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Abstract

Traditionally, data warehousing workloads have been processed us-
ing CPU-focused clusters, such as those that make up the bulk of
available machines in Amazon’s EC2, and the focus on improv-
ing analytics performance has been to utilize a homogenous, multi-
threaded CPU environment with optimized algorithms for this in-
frastructure. The increasing availability of highly parallel accelera-
tors, like the GPU and Xeon Phi discrete accelerators, in these types
of clusters has provided an opportunity to further accelerate analyt-
ics operations but at a high programming cost due to optimizations
required to fully utilize each of these new pieces of hardware.

This work describes and analyzes highly parallel relational al-
gebra primitives that are developed to focus on data warehousing
queries through the use of a common OpenCL framework that can
be executed both on standard multi-threaded processors and on
emerging accelerator architectures. As part of this work, we pro-
pose a set of data-intensive benchmarks to help compare and dif-
ferentiate the performance of accelerator hardware and to deter-
mine the key characteristics for efficiently running data warehous-
ing queries on accelerators.

Categories and Subject Descriptors C.1.3 [Re]: Other Architec-
ture Styles— Heterogeneous (hybrid) systems; D.2.8 [Software
Engineering]: Metrics—performance measures; H.2.4 [Database
Management]: Systems—relational databases

General Terms Algorithms, Measurement, Performance

Keywords Heterogeneous Computing, Relational Databases, TPC-
H, Benchmarking, SHOC, OpenCL

1.

As traditional relational databases typically handle short queries
and small amounts of data, they are useful for simple transactions
but are not always best suited for processing complex queries in
data-intensive applications [8]. The need to handle big data in such
applications prompted the creation of data warehouses. Such mass
storage facilities are playing an increasingly important role in cur-
rent industrial applications. Modern enterprises use various data
warehousing applications for collecting, managing, analyzing, and
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disseminating big data [6]. The emergence of big data in sensor
technology, retail and inventory transactions, social media, com-
puter vision, and many other fields has led to the establishment
of warehouses comprised of on-line analytical processing (OLAP)
systems that handle large transactions and complex queries. A sig-
nificant portion of data warehousing applications comprises rela-
tional queries that, in turn, are based on a mix of arithmetic and
relational algebra (RA) operators. Since they process a substan-
tial amount of data, these operators should be capable of exhibit-
ing massive degrees of parallelism. To accelerate these operators
and applications, modern graphics processing units (GPUs), co-
processors, and other accelerators with a highly parallel structure
and high memory bandwidth are attractive. However, these opera-
tors exhibit highly unstructured and irregular parallelism and per-
form very few operations per byte. Therefore, unlike other tradi-
tional scientific operations and computations that effectively utilize
parallelism, the efficient parallel implementation of these operators
is a challenge.

To address these challenges, we have built on previous relational
algebra implementations that were targeted solely towards one type
of accelerator, NVIDIA GPUs. By using a common accelerator
API, OpenCL, we can map efficient implementations of relational
algebra operators to CPUs, GPUs, and possibly eventually even to
devices like FPGAs that support some OpenCL functionality [4].

This paper makes the following contributions:

¢ Provides efficient database primitives using OpenCL. These
primitives include relational algebra (RA), arithmetic, and other
operators required to execute relational queries in data ware-
housing applications. These primitives are also used to imple-
ment micro-benchmarks derived from the TPC-H industry stan-
dard benchmark suite [3].

Evaluates these database primitives and micro-benchmarks
across multiple accelerators.

Provides a new open-source benchmark for evaluating acceler-
ators for database operations as part of the SHOC benchmark
suite.

