Deferred Lightweight Indexing for Log-Structured Key-Value Stores

Yuzhe Tang © Arun Iyengar ¥ Wei Tan *

Liana Fong ¥

Ling Liu 8 Balaji Palanisamy *

TSyracuse University, Syracuse, NY, USA, Email: ytangl00@syr.edu

SGeorgia Institutue of Technology, Atlanta, GA, USA, Email: 1ingliu@cc.gatech.edu
YIBM T.J.Watson Research Center, Yorktown, NY, USA, Email: {aruni, wtan, llfong}R@us.ibm.com
YUniversity of Pittsburgh, Pittsburgh, PA, USA, Email: bpalan@pitt.edu

Abstract

The recent shift towards write-intensive workload on big
data (e.g., financial trading, social user-generated data streams)
has pushed the proliferation of log-structured key-value stores,
represented by Google’s BigTable [1], Apache HBase [2] and
Cassandra [3]. While providing key-based data access with a
Put/Get interface, these key-value stores do not support value-
based access methods, which significantly limits their applicabil-
ity in modern web and database applications. In this paper, we
present DELI, a DEferred Lightweight Indexing scheme on the
log-structured key-value stores. To index intensively updated big
data in real time, DELI aims at making the index maintenance as
lightweight as possible. The key idea is to apply an append-only
design for online index maintenance and to collect index garbage
at carefully chosen time. DELI optimizes the performance of
index garbage collection through tightly coupling its execution
with a native routine process called compaction. The DELI’s
system design is fault-tolerant and generic (to most key-value
stores); we implemented a prototype of DELI based on HBase
without internal code modification. Our experiments show that
the DELI offers significant performance advantage for the write-
intensive index maintenance.

1. Introduction

In the age of cloud computing, various scalable systems
emerge and prevail for big data storage and management. These
scalable data stores, mostly called key-value stores, include
Google’s BigTable [1], Amazon’s Dynamo [4], Facebook’s Cas-
sandra [5], [3], Apache HBase [2] among many others. They
expose a simple Put/Get API which allows only key-based data
accesses, in the sense that when writing/reading data in the key-
value stores, user applications are required to specify a data key
as the parameter. While the key-based Put/Get API supports
basic workloads, it falls short when it comes to advanced web
and database applications which require value-based data access.
To gain wider application, it calls for value-based API support
on the key-value stores.

On the other hand, many key-value stores deal with write-
intensive big data. Typically, the workload against a key-value
store is dominated by data writes (i.e. Put) rather than reads,
and such workloads are prevalent in modern web applications.
For instance, in Web 2.0, social users not only read news but
also contribute their own thinking and write news themselves. It
is also the case in other emerging domains, such as large system
monitoring and online financial trading. To optimize the write
performance, many key-value stores (e.g. HBase, Cassandra and

BigTable) follow a log-structured merge design [6], in which
the on-disk data layout is organized as several sorted files and
writes are optimized by an append-only design. We call these
Log-structured Key-Value Stores as LKVS (whose distinctive
features are described in § II).

This work addresses the problem of supporting a value-based
API on the write-intensive data stored in LKVS. For value-
based access, a secondary index is essential. In common practice,
the secondary index is implemented as a regular table in the
underlying LK'VS. In this situation, the index maintenance under
a write-intensive workload is a challenge: On the one hand, the
index maintenance needs to be lightweight in order for it to catch
up with the high arrival rate of the incoming data writes; On
the other hand, given mutable data where data updates overwrite
previous data versions, the index maintenance needs to find and
delete the obsolete versions (in order to keep the index fresh and
up-to-date); such a task includes Get operations which are very
expensive in LKVS systems (explained in § II).

