clients requesting higher QoS and thus paying higher cost,
obtain better guaranties in terms of resource allocation, by
prioritizing allocations to their VMs. In comparison, clients
with lower QoS requirements obtain resources as they be-
come available. Such clients with different QoS levels can
be co-run, to minimize resource waste while maintaining
QoS. An example of such a service is Amazon EC2 Spot
instances which run along with standard EC2 instances and
receive resources when unused by standard instances. In
such scenarios, each VM is assigned a QoS-level (similar to
Q-states [34]) by the administrator that states its willingness
to pay. The allocation is then performed for each resource
to determine the share of each VM, taking into account any
E-state and Q-state changes, as shown in Algorithm 2. The
allocation happens periodically and proceeds in multiple
phases, as described below.
Phase 1: to ensure fairness in allocation, a minimum share
value is assigned to each application (if given), so that no
high QoS application can starve lower QoS applications.
Phase 2: the allocation is done in sorted order of VM Q-
states. For each VM, it increases or decreases its resource

allocation by a fixed fraction (δ) depending on the desired
E-state change by that VM as ‘up’ or ‘down’, respectively.
Otherwise, the allocation is kept constant. Phase 3: After
allocating shares to all the applications, any remaining re-
source shares are assigned to low QoS instances which are
willing to accept as many resource as available.

Algorithm 2: Resource Share Allocation Algorithm
Input: estate(vmi),qstate(vmi)
Output: share(vmi)
shareavail = sharetotal
foreach VM vmi (in order qstate(vmi) high→ low) do

if shareavail > 0 then
if estate(vmi) == estateup then

// Assign more shares

share(vmi) = share(vmi)+δ

end
else if estate(vmi) == estatedown then

// Reduce resource shares

share(vmi) = share(vmi)−δ

end
shareavail = shareavail − share(vmi)

end
end

The paper’s current experimental evaluation considers
only single-VM scenarios. The allocation problem across
competing VMs can be solved using various statistical tech-
niques including bidding mechanisms and priority manage-
ment [2].We do not experiment with such methods because
this paper’s focus is on ways to manage heterogeneity in
cloud environmentsrather than on allocation and scheduling
techniques.

4. Experimental Evaluation
4.1 Setup
Our experimental platform consists of a dual-socket 12 core
Intel Westmere server with 12GB DDR3 memory, with-
heterogeneity emulated as follows. Processor heterogeneity
is emulated using CPU throttling, by writing to CPU MSRs,
which allows changing the duty cycle of each core indepen-
dently. Memory throttling is used to emulate heterogeneous
memory. It is performed by writing to the PCI registers of the
memory controller, thus slowing it down. This allows us to
experiment with memory configurations of various speeds,
such as M1 and M2, which are approximately 2x and 5x
slower than the original M0 configuration with no throttling.

In all experiments, response time is chosen as the QoS
metric (lower is better), implying that an inverse value of la-
tency is used in the QoS thresholds for the driver. A latency
value of 10ms is chosen as the SLA, corresponding to which
two policies are evaluated by using different thresholds for
the scaling algorithm as shown in Table 3. These thresh-
olds are obtained after experimenting with several different

86

values. The first QoS-driven policy (ES-Q) is performance-
sensitive, while the second resource-driven policy (ES-R) fa-
vorslower speeds, and thus, higher resource savings.

Table 3: Thresholds for scaling policies

qoshi utillo qoslo utilhi
ES-Q 1/5 40 1/10 90
ES-R 1/5 50 1/15 95

For CPU experiments, a platform configuration consist-
ing of eight slow cores and four fast cores is considered,
where slow and fast cores are distributed uniformly on each
socket to minimize migration overheads. The performance
ratio between fast and slow cores is kept at 4x. Experi-
ments are conducted using a VM with 12 vCPUs, provid-
ing an elasticity range up to 2U. Having an E-state step of
0.2U gives us 10 CPU E-states from E0 (2U) to E9 (0.2U),
which are exported by the E-state interface. Similarly, mem-
ory evaluation is done using a platform configuration with
512MB of fast memory and an E-state step of 64MB, result-
ing in 8 memory E-states. Elastic scaling mechanisms are
compared against a base case configuration with a static al-
location of 1U CPU resources (E5 CPU state) and 256MB
stacked memory (E4 memory state).