2. Related Work

Traditional enterprise-focused benchmark suites like BigDataBench
[14] and TPC-H [3] have traditionally focused on non-accelerated
systems. However, rapid hardware development has resulted in
diverse accelerators and parallel CPU/GPU architectures giving
rise to the need of having a benchmark suite that can evaluate
portable database operators written in OpenCL across different ar-
chitectures. [17] proposes a portable query processor using kernel-
adapter based design. This design makes the kernel aware of the un-
derlying architecture for optimization of database primitives across
different architectures. The paper only presents basic results on



portability and efficiency. [1] also implements portable database
primitives but focuses on using software engineering for efficiency.
The paper claims that software engineering is a better solution than
[17] because of its low implementation and maintenance cost. Both
of these projects are in their preliminary stages and have proposed
visions to improve the efficiency of the portable code for the re-
spective architectures, but they have not yet addressed concrete
ideas as to how to implement relational database primitives for
an application similar to the style of analytics addressed by the
TPC-H benchmark. However, these general principles could be in-
corporated for optimization purposes in future work. As opposed to
previous general implementations of underlying kernels like scan
like in [1], the goal of this paper is to provide the algorithm de-
sign of the database primitives and to demonstrate the importance
of having a benchmark suite for databases that evaluate different
accelerators.

3. Design of the Primitives

Table 1. Relational Algebra Primitives

Primitive Input Primitive Input
Name Tuple Size Name Tuple Size
Project 1 Add 2
Reduce 1 Subtract 2
Reduce by Key 1 Multiply 2
Select 1 Difference 2
Unique 1 Product 2
Inner Join 2

This section describes the high-level algorithmic structure of
several of the primitives in the library, all of which are shown in
Table 1. For space we focus on a few of the most interesting primi-
tives in this paper (bolded in Table 1), but algorithms for the other
primitives are described in further detail in [12]. The relational al-
gebra algorithms have a structure very similar to those described
in [7], and all of the primitives are either unary or binary (sin-
gle or two inputs) operators. The main differences are changes in
the algorithms that optimize them for both CPUs and GPUs, and
the challenges faced in translating these algorithms into a differ-
ent language. In [7], Diamos et al. presented the implementation
of primitives in CUDA optimized for Nvidia GPUs. Accounting
for multiple underlying architectures, we wrote our algorithms in
OpenCL. Moreover, our library contains not only the basic rela-
tional database operators described in [7] but also the additional
primitives such as aggregation, required to execute basic relational
queries. Most of the primitives in the library are implemented using
the same sequence of stages: partition, compute, gather. Note that
our relations are stored as a densely packed array of tuples, each
of which comprises two attributes, a key and a value. Each tuple
supports one key and up to three value attributes (up to 256 bits).
Many of our algorithms that require complex partitioning store the
input relations and maintain results in sorted form because opera-
tions such as array/vector partitioning and tuple lookup are efficient
with the sorted array/vector. Because of this sorted property, algo-
rithms are executed in an efficient manner on multi-core and many-
core processors. The overview of primitives algorithms is given as
follows:

3.1 PROJECT

A data-parallel operation that removes one or more attributes from
the input relation and returns only selected attribute(s) in the output
relation is PROJECT, which takes advantage of thread-level paral-
lelism. As no complex partitioning is required for this operator, its
implementation is relatively simple. Only one pass is required by
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our algorithm in which each work-item operates on one input tuple.
Each work-item picks the specified attribute from the tuple, "key"
in our case, places it in the register, and then transfers it to the
output memory as shown in Algorithm 1. Every work-item oper-
ates in parallel, but its operation is serialized if available hardware
resources such as registers are not sufficient for all work-items in
action.

foreach work-item w in parallel do
register «— input[w].key;
output[w] « register;

end

Algorithm 1: PROJECT

foreach partition p in parallel do
foreach work-item w (with local id lw) in parallel do
keyReg «— input[w].key;
valueReg — input[w].value;
countReg « 0;

if keyReg < THRESHOLD then
countReg < 1;
end
indexReg «—
positions of selected tuples obtained from Algorithm 3;
totalReg —
number of selected tuples obtained from Algorithm 3;
if count is equal to 1 then
locallindexReg].key < keyReg;
locallindexReg].value «— valueReg;
end
if Iw < fotalReg then
globalPartition[lw] « local[lw];
end
if lw is O then
array[p] « total;
end
end