In this paper, we propose DELI, a middleware system that
supports the secondary index on top of an LKVS. To address the
index-maintenance challenge, we propose a performance-aware
approach. The core idea is to decompose an index-maintenance
task to several sub-tasks, and only to execute the inexpensive
ones synchronously while deferring the expensive ones. More
specifically, given a data update, the index maintenance needs to
perform two sub-tasks, that is, 1) to insert new data versions to the
store and 2) to find and delete old versions. Sub-task 1) involves
only Put operations, while sub-task 2), called an index repair,
requires a Get operation to find the old version. The insight
here is that LKVS is write-optimized in the sense of Put being
fast and Get being slow, which makes sub-task 1) lightweight
and the index-repair sub-task 2) heavyweight. DELI’s strategy
to schedule the index maintenance is to synchronously execute
sub-task 1) while deferring the expensive index-repair sub-task.

A core design choice regarding the deferred index repair is
when the execution should be deferred to. Our key observation
is that a Get operation is much faster when it is executed after
a compaction than before that. Here, a compaction is a native
maintenance routine in LKVS; it cleans up obsolete data and
reorganizes the on-disk data layout. To verify the observation,
we conducted a performance study on HBase 0.94.2. A preview
of the experiment results is shown in Figure 1; the Get can
achieve more than 7 X speedup in latency when executed after
a compaction comparing to that before a compaction. Based on
this observation, we propose a novel design that defers the index
repair to the offline compaction process. By coupling the index
repair with the compaction it can save the index-repair overhead

substantially.

While deferring the index repair to offline hours can improve
the performance of itself, it may prolong the value-based read
access, due to the need to check index-table inconsistency (caused
by the online repair). We further propose to schedule the index
repair operations online, by piggybacking them in the execution
path of value-based reads. The online index repair adds small
extra overhead (i.e. one local memory write) but can save huge by
removing the need of maintaining another remote base-table Get.
Note that unlike most existing online performance optimization
schemes, our DELI does not need to profile or monitor the
system resource utilization.

35r

—

w
Q

se
N
N

N
=

®—® After compaction

»—X Before compaction |1

Read latency(m
=
(0]

._.
Q

O o o — *

1.0 5.0 100 15.0 20.0
Target throughput(kops/sec)

n

Fig. 1: Read latency before/after compaction

The contributions of this paper are summarized below.

e We coin the term LKVS that abstracts various modern in-
dustrial strength big-data storage systems (including HBase,
Cassandra, BigTable, HyperTable, etc). We propose DELI to
extend the LKV S’s existing API by including a value-based
access method.

+« We make the index maintenance lightweight in DELI for
write-intensive workloads. The core idea is to make it
aware of performance; it defers expensive operations while
executing inexpensive ones synchronously in an LKVS
system. Specifically, we propose two lightweight scheduling
strategies for expensive index-repair operations; an offline
repair that is associated with the native compaction process
and an online repair that is coupled with value-based read
operation.

o We analyze the fault-tolerance of DELI in terms of both
online operations and offline index-repair process. The fault
tolerance in DELI is achieved without sacrificing perfor-
mance efficiency.

o DELI is designed to be generic on any LKVS. While
a generic implementation of DELI is realized in both
HBase and Cassandra, we also demonstrate an HBase-
specific implementation that optimizes performance without
any internal code change in HBase (by using exposed system
hooks). We open-source the DELI prototype on HBase. !

II. Background: LKVS
LKVS, represented by BigTable [1]/HBase [2] and Cassan-

Uhttps://github.com/tristartom/nosql-indexing

dra [3], has the following two common and distinctive features.?