4.2 Workloads
Experimental runs use a web server and an in-house memcached-
like (memstore) application, which service a stream of in-
coming requests from a client machine. The web server
launches a CPU-intensive computation kernel, while mem-
store performs a memory lookup operation in response to
each request. The memstore application allows us to load the
memory subsystem to its peak capacity, avoiding CPU and
network bottlenecks associated with standard memcached
implementation. In addition, several other benchmarks, in-
cluding SPEC CPU2006 and modern datacenter applica-
tions, are also included in the analysis.

0 10 20 30 40 50 60 70
Time

0

50

100

150

200

N
o
rm

a
liz

e
d
 C

P
U

 L
o
a
d

J1 J2 J3 J4

(a) CPU

0 10 20 30 40 50 60 70
Time

0

50

100

150

200

250

300

350

400

N
o
rm

a
liz

e
d
 M

e
m

o
ry

 U
sa

g
e

J1 J2 J3 J4

(b) Memory

Figure 10: Traces based on Google cluster data [18]

In order to simulate dynamically varying resource us-
age behavior, workload profiles based on data from Google
cluster traces are used [18]. Specifically, this data provides
the normalized CPU utilization of a set of jobs over sev-
eral hours from one of Google’s production clusters. The
dataset consists of four types of jobs from which we obtain

the average CPU load and memory usage of each type of
job, with resultant data shown in Figure 10. As seen from
the figure, workload J1 has constant high CPU usage, while
J2 has varying behavior, with phases of high and low usage.
In comparison, workloads J3 and J4 have uniform CPU us-
age, with J3 having significant idle components. Similarly,
the memory usage behavior of these jobs shows J1 and J2
having low memory footprints, while J3 and J4 have higher
usage profiles. These traces are replayed by varying the input
request rate in proportion to the CPU load and changing the
data-store size of the memstore workload in proportion to
the memory usage of each trace, with each data point main-
tained for 20 seconds. It is to be noted that the data presented
in the graphs is averaged across the entire cluster rather than
being retrieved from a single server instance, because the
dataset does not provide the machine mapping. We believe,
however, that these jobs offer a good mix to test different
dynamic workload scenarios present in server systems.

4.3 Experimental Results
Evaluations analyze the gains in performance and resource
cost attainable from using fine-grained elastic scaling, com-
pared to static allocation schemes.

bzip2 gcc mcf milc
leslie

3d
namd lbm

astar0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
iz

ed
 P

er
fo

rm
an

ce

Native Hetero

(a) SPECCPU

1W 2W 3W 4W 5W 6W
Warehouses

0

10

20

30

40

50

Op
er

at
io

ns
 (K

)

Native Hetero

(b) SPECJBB

Figure 11: Performance comparison of heterogeneous con-
figurations with the native platform

Figure 11 evaluates the overheads associated with scaling
operations. Specifically, Figure 11a compares the perfor-
mance of several SPEC CPU2006 benchmarks with com-
posed virtual platforms using heterogeneous cores (8S+4F)
against standard homogeneous configurations (12S). Both
configurations operate at an elastic core speed of 1U and
memory is allocated completely from off-chip DRAM. The
data shows comparable performance for both the configura-
tions, implying that the overhead associated with its scaling
operations are small. In order to evaluate multi-threaded ex-
ecution scenarios, Figure 11b shows the performance score
for SPECjbb2005, a Java multi-tier warehouse benchmark,
at different configurations, by increasing the number of
warehouses. As seen from the figure, performance results
for the both cases closely follow each other with increasing
threads, showing its applicability to multi-threaded applica-
tions as well.

E-state scaling is first evaluated by running the web server
application with increasing load and withdynamic scaling of

87

E-states (see Figure 12). Figures 12a and 12b show the re-
sponse rate and response time for this workload. As appar-
ent in the figures, throughput rises gradually as load is in-
creased. The corresponding latency curve is relatively flat, as
the E-state driver scales E-states to maintain latency within
the SLA (10ms). We also notice a few spikes in the latency
graph; these occurin response to an increase in the input
load, whereupon the E-state is scaled up to reduce latency.
The corresponding E-state graph is shown in Figure 12c,
where E-states are scaled from from E9 to E4 in multiple
steps.