end
Algorithm 2: SELECT

3.2 SELECT

In SELECT, the key of each input tuple is evaluated for a given
predicate function (e.g., a threshold like all dates for a certain event
of interest). If the comparison is successful, the entire tuple is
copied to the output relation; otherwise, the tuple is ignored. To
implement this algorithm following the efficient three-stage pro-
cedure (i.e., partitioning, computing, and gathering), four OpenCL
kernels are sequentially executed. Since complex partitioning is not
required by SELECT, both partitioning and computational stages
are performed by the first kernel, the gathering stage is performed
by the fourth kernel, and other simple operations required to com-
plete the SELECT operation are performed by second and third
kernels, described later in the section. In the first kernel given by
Algorithm 2, the input tuples are divided into the same number of
equal-sized partitions as the number of work-groups. Each work-
item is devoted to one tuple. The work-item reads the tuple in a reg-
ister, determines the result of the predicate comparison, and stores
the resulting Boolean, countReg, in another register. Work-items in
each partition, or work-group, compute the parallel prefix-sum of
countReg following Algorithm 3 to determine the positions of re-
sulting tuples in the intermediate output memory set aside for each
partition. This intermediate memory chunk can contain any num-
ber of tuples in the respective partition, depending on the predicate
function; thus, we do not know the resulting size returned by each



partition beforehand. To improve memory efficiency, a work-group
transfers selected tuples first to the shared memory and then in bulk
to the global memory dedicated to each partition. Therefore, gaps
are left between the consecutive chunks in the global memory. An
intermediate array stores the number of matched tuples found by
each partition. To combine tuples selected by each partition, the
parallel prefix sum is determined by second and third kernels to
compute the indices of all the matched tuples in the output relation.
The parallel prefix sum performed by the second kernel is given
in Algorithm 3 and partitions in the second kernel is combined by
the third kernel (not shown here). Finally, gaps between the tuples
are removed by the fourth kernel, Algorithm 4, by placing them
in contiguous positions, computed by second and third kernels. To
improve memory efficiency, this memory-to-memory transfer in the
fourth kernel, or the gather stage, is also done in bulk. SET opera-
tions and INNER JOIN use the gather kernel in a similar fashion.

foreach work-item w (with local id lw) in parallel do
if Iw is equal to O then
local[0] « 0;
end
localBuffer = local+1;
localBuf fer « input[w];
for i «— 0 to numOfPartitions do
if numOfPartitions > 2' then
if Iw < 2' then
localBuf fer[lw] «
localBuf fer[lw — 2'] + localBuf fer[lw];
end
end
end
output[w] « local[lw];
end
Algorithm 3: Parallel Prefix Sum

foreach partition p in parallel do
foreach local work-item lw in parallel do
output[number of elements in previous partition + Iw] «
globalPartition[lw];
end
end
Algorithm 4: Gather

3.3 INNER JOIN

The most complex operators are INNER JOIN and set family. IN-
NER JOIN takes in two sorted input relations and combines tu-
ples containing the same keys. The implementation of INNER
JOIN consists of the same three stages (i.e., partition, compute, and
gather) and use five OpenCL kernels. In INNER JOIN, we use a
separate kernel for the complex partitioning of input relations. One
input relation (left) is divided into the same number of equal-sized
partitions as the number of generated work-groups. Based on the
pivot elements of each partition on the left, we use a binary search
to look up tuples in the other input (right). In this way, we create
partitions on the right that may contain tuples with the same keys.
Along with finding bounds, we predict the output size of each par-
tition in this partitioning kernel. After the partitioning stage, the
parallel prefix sum is computed by the second kernel given by Al-
gorithm 3. These partitions are combined by the third kernel to de-
termine the actual starting position of the output of each partition.
The actual join operation, depicted in Algorithm 5, is performed
by the fourth kernel. In this kernel, the tuples in each partition are
first placed in the local shared memory. Then each work-item takes
one tuple of the partition on the right, finds the number of matching
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tuples in the partition on the left using the same binary search, and
stores this number in a register, foundCountReg. If the partition on
the right does not fit in the local memory, it is brought to the lo-
cal memory in multiple iterations and the same work is performed.
Subsequently, the prefix sum is computed on foundCountReg to
find the index of each resulting tuple in the output memory. The
joined tuples are first placed in the local memory at their respec-
tive indices and then transferred to the intermediate output memory.
The resulting count of the number of joined tuples is also stored in
an array. After the computation in the fourth kernel, the implemen-
tation of last three kernels is the same as described for the SELECT
operator.