Note that specific LKVS systems may differ in other aspects
(e.g. HBase shards data by range partitioning while Cassandra is
based on consistent hashing).

o LKVS employs a key-value data model with a Put/Get APL
In the data model, a data object is identified by a unique key
k and consists of a series of attributes in the format of key-
value pairs; a value v is associated with multiple overwriting
versions, each with a unique timestamp ¢s. To update and
retrieve an object, LKVS exposes a simple Put/Get APL
Put(k,v,ts), Delete(k,zs) and Get(k) — {(k,v,ts)}. When
calling these API functions, the presence of a key k is
required, which makes them key-based access methods.

o LKVS uses the log-structured merge tree (or LSM) [6], [1]
for local data persistence. In an LSM tree, the data writes
are buffered in memory and then flushed to disk in a batched
and append-only manner. With multiple flushes, it generates
multiple on-disk files, and a read need essentially issue
multiple random-access calls to those files. This behavior,
making writes sequential disk access and reads multiple
random access, is the reason behind the fast-Put and slow-
Get characteristic of LKVS. An LKVS system typically
exposes an administration interface called Compact, which
merges multiple data files into one in the LSM tree and
performs cleanup tasks for garbage collection. Details of
Compact and LSM tree can be found in [6], [1].

III. The DELI Structure

In this section we first present the system and data model
in DELI, then describe the materialization of DELI in the
underlying LKVS, and at last formulate the problem of index
maintenance.

Cloud system

Get Put Compact

Index Table| |Base Table

! ! ReadValue Write
i ! ReadKey
! App App App !

} server server server }

| |

I I

] T

T _Lkvs ! DELI

1 1

I

I I

I I

I I

I I

I I

I I

I I

Fig. 2: DELI architecture

A. System and Data Model

In a cloud environment, the server system is typically orga-
nized into a multi-tier architecture, consisting of application and
storage tiers. The application tier processes queries and prepares
the data formatting for the writes, while the storage tier is
responsible for persisting the data. We consider the use of LKVS
in the storage tier, as shown in Figure 2. In this architecture,
DELI is a middleware that resides between the application and

2Note that other than LK VS, there are key-value stores that are read optimized,
such as PNUT [7].

storage tiers. To the application servers, it exposes both key-
based and value-based API, as described below. The application
servers are referred to as “client” (of DELI) in this paper. To the
underlying LKVS, DELI translates the API invocations to the
Put/Get operations.

o Write(k,v,ts): Given a row key k, it updates (or inserts) the
value to be v with timestamp ts.

« ReadKey(k,ts,m) — {(k,V,ts')}n: Given a row key k,
it returns the value versions before ts, that is, ts’ < ts.
DELI considers an m-versioning policy, which allows client
applications to indicate the number of versions deemed as
fresh (by m). The method would return the latest m versions
of the requested key.

« ReadValue(v;,ts,m) — {(K',v,ts") }: Given queried value v;,
it retrieves all the row keys kK’ whose values v matches
v;. Here, v; is an index token generated from value v; the
tokenization process, denoted by 7(v) = {v;}, depends on
different query predicates as discussed below. In addition,
the retrieved results should adhere to the m-versioning
policy; that is, the result version zs’ must be among the latest
m versions of its key K’ as of time ts.

The first two methods are similar to the existing key-based
Put/Get interface (with different internal implementations), while
the last one is for value-based data access. In the API design,
we expose timestamp ts for the client applications to specify
the consistency requirement. In practice, generating a (globally)
unique timestamp, if necessary, can be done by existing times-
tamp oracles [8], [9].

Query flexibility: Based on the new ReadValue API, the
DELI can support various data types and query predicates. In
addition to exact-match queries, for example, DELI can support
string data and prefix search; in this case, the tokenization
would be t(v) = {w}, such as any v, is a prefix of a given
string v. DELI can support numeric data with range queries;
here #(v) = v and it requires the underlying key-value stores to
support range partitioning and scan operation (e.g. that is the case
in BigTable and HBase). DELI also supports multiple indices
and multi-dimension value-based search; it can be supported
through issuing multiple ReadValue calls on different indices
and intersecting the results. Without generality, we mainly focus
on the exact-match query in the rest of the paper, that is, v, = v.