0 50 100 150 200 2500
20
40
60
80

100
120
140

(a) Response rate
0 50 100 150 200 2504

6
8

10
12
14
16
18

(b) Resp. time (ms)
0 50 100 150 200 250

E9
E8
E7
E6
E5
E4
E3

(c) E-state

Figure 12: Elastic scaling experiment using the webserver
workload (x-axis = time (s))

Evaluating the impact of memory heterogeneity, Fig-
ure 13 compares the performance of several SPEC CPU2006
applications (see Figure 13a) and various modern cloud
application benchmarks, including graph database, graph
search, key-value store, Lucene search engine, Tomcat
server, kmeans, page-rank, and streamcluster algorithms (see
Figure 13b) on different memory configurations. Specifi-
cally, it shows normalized performance at the base M0 con-
figuration (without throttling) and for the M1 and M2 mem-
ory configurations (by applying different amounts of mem-
ory controller throttling). As evident from the figure, several
applications experience severe performance degradation due
to low memory performance, including 14x (5x) and 7x (4x)
performance loss for the mcf and kvstore (key-value store)
applications for the two memory configurations: M2 and
M1. Other applications, like bzip and page-rank, exhibit less
sensitivity. Overall, these results suggest that memory per-
formance is critical to realistic applications which can there-
fore, benefit from the elastic management of heterogeneous
memory resources.

bz
ip2

bw
av

esmcf
milc

ze
us

mp

les
lie

3d
na

md

h2
64

re
f
lbm

sp
hin

x3
0.0

0.5

1.0

1.5

2.0

P
e
rf
o
rm

a
n
ce

D
e
g
ra

d
a
ti
o
n

M0 M1 M2
14.3x
5.4x

2.6x

(a) SPECCPU

gr
ap
hd
b

gs
ea
rch

km
ea
ns

kv
sto

re

lus
ea
rch

pa
ge
ra
nk

sc
lus
ter

tom
ca
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
e
rf
o
rm

a
n
ce

D
e
g
ra
d
a
ti
o
n

M0 M1 M2
7.2x 5.1x

(b) DATACENTER

Figure 13: Impact of memory performance

Showing the use of the A-bit history based mechanisms
to obtain the working set sizes (WSS) of applications, Fig-

ure 14 plots WSS graphs as a function of time for several
SPEC CPU2006 workloads. As seen in the figure, working
set size varies across applications from ∼10MB for omnetpp
to a much larger value of ∼200MB for memory-intensive
mcf. Further, WSS dynamically changes over time for these
applications, thereby showing the need for runtime memory
elasticity.

0 2 4 6 8 10 12 14 16 180

50

100

150

200

(a) mcf
0 2 4 6 8 10 12 14 160

10
20
30
40
50
60

(b) milc
0 10 20 30 40 50 600

2
4
6
8

10
12

(c) omnetpp

Figure 14: Working set size detection using access-bit his-
tory (x-axis = time (s), y-axis = WSS (MB))

Figure 15 shows the performance impact of memory E-
state scaling on the memstore application, by gradually scal-
ing E-states from E7 to E0, i.e., increasing the size of the
fast memory allocation, where each state is maintained for
five seconds before scaling to the next state. The non-scaling
scenario (NS) shows a flat latency graph at 34ms and 42ms
for the M1 and M2 configurations, respectively. In com-
parison, when E-states are scaled up from E7 (left) to E0
(right) in Figure 15a, the average latency for each memory
operation decreases gradually to 8ms. The reduced access
times with elastic scaling causes a 4.3x increase in appli-
cation throughput (from 0.28M to 1.2M) (see Figure 15b).
Also, the performance of the NS and ES configurations are
comparable when no fast memory is used, signifying negli-
gible overheads due to management operations like page ta-
ble scans, mirroring, and maintaining other data structures.
These results demonstrate that resource scaling on heteroge-
neous memory systems can be applied to obtain desired QoS
for memory-sensitive applications.

0 20 40 60 80 100
Time (s)

5

10

15

20

25

30

35

40

45

R
e
sp

o
n
se

 t
im

e
 (

m
s)

NS-M1

NS-M2

ES-M1

ES-M2

(a) Latency

0 20 40 60 80 100
Time (s)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
e
sp

o
n
se

 r
a
te

 (
M

)

NS-M1

NS-M2

ES-M1

ES-M2

(b) Throughput

Figure 15: Impact of elastic memory scaling on the perfor-
mance of memstore application

We next evaluate the four workloads based on Google
cluster traces shown in Figure 10. The results in Figure 16
compare the QoS and resource usage for the base configu-
ration without any elastic scaling (NS-B) with elastic CPU
scaling for the two policies ES-Q and ES-R given in Table 3.
The base platform configuration consists of 12 slow cores,

88

each with an elastic speed of 1U. The QoS score graph shows
the fraction of queries for which service latency falls within
the SLA (10ms). Similarly, the resource usage graphs com-
pare the relative usage of various configurations, assuming a
linear relationship between E-states and resource usage.