foreach partition p (left and corresponding right) in parallel do
while one of both left and right partitions not exhausted do
foreach work-item w (with local id lw) in parallel do
rightLocal[lw] « right[w];
leftLocal[lw] « left[w];
if the last tuple key of leftLocal < the first tuple key of
rightLocal then
go to the end of leftLocal;
else
if the last tuple key of rightLocal < the first tuple
key of leftLocal then
go to the end of the rightLocal;
else
Algorithm 6;
end
while right partition end do
rightLocal[lw] « right[w];
if the leftLocal last tuple key < the
rightLocal first tuple key then
break the loop;
end
Algorithm 6;
end
end
end
end
if Iw is 0 then
array[p] « total;
end
end
Algorithm 5: INNER JOIN

rightReg « right[lw];
lowerReg < lowerBound for rightReg key in leftLocal;
upperReg < upperBound for rightReg key in leftLocal;
foundCountReg «— upperReg — lowerReg;
indexReg = positions of selected tuples obtained from Algorithm 3;
totalReg = number of selected tuples obtained from Algorithm 3;
if rotalReg < size of outputLocal then
for i « O to foundCountReg do
outputLocallindexReg + i] <
rightReg and matching left tuple;
end
output «— outputLocal,
else
put in multiple iterations from outputLocal to output;
end
Algorithm 6: JOIN Block

3.4 UNIQUE

The UNIQUE operator removes consecutive duplicates within the
provided attribute. The input sequence does not need to be sorted.



foreach partition p in parallel do
foreach work-item w (with local id lw) in parallel do
countReg « 1;
if w is not the last work-item of the partition then
regl « input[wl;
reg2 « input[w];
if regl is equal to reg2 then
countReg « 0;
end
end
indexReg «—
positions of selected tuples obtained from Algorithm 3;
totalReg «—
number of selected tuples obtained from Algorithm 3;
if countReg is equal to I then
locallindexReg] « regl;
end
foreach Iw < totalReg do
output[lw] « local[lw];
end
if lw is O then
array|p] « total;
end
end
end
Algorithm 7: UNIQUE

Our implementation of UNIQUE is similar to that of SELECT (Al-
gorithm 2), in which partitioning and computation stages are per-
formed in the first kernel and output tuples are gathered by the last
kernel. Instead of comparing input tuples with a predicate function,
each tuple, or an element in this context, is compared with its adja-
cent element in the sequence. After simple partitioning, depending
on the generated number of work-groups, each work-item of a
work-group takes one element of the same index as its work-item
ID from the input sequence, places it in a register, takes the next
adjacent element, places it in another register, and then determines
if they are equal or not. It is similar to creating two input sequences,
one starting from the first element of the actual input and ending
at the next to the last element and the other starting from the sec-
ond element and ending at the last element, and then comparing
corresponding elements. If they are not equal, another register or
flag is set at 1; otherwise, it is set at 0. Note that work-items in the
partition are equal to the size of the partition, but active work-items
are one less than the size. The flag is initially set at 1 so that the last
idle work-item has a flag value of 1. The prefix sum is calculated
on this register, and the positions of the resulting unique elements
or tuples in the intermediate output memory are determined. The
unique elements are first placed in local shared memory and then
transferred to global memory in bulk. The number of resulting tu-
ples are stored in an intermediate OpenCL buffer. This algorithm
is given in precise form in Algorithm 7. To eliminate duplicates on
the edges of consecutive partitions, a separate kernel is called. If
the same tuple is present on the edges of partitions, the tuple in the
former partition is eliminated by reducing the partition size by one
in the intermediate buffer. The implementation of last three kernels
is same as that described for the SELECT operator.