J1 J2 J3 J40.0

0.2

0.4

0.6

0.8

1.0

Qo
S

Sc
or

e

NS-B ES-Q ES-R

(a) QoS Score
J1 J2 J3 J40.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
so

ur
ce

 U
sa

ge

NS-B ES-Q ES-R

(b) Resource Usage

Figure 16: Experimental results for CPU E-state scaling

As the results show, both policies provide much higher
QoS than the base system for workload J1. Specifically, the
QoS-sensitive policy ES-Q results in a 97% QoS score, with
a 17% resource usage penalty, while the resource-driven
policy ES-R provides lower QoS (83%), with lower usage
(0.96x). In comparison, the base platform can only sustain
a 43% QoS level. It is clear, therefore, that HeteroVisor can
scale up resources to provide better performance when sys-
tem load is high. For workload J2, ES-Q exhibits 9% higher
and ES-R results in 3% lower QoS, while also reducing re-
source usage by 21% and 24%, respectively. Thus, resources
are scaled up and down to meet the desired performance re-
quirement. For J3 with low input load, HeteroVisor yields
resource savings while also maintaining QoS, i.e., it gener-
ates 100% and 91% QoS scores with 42% and 61% lower
resource usage for the two policies. In this manner, scal-
ing down resources during low load periods produces sav-
ings for these jobs. Finally, the uniformly behaving workload
J4 also shows comparable performance with significant re-
source savings across these configurations (∼40%). In sum-
mary, E-states enable dynamic scaling of resources provid-
ing high-performance when required (as for J1) and resource
savings for low activity workloads like J3 and J4.

J1 J2 J3 J40.0

0.2

0.4

0.6

0.8

1.0

Qo
S

Sc
or

e

NS-B ES-M1 ES-M2

(a) QoS Score
J1 J2 J3 J40.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Re
so

ur
ce

 U
sa

ge

NS-B ES-M1 ES-M2

(b) Resource Usage

Figure 17: Results for memory E-state scaling

Concerning memory elasticity, Figure 17 shows the mem-
store application, using the load traces depicted in Fig-
ure 10b to vary the datastore size. The figure compares the
QoS score and resource usage for the base configuration

(NS-B) with the QoS-driven policy (ES-Q) under the M1 and
M2 memory configurations. Additional experimentswith the
resource-driven ES-R policy shows only minor variation for
the memory scaling experiments. With a base case config-
uration consisting of 256MB of stacked DRAM (state E4),
as the data in Figure 17a suggests,ES provides a 2.3x better
QoS score for job J4, while performance is comparable for
J1 and J3. J2 shows a 15% performance loss with scaling
due to its varying memory usage, causing frequent scal-
ing operations. Comparable behavior is seen across the two
memory configurations (M1 and M2). The resource usage
results in Figure 17b illustrate that ES policies significantly
reduce the use of fast memory of jobs J1, J2, and J3 (75%,
70%, and 25%, respectively). In comparison, J4 observes a
50% increase in its resource usage due to its large memory
footprints. Overall, elastic resource scaling using Hetero-
Visor provides a 30% lower stacked memory usage while
maintaining performance.

Figure 18 shows the residency distribution (%) in each
E-state for each of the four jobs, for the CPU scaling exper-
iments. The states are color coded by their gray-scale inten-
sity, meaning that a high-performance E-state is depicted by
a darker color in comparison to a low-performing E-state.
The graphs in Figures 18a and 18b correspond to the ES-Q
and ES-R policies. As seen in the figures, different E-states
dominate different workloads. J1 has large shares of E-states
E2, E4, and E5 due to its high activity profile. For the low-
CPU workload J3, the slower states E7 and E8 are dominant
under the ES-Q and ES-R policies respectively. Similarly, J4
spends the majority of its execution time in states E7 and
E5,while J2 makes mixed use of the E8, E7, E6, and E5
states. The results show the rich use of E-states, differing
across andwithin workloads.

J1 J2 J3 J40

20

40

60

80

100

R
e
si

d
e
n
cy

 (
%

)

E9

E8

E7

E6

E5

E4

E3

E2

E1

E0

(a) QoS-driven (ES-Q)
J1 J2 J3 J40

20

40

60

80

100

R
e
si

d
e
n
cy

 (
%

)

E9

E8

E7

E6

E5

E4

E3

E2

E1

E0

(b) Resource-driven (ES-R)

Figure 18: E-state residencies for two scaling policies

The corresponding E-state switch profiles for the ES-
Q policy are shown in Figure 19. Both J1 and J4 stay in
lower E-states initially and scale up when demand increases.
J3 stays in a single E-state, while J2 has several E-state
transitions due to its variable load. In summary, results make
clear that HeteroVisor successfullyand dynamically scales
resources to match the varying input load requirements seen
by guest VMs.

Interesting about these results is that HeteroVisor ex-
ploits platform heterogeneity for dynamically scaling the re-
sources neededby guests to meet desired application perfor-

89

0 500 1000 1500 2000
E7
E6
E5
E4
E3
E2
E1

(a) J1
0 500 1000 1500 2000E8

E7
E6
E5
E4
E3

(b) J2

0 500 1000 1500 2000E8

E7

E6

(c) J3
0 500 1000 1500 2000E8

E7

E6

E5

E4

(d) J4

Figure 19: E-state switch profiles showing usage of various
states (x-axis = time (s), y-axis = E-states)

mance/cost trade-offs. As shown by the experimental data,
the approach not only better services load peaks in compar-
ison to homogeneous platforms (up to 2.3x), but it also pro-
vides savings (an average 21% for CPU and 30% for mem-
ory) to applications by scaling down their resources during
idle periods. For all of these activities, E-state drivers can
be customized to meet different user requirements, which
we demonstrate experimentally with policies thateither meet
high QoS requirement using an aggressive policy or that re-
duce resource usage while maintaining performance by us-
ing a conservative policy.

5. Related Work
Resource Management in Clouds: There has been substan-
tial prior work on elastic resource scaling for server sys-
tems. In comparison to cluster-level scaling solutions [14,
19], HeteroVisor focuses on platform-level, fine-grained re-
source scaling. RaaS [1] and Kaleidoscope [6] argue in fa-
vor of fine-grained resource management for future cloud
platforms, as also explored in our work. Q-Clouds, Vir-
tualPower, AutoPilot, and CloudScale propose hypervisor-
level mechanisms for elastic scaling of cloud resources [32,
34, 37, 42]. However, none of these address the effective
use of platform-level heterogeneity in multiple platform re-
sources. Several techniques have been developed for fair
sharing of resources in cloud environments [15, 49]. Simi-
larly, market-based allocation methods for datacenter appli-
cations have also been analyzed [17, 43, 47]. Such methods
can be incorporated into HeteroVisor to ensure efficient op-
eration and provide fairness.
Heterogeneous Processor Scheduling: Earlier work has
demonstrated the need for compute heterogeneity advocat-
ing wimpy and brawny cores to efficiently support a wide
variety of applications [3, 5, 20, 26, 48], as well as shown
its presence in datacenters [36]. Several implementations of
heterogeneous processor architectures have been released by
various CPU vendors [16, 35]. In order to manage these
platforms, appropriate OS-level [7, 23, 24, 39, 41, 45] and

VMM-level [22, 25] techniques have been developed to ef-
ficiently run applications on heterogeneous cores. HeteroVi-
sor adopts an alternative approach that hides heterogeneity
from the OS scheduler, exposing a homogeneous scalable
interface. Finally, several heterogeneity-aware cloud sched-
ulers have also been proposed [8, 33] which are complemen-
tary to HeteroVisor that works at the platform level.
Heterogeneous Memory Management: The detection of
memory usage behavior of virtual machines has been ex-
ploredin previous work [21, 31, 46]. In comparison, we
usepage-table access bits to detect not only the working set
sizes but also provide ‘hotness’ informationabout each page
to guide page placement. Similarly, various methods for bal-
ancing memory allocation among competing VMs also exist
which can be incorporated into our design for improving ef-
ficiency [2, 50]. Concerning heterogeneous memory, several
architectural solutions have been proposed for page place-
ment strategies in such systems involving NVRAM, DRAM
caches, and disaggregated memory [11, 28, 40, 44]. In com-
parison, our work focuses on software-controlled memory
management to more efficiently utilize stacked DRAM.
There is also increasingly more emphasis on memory volt-
age scaling efforts [9, 10]. HeteroVisor approach goes be-
yond voltage scaling to support heterogeneous resources for
efficient operation.