3.5 TPC-H Micro-benchmarks

The TPC-H [3] benchmark is a decision support benchmark suite
that provides a set of ad-hoc business queries. Using multiple data
types and operators on large amounts of data sets, this suite, which
consists of 22 queries with a high degree of complexity, addresses
real-world business problems. After a detailed analysis of these
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Figure 1. Micro-kernels from TPC-H queries

TPC-H queries [15], Wu et al. identified a set of commonly oc-
curring patterns of relational operators. The frequently occurring
combinations of kernels, called "micro-kernels", drawn from the
TPC-H benchmark suite, are shown in Figure 1 from [15]. From
now on, we will call them (A), (B), and (C). The micro-benchmark
(A) contains a series of SELECT operators that obtain the required
tuples from the input relation; (B) consists of multiple dependent
JOIN operators, which result in a large output relation that com-
bines three input relations. (C) applies the JOIN operator on three
input relations, following the SELECT operation on the relations
and therefore, JOIN works on input relations that are smaller in (C)
than in (B); then after SELECT and JOIN, required attributes are
obtained using the PROJECT operator.

3.6 SHOC Benchmark Suite

The Scalable HeterOgeneous Computing benchmark suite (SHOC)
[5] was designed to compare a set of common algorithms across
multiple accelerated architectures and across multiple program-
ming models. Compared to other accelerator-based benchmark
suites like Parboil [13], Rodinia [2], and LoneStarGPU, SHOC
stands out due to its focus on scalable, multi-node application
benchmarks using MPI combined with its inclusion of CUDA,
OpenCL, and Xeon Phi-focused versions of the same benchmarks.
This cross-language development allows for performance compar-
isons of different accelerator architectures as well as the compari-
son of different programming models for the same type of acceler-
ator [10].

At the same time, SHOC and other related benchmark suites
have mainly focused on applications that are relevant to high-
performance scientific computing while excluding enterprise-
focused benchmarks like TPC and MapReduce-based benchmarks
like TeraSort [11]. To fill this gap for evaluating accelerators, we
propose the creation of a set of TPC-H microbenchmarks and even-
tually the implementation of a fully accelerated version of all the
queries in the TPC-H benchmark. These queries already have been
developed for CUDA outside of the SHOC framework, so the main
engineering contribution for a full TPC-H OpenCL benchmark
would be porting the proposed OpenCL primitives to operate in a
similar manner as the Red Fox compiler framework [16], which
takes TPC-H queries and breaks them down into the correct CUDA
primitives for executions on GPUs. The continued development of
this OpenCL-based TPC-H benchmark will also further the devel-
opment of a stable platform for performing high-throughput queries
on CPUs and accelerators for emerging Big Data problems.

This work provides a large first step towards this goal by demon-
strating the implementation of the OpenCL primitives and evaluat-
ing several of these primitives and TPC-H microkernels on as many
hardware platforms as possible. The tested benchmarks in this pa-
per are currently available as a public fork of the main SHOC de-



Table 2. Experimental Setup

Platform CPU Accelerator

Device Memory

OS and Software OpenCL Version

AMD Trinity APU A10-5800K HD 7660D

16 GB DDR3

CentOS 7.0 AMD APP 2.9

Intel Ivy Bridge 15-3470 HD 2500

16 GB DDR3

Ubuntu 14.04 Intel OpenCL 14.2

Intel Sandy Bridge 2xE5-2670 Phi 5110

24 GB DDR3, 8 GB DDR

CentOS 6.2, gcc 4.8.2 SDK for Applications

Intel Haswell 17-4770 GT2

16 GB DDR3

Ubuntu 14.04, gcc 4.8.2 and Beignet 1.0

Nvidia Fermi Xeon X5660 M2090

6 GB

CentOS 6.2, gcc 4.8.2 CUDA 6.0

Xeon E5520 K40

Nvidia Kepler

6 GB

CentOS 6.4, gcc 4.8.2

velopment branch. Currently, the contributed code focuses on the
execution of the individual primitives and microbenchmarks and
not on total execution runtime. Total runtime will become a more
useful metric as these benchmarks are implemented as part of a
larger implementation of TPC-H queries.