6. Conclusions & Future Work
This paper presents the HeteroVisor system for managing
heterogeneous resources in elastic cloud platforms, pro-
viding applicationswith fine-grained scaling capabilities. To
manage heterogeneity, it provides the abstraction of elastic-
ity (E) states to the guestvirtual machine, which an E-state
driver can use to elastically request resources on-demand.
The proposed abstractions generalizeto managing multiple
resource types and levels of resource heterogeneity. Demon-
strating its application to CPU and memory, we present tech-
niques to manage these heterogeneous resources in an elastic
manner. The HeteroVisor solution is implemented in the Xen
hypervisor along with a simple E-state driver realizing two
scaling policies, QoS-driven and resource-driven. Experi-
mental evaluations are carried out using real-world traces on
an emulated heterogeneous platform. They show that Het-
eroVisor can provide VMs with the capabilities to quickly
obtain resources for handling load spikes and/or to minimize
cost during low load periods.

There are multiple possible directions for future work. In-
vestigating challenges with the design of fine-grain resource
management policies for requesting and allocating resources
in the presence of multiple competing users is one future di-
rection. Market based allocation mechanisms based on game
theory become relevant in this context. In addition, using
elasticity-states with multiple platform resources and mul-
tiple levels of heterogeneity is also interesting.

90

References
[1] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and

D. Tsafrir. The resource-as-a-service (RaaS) cloud. In
Proceedings of the 4th USENIX conference on Hot Topics
in Cloud Ccomputing, HotCloud’12, pages 12–12, Berkeley,
CA, USA, 2012. USENIX Association.

[2] O. Agmon Ben-Yehuda, E. Posener, M. Ben-Yehuda,
A. Schuster, and A. Mu’alem. Ginseng: Market-driven
memory allocation. In Proceedings of the 10th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execu-
tion Environments, VEE ’14, pages 41–52, New York, NY,
USA, 2014. ACM. .

[3] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,
L. Tan, and V. Vasudevan. FAWN: a fast array of wimpy
nodes. In Proceedings of the ACM SIGOPS 22nd sympo-
sium on Operating systems principles, SOSP ’09, pages 1–14.
ACM, 2009. .

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proceedings of the nineteenth ACM sympo-
sium on Operating systems principles, SOSP ’03, pages 164–
177, New York, NY, USA, 2003. ACM. .

[5] L. A. Barroso. Brawny cores still beat wimpy cores, most of
the time. Micro, IEEE, 30(4):20 –24, july-aug. 2010. ISSN
0272-1732. .

[6] R. Bryant, A. Tumanov, O. Irzak, A. Scannell, K. Joshi,
M. Hiltunen, A. Lagar-Cavilla, and E. de Lara. Kaleidoscope:
cloud micro-elasticity via VM state coloring. In Proceedings
of the sixth conference on Computer systems, EuroSys ’11,
pages 273–286, New York, NY, USA, 2011. ACM. .

[7] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley. The yin
and yang of power and performance for asymmetric hardware
and managed software. In Proceedings of the 39th Annual In-
ternational Symposium on Computer Architecture, ISCA ’12,
pages 225–236, Washington, DC, USA, 2012. IEEE Com-
puter Society.

[8] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware
scheduling for heterogeneous datacenters. In Proceedings
of the 18th international conference on Architectural support
for programming languages and operating systems, ASPLOS
’13, pages 77–88, New York, NY, USA, 2013. ACM. .

[9] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bian-
chini. MemScale: active low-power modes for main memory.
In Proceedings of the sixteenth international conference on
Architectural support for programming languages and oper-
ating systems, ASPLOS XVI, pages 225–238. ACM, 2011. .

[10] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and
R. Bianchini. CoScale: Coordinating CPU and memory sys-
tem DVFS in server systems. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO ’12, pages 143–154. IEEE, 2012. .

[11] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi. Simple
but effective heterogeneous main memory with on-chip mem-
ory controller support. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10. IEEE, 2010. .

[12] A. Fedorova, J. C. Saez, D. Shelepov, and M. Prieto. Maxi-
mizing power efficiency with asymmetric multicore systems.
Commun. ACM, 52(12):48–57, Dec. 2009. .

[13] G. Galante and L. C. E. d. Bona. A survey on cloud computing
elasticity. In Proceedings of the 2012 IEEE/ACM Fifth Inter-
national Conference on Utility and Cloud Computing, UCC
’12, pages 263–270. IEEE Computer Society, 2012. .

[14] A. Gandhi, T. Zhu, M. Harchol-Balter, and M. A. Kozuch.
SOFTScale: stealing opportunistically for transient scaling.
In Proceedings of the 13th International Middleware Confer-
ence, Middleware ’12, pages 142–163, New York, NY, USA,
2012. Springer-Verlag New York, Inc.

[15] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness: fair al-
location of multiple resource types. In Proceedings of the 8th
USENIX conference on Networked systems design and imple-
mentation, NSDI’11. USENIX Association, 2011.

[16] P. Greenhalgh. Big.LITTLE Processing with ARM
CortexTM-A15 & Cortex-A7. White paper, ARM, Sept 2011.

[17] M. Guevara, B. Lubin, and B. C. Lee. Navigating heteroge-
neous processors with market mechanisms. In High Perfor-
mance Computer Architecture (HPCA2013), 2013 IEEE 19th
International Symposium on, pages 95–106, 2013. .

[18] J. L. Hellerstein. Google cluster data.
Google research blog, Jan. 2010. Posted at
/urlhttp://googleresearch.blogspot.com/2010/01/google-
cluster-data.html.

[19] Y.-J. Hong, J. Xue, and M. Thottethodi. Dynamic server pro-
visioning to minimize cost in an IaaS cloud. In Proceedings
of the international conference on Measurement and model-
ing of computer systems, SIGMETRICS ’11, pages 147–148,
New York, NY, USA, 2011. ACM. .

[20] V. Janapa Reddi, B. C. Lee, T. Chilimbi, and K. Vaid. Web
search using mobile cores: quantifying and mitigating the
price of efficiency. In Proceedings of the 37th annual interna-
tional symposium on Computer architecture, ISCA ’10, pages
314–325, New York, NY, USA, 2010. ACM. .

[21] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Geiger: monitoring the buffer cache in a virtual machine envi-
ronment. In Proceedings of the 12th international conference
on Architectural support for programming languages and op-
erating systems, ASPLOS XII, pages 14–24. ACM, 2006. .

[22] V. Kazempour, A. Kamali, and A. Fedorova. AASH: an
asymmetry-aware scheduler for hypervisors. In Proceedings
of the 6th ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, VEE ’10, pages 85–96,
New York, NY, USA, 2010. ACM. .

[23] D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling in
heterogeneous multi-core architectures. In Proceedings of the
5th European conference on Computer systems, EuroSys ’10,
pages 125–138, New York, NY, USA, 2010. ACM.

[24] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen. Single-ISA heterogeneous multi-core archi-
tectures: The potential for processor power reduction. In Pro-
ceedings of the 36th annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO 36. IEEE, 2003.

91

[25] Y. Kwon, C. Kim, S. Maeng, and J. Huh. Virtualizing per-
formance asymmetric multi-core systems. In Proceedings of
the 38th annual international symposium on Computer archi-
tecture, ISCA ’11, pages 45–56, New York, NY, USA, 2011.
ACM. .

[26] W. Lang, J. M. Patel, and S. Shankar. Wimpy node clusters:
what about non-wimpy workloads? In Proceedings of the
Sixth International Workshop on Data Management on New
Hardware, DaMoN ’10, pages 47–55. ACM, 2010. .

[27] M. Lee and K. Schwan. Region scheduling: efficiently using
the cache architectures via page-level affinity. In Proceedings
of the seventeenth international conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS ’12, pages 451–462. ACM, 2012. .

[28] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ran-
ganathan, and T. F. Wenisch. System-level implications of
disaggregated memory. In Proceedings of the 2012 IEEE 18th
International Symposium on High-Performance Computer Ar-
chitecture, HPCA ’12, pages 1–12. IEEE, 2012. .

[29] G. H. Loh. 3D-stacked memory architectures for multi-core
processors. In Proceedings of the 35th Annual International
Symposium on Computer Architecture, ISCA ’08, pages 453–
464. IEEE Computer Society, 2008. .

[30] G. H. Loh, N. Jayasena, K. McGrath, M. O’Connor, S. Rein-
hardt, and J. Chung. Challenges in heterogeneous die-stacked
and off-chip memory systems. In In Proc. of 3rd Workshop on
SoCs, Heterogeneity, and Workloads (SHAW), Feb 2012.