4. Experiments and Evaluation

Table 2 lists the experimental hardware used to evaluate the
OpenCL RA primitives and microkernels. A selection of desktop-
grade and enterprise-grade hardware was selected to include both
high-end accelerators like the Xeon Phi “Knight’s Corner” card and
the NVIDIA K40 Kepler card as well as low-end CPUs like the Ivy
Bridge i7 and the AMD Trinity APU with a fused CPU-GPU archi-
tecture. The existing benchmarks currently do not optimize based
on the OpenCL workgroup size for each device, so some of the
experiments may skew slightly towards the default settings which
were used (a constant workgroup size of 256). This optimization
would allow us to make more certain judgments on the differences
in hardware used, but selecting a constant workgroup size also
helps to control for one factor in systems that have many different
software and hardware features.

The OpenCL implementations used included Intel’s official
OpenCL SDK, AMD’s APP SDK, NVIDIA’s OpenCL library in
CUDA 6.0, and the beta software to support OpenCL on Intel in-
tegrated GPUs, Beignet [9]. Each of these packages aims to be in-
teroperable with each other and support OpenCL 1.2, but there are
certain differences due to continuing development of new OpenCL
features and bugs that are still under development. Most impor-
tantly, the Intel OpenCL SDK currently has a bug that does not
allow for OpenCL programs to be compiled with all the possi-
ble optimizations due to a regression in the underlying code that
vectorizes OpenCL kernels for CPUs and the Phi. This temporary
issue likely has impacted our CPU and Phi results slightly, but it is
difficult to quantify the effect at this moment. For this reason, we
emphasize that the “best” hardware for a specific operation is con-
tinually in flux and these results may change with the next OpenCL
1.2 release by vendors.

4.1 Benchmark Setup

Each of the discussed benchmarks, Select, Project, Unique, Join
and microkernels, A, B, and C were built using the platform-
local version of OpenCL as part of the overall SHOC framework.
OpenCL timers were used to measure the amount of execution time
for data transfer, computation for the overall primitive and for the
component kernels used to implement a primitive. Each primitive
was tested over a range of input sizes from 32 KB up to 1 GB, where
the listed size represents the size of one of the inputs as opposed to
the total input size. While not every device tested can run a specific
benchmark with 1 GB sizes, those that can are listed to emphasize
that higher-end devices allow for larger memory buffer allocations.
Inputs for all the input tuples were generated randomly, with special
focus on join inputs to try and prevent joins between empty sets of
tuples.
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4.2 Results
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The total timing results for the unary select benchmark are
shown in Figure 2, where the primitive takes from 143 ns (M2090)
up to 85 ms (Trinity CPU) to run for sizes ranging from .5 MB
up to 256 MB, including all data transfers. Right away this figure
demonstrates that the low-end CPU, the AMD APU performs much
slower due to its lower thread count and processor speed, but this
figure doesn’t provide a detailed picture of how each device fairs
for this primitive. Figures 3 and 4 break out these results into
similar classes of CPUs and accelerators for the kernel execution
time excluding all data transfers. Figure 3 shows that the Trinity
integrated GPU actually outperforms both the Intel and Haswell
integrated GPUs as well as the Phi 5110, while the Kepler GPU
card has the lowest kernel execution time (4.2 ms) of all devices
at the largest input size of 256 MB. While this is surprising that
the Trinity GPU performs so well on select, the lack of Intel-
specific optimizations (see Section 4) is likely to penalize Phi
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results slightly as well as the fact that the specific kernels may
not be able to make use of all of the available Phi cores without
specific code targeting. Figure 4 demonstrates that the Trinity CPU
lags behind the consumer-grade Intel CPUs as well as the high-end
Sandy Bridge platform, which has 2 Xeon processors, each with
twelve CPU threads.
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The design of the benchmark suite for our relational algebra
primitives also allows for the analysis of data transfer overheads
and more precise measurements of the constituent components of
a particular primitive, as shown in Figures 5 and 6. For most of the
test cases with a single primitive, data transfer is a large source of
overhead. For example data transfer consumes about 165 ms out of
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a total runtime of 221 ms for the Sandy Bridge processor running
Select. At the same time, data transfer only takes 48 ms out of a
total runtime of 151 ms for the Haswell CPU. These differences
across different generations of processors can be mostly attributed
to the implementation of zero-copy features with newer processors
like Haswell and the AMD Trinity APU, which prevents operating
system overhead to “transfer” data from the host memory space to
the address space which is executing OpenCL kernels.