[31] P. Lu and K. Shen. Virtual machine memory access trac-
ing with hypervisor exclusive cache. In 2007 USENIX An-
nual Technical Conference on Proceedings of the USENIX An-
nual Technical Conference, ATC’07, pages 3:1–3:15, Berke-
ley, CA, USA, 2007. USENIX Association.

[32] R. Nathuji and K. Schwan. VirtualPower: coordinated power
management in virtualized enterprise systems. In Proceed-
ings of twenty-first ACM SIGOPS symposium on Operating
systems principles, SOSP ’07, pages 265–278. ACM, 2007. .

[33] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform het-
erogeneity for power efficient data centers. In Proceedings of
the Fourth International Conference on Autonomic Comput-
ing, ICAC ’07, pages 5–. IEEE Computer Society, 2007. .

[34] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: man-
aging performance interference effects for QoS-aware clouds.
In Proceedings of the 5th European conference on Computer
systems, EuroSys ’10, pages 237–250. ACM, 2010. .

[35] Nvidia. Variable SMP: A multi-core CPU architecture for low
power and high performance. White paper, 2011.

[36] Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, and P. Hui.
Exploiting hardware heterogeneity within the same instance
type of Amazon EC2. In Proceedings of the 4th USENIX con-
ference on Hot Topics in Cloud Ccomputing, HotCloud’12,
pages 4–4, Berkeley, CA, USA, 2012. USENIX Association.

[37] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant. Automated control of multiple
virtualized resources. In Proceedings of the 4th ACM Euro-
pean conference on Computer systems, EuroSys ’09, pages
13–26, New York, NY, USA, 2009. ACM. .

[38] V. Pallipadi and A. Starikovskiy. The ondemand governor:
Past, present and future. Linux Symposium, 2:223–238, 2006.

[39] S. Panneerselvam and M. M. Swift. Chameleon: operating
system support for dynamic processors. In Proceedings of
the 17th international conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
XVII, pages 99–110, New York, NY, USA, 2012. ACM. .

[40] L. E. Ramos, E. Gorbatov, and R. Bianchini. Page placement
in hybrid memory systems. In Proceedings of the interna-
tional conference on Supercomputing, ICS ’11, pages 85–95,
New York, NY, USA, 2011. ACM. .

[41] J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov. A
comprehensive scheduler for asymmetric multicore systems.
In 5th EuroSys, pages 139–152, New York, NY, USA, 2010. .

[42] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. CloudScale: elastic
resource scaling for multi-tenant cloud systems. In Proceed-
ings of the 2nd ACM Symposium on Cloud Computing, SOCC
’11, pages 5:1–5:14, New York, NY, USA, 2011. ACM. .

[43] T. Somu Muthukaruppan, A. Pathania, and T. Mitra. Price the-
ory based power management for heterogeneous multi-cores.
In 19th Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS, pages
161–176. ACM, 2014. .

[44] K. Sudan, K. Rajamani, W. Huang, and J. Carter. Tiered
memory: An iso-power memory architecture to address the
memory power wall. Computers, IEEE Transactions on, 61
(12):1697–1710, Dec 2012. ISSN 0018-9340. .

[45] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and
J. Emer. Scheduling heterogeneous multi-cores through per-
formance impact estimation (PIE). In Proceedings of the
39th Annual International Symposium on Computer Architec-
ture, ISCA ’12, pages 213–224, Washington, DC, USA, 2012.
IEEE Computer Society.

[46] C. A. Waldspurger. Memory resource management in
VMware ESX server. In Proceedings of the 5th USENIX
conference on Operating systems design and implementation,
OSDI’02, Berkeley, CA, USA, 2002. USENIX Association. .

[47] W. Wang, B. Liang, and B. Li. Revenue maximization with
dynamic auctions in IaaS cloud markets. In Quality of Service
(IWQoS), 2013 IEEE/ACM 21st International Symposium on,
pages 1–6, 2013. .

[48] D. Wong and M. Annavaram. KnightShift: Scaling the en-
ergy proportionality wall through server-level heterogeneity.
In Proceedings of the 2012 45th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO ’12, pages
119–130. IEEE Computer Society, 2012. .

[49] S. M. Zahedi and B. C. Lee. REF: Resource elasticity fairness
with sharing incentives for multiprocessors. In International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’14, pages 145–160.
ACM, 2014. .

[50] W. Zhao and Z. Wang. Dynamic memory balancing for
virtual machines. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS international conference on Virtual execution
environments, VEE ’09, pages 21–30. ACM, 2009. .

92