Figure 6 demonstrates the component subkernels for the Select
primitive on the Xeon Phi. As mentioned in Section 3, each primi-
tive is designed around a partition, compute, and gather phase. The
“select” subkernel roughly corresponds to the partitioning and the
first part of the compute step, while prefix sum and sum are used as
intermediate computation steps, and gather performs the final phase
of the selection operation. As the input size grows, the partitioning
step becomes more time-consuming, indicating that optimized code
for this step could be used to improve the overall performance of
select operations.
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Project (Fig. 7) and Unique (Fig. 8) are both interesting for dif-
ferent reasons, since they detail how different processors and accel-
erators map for simplistic unary operators (project) and more com-
plex binary operators (unique, join, etc.). Project shows more sepa-
ration in terms of how fast discrete accelerators (Kepler, Fermi, Phi)
can perform the project operation when compared to CPU and inte-
grated or fused accelerators. Here again the GPUs perform the best,
likely due to the default OpenCL workgroup size skewing closely
to their thread layout. Unique shows that the most optimized inte-
grated CPU/GPU part, the AMD trinity performs much better for



the unique kernel operation than its comparable CPUs, specifically
the Ivy Bridge CPU and GPU parts.
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Figure 9. Join Kernel Execution Time

In Figure 9, the results for the Join kernel show that again the
discrete GPUs are the best choice for this primitive, while the
Haswell GPU and Sandy Bridge CPU also perform well on this
complex operation. Somewhat surprisingly, the Xeon Phi struggles
at the largest input size (2x 32 MB) with a kernel execution time
of 88 ms while the Ivy Bridge CPU takes almost 95 ms. Both of
these results are likely due to the lack of optimizations with the
Intel SDK due to the aforementioned vectorization regression in
the latest software release (Section 4). Currently our benchmark
suite only supports this primitive with inputs of up to 64 MB due
to the potential for large outputs with inner join operations.
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Figure 10. MicroKernel A Execution Time (with data transfer)

The microkernel benchmarks tend to exhibit the same character-
istics as the primitives, although they do behave slightly differently
due to the ordering of operations (and resultant data reductions for
operations like select). Microkernel A (Fig. 10) demonstrates again
that the AMD Trinity’s CPU is the worst choice for chained select
operations with a total runtime of around 900 ms, while the GPUs
and newer CPUs provide a good degree of parallelism with most
operations finishing in under 200 ms.

Like the join kernel, the results for microkernel B (two joins) in
Figure 11 show that the Intel CPU parts and Trinity GPU take the
longest to finish, due to lack of CPU-specific optimizations and low
clock speeds for the Trinity GPU. In this particular test, the chained
join does not take much longer than two single joins, indicating that
the first join operation did not generate a large amount of output to
be used as input for the second join.

Finally, the high-end accelerators results for microkernel C (Fig.
12) illustrate the contribution of the chained join operations in
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Figure 12. MicroKernel C Execution Time (High-end)

overall execution time. While the Phi can quickly perform select
and project operations, its long execution time for join operations
leads to it being much slower than the discrete GPUs at larger
input sizes, with three 64 MB inputs taking 1.88 seconds to process
versus 19 and 14 ms for the K20 and M2090 GPUs.

4.3 Further Discussion

These results demonstrate a cross-section of the full set of primi-
tives discussed in more detail in [12], and they also illustrate several
insights that may be familiar to GPU and Xeon Phi programmers
but that bear repeating in the context of this new analytics applica-
tion space.

e Because of the large number of compute units, high memory
bandwidth, and many on-chip resources, the discrete GPUs
tend to be best suited for the evaluated primitives. While the
Xeon Phi also performs well on primitives other than joins, it
is penalized slightly by the lack of current Intel optimizations
and limited workgroup size optimization on our part for the
benchmarks.

In all processors, particularly in the case of the discrete GPU,
very simple primitives such as PROJECT, in which the kernel
execution time is a very small fraction of the overall execution,
the time spent on transferring data between the host and the de-
vice dominates the total execution time. Since the data transfer
time is shorter for fused GPUs and CPUs, the total execution
time of primitives ends up being shorter than that on the dis-
crete GPU.

Since data warehousing analytics typically deals with large data
sets, the data transfer time cannot solely be reduced by using
pinned memory, a scarce resource that cannot accommodate
both the inputs and output relations used and produced by



the primitives. Therefore, we cannot fully take advantage of
zero-copy memory accesses, but instead, we have to perform
(relatively slow) transfers between the host and the device. This
overhead was demonstrated in Figure 5 and it points to the need
for improved zero-copy semantics for future “fused” CPU and
GPU parts like the AMD APU or Haswell CPU.

The excellent performance results for simple primitives with
the high-end Sandy Bridge CPUs point to a clear caveat for op-
timizing the same application across different types of acceler-
ators - in many cases, a fast, multi-threaded CPU can get good
performance that compares well with accelerated code that is
moderately optimized for a target architecture (as is the case
with these primitives). However, our goal in this case is to en-
sure good performance portability across a variety of architec-
tures, as opposed to an optimized solution for one piece of hard-
ware.

In our experiments, the memory buffer limit differs across de-
vices depending on the size of the global memory for GPUs
and RAM in case of CPUs. To run primitives for input sizes
larger than the size of the maximum OpenCL allocation size,
we would have to manage data transfers in concert with ongo-
ing computation. In future work, we would like to investigate
asynchronous data transfers for this benchmark suite and the
full-fledged TPC-H implementation.

From our experimental results, we see preliminary results that
indicate that when scheduling kernels for execution on a system
with both fused and discrete GPUs, one should schedule fine-
grained kernels on the fused GPU, complex kernels on the
discrete GPU, and kernels requiring a large amount of memory
on the CPU. The OpenCL implementation of this library makes
such scheduling decisions possible, thereby enabling one to
opportunistically choose and use core types that are available
at run time.

5. Conclusions

In this paper, we have presented a portable library containing RA
(relational algebra), arithmetic, and other related primitives re-
quired to run data-intensive relational queries. In our experiments,
we used multiple GPUs and CPUs to evaluate the library and con-
cluded that discrete GPUs outperform other integrated GPUs and
CPUs due to large numbers of threads and better available opti-
mizations for the tested kernels. Although data transfer time con-
tributes to a significant portion of the total execution time of dis-
crete GPUs, the computation power of integrated GPUs and CPUs
is still not sufficient to compete with the short execution time of
discrete GPUs, especially for large data sets. However, the results
showed that each successive generation of integrated GPU provides
better performance that is comparable for smaller query sizes. This
finding suggests that in complex queries involving multiple prim-
itives that are common in data warehousing applications, less ex-
pensive integrated GPUs surpass expensive discrete GPUs in per-
formance if data transfer is not optimized between devices. We look
forward to further investigating these trade-offs with future work
involving the larger set of TPC-H queries.
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