B. Index Materialization

The index data is materialized in a regular data table inside
the underlying LKVS. The index table is not directly managed
by the client applications; instead, it is fully managed by our
DELI middleware. In terms of structure, the index table is an
inverted version of the base table; when the base table stores a
(valid) key-value pair, say (k,v), the index table would store the
reversed pair as (v,k). For different keys associated with the same
value in the base table, DELI materializes them in the same row
in the index table but as different versions; that is, (v,k1), (v,k2)
are two versions in one cell in the index table. The versioning is
disabled in the index table, and all obsolete index versions are
required to be deleted explicitly.

In the case of skewed data distribution, it could occur that
certain index rows for common values are huge. It may result in
a long list of query results by a ReadValue call. In this situation,

DELI provides a pagination mechanism to limit the number of
key-value pairs in a ReadValue result and relies on applications
to indicate such limit (and offset). Specifically, we allows an
optional parameter p as in ReadValue(v,ts,m,[p]) which limits
the number of ReadValue results up to p. Currently, we assume
there is fixed ordering between values of the same key (e.g.
based on the hash of the values) so that paginated results will
not overlap.

C. Index Maintenance: Design Choices

In this work, we focus on the problem of maintaining the
index table in LKVS. In the spectrum of the design space, the
most write-optimized approach (baseline 1) is not to maintain the
indices online (or maintain them offline), which can have no write
amplification but at huge expenses of ReadValue latency; now
it will need a full-table scan for processing a single ReadValue
query. On the other end, the most read-optimized approach
(baseline 2) would synchronously update the indices in place; that
is, to keep every index entry up-to-date based on the latest data
updates. While the no-maintenance approach works well in the
case that there are no (online) ReadValue calls, the update-in-
place approach would fit in read-intensive workloads. However,
neither approach is suitable for our targeted workload which is
write-intensive yet with considerable amount of ReadValue’s.

To explore the design space, we formulate the design choices
from two angles: 1) How to decompose an index-update task
and express it in terms of Put/Get/Delete operations, 2) When
to schedule the execution of those operations. For design aspect
1), there are choices, such as not to decompose but treat an
index-update task as a whole, or to decompose it to two sub-
tasks (i.e. index insert and repair). For design aspect 2), there
are generally three scheduling choices; synchronously online,
asynchronously online, and offline. Their designs range from
being read-optimized to write-optimized.

Under this model, we can re-examine the baseline approaches
and our DELI approach. Illustrated in Figure 3, we can see
that DELI is optimized towards write-intensive workloads mixed
with certain amount of (index) reads. This design choice is
made based on the unique characteristic in 10 performance
of the underlying LKVS. Concretely, DELI approach is to 1)
synchronously schedule index-insert sub-task (§ IV-A), 2) defer
the execution of index repair sub-task with online option (§ IV-B)
and offline option (§ V).

Read Write
optimization optimization
Baseline 1 The DELI Design/\/\ Baseline 2
Choice 1): - Whole ity Index Repair Whole
Decomposition Insert
Choice 2): . .
Scheduling Synch. Synch. | Asynch.| Offline Offline

Fig. 3: Design choices of DELI maintenance

IV. Online DELI

This section describes the design of online DELI in terms
of index maintenance, query evaluation and analysis of fault
tolerance.

A. Put-Only Index Maintenance

Given a data update as a key-value pair (k,v), the index
maintenance needs to include four tasks to keep both the index
and base table up-to-date: 1) Deleting old versions associated
with key k in the index table. This causes a Delete(V, k,ts")
call, in which ' is the old version obsoleted by new version
(k,v). Since old version V' is unknown from the original data
update (k,v), it entails a Get operation to read the old version;
2) Reading the old version from the base table. This causes a call
for Get(k)— (k,v'); 3) Inserting new version to the base table,
which causes Put(k,v,ts); 4) Inserting new version to the index,
which causes Put(v,k,ts).

A straightforward way to execute the index maintenance
process is to synchronously execute all the four operations,
which is essentially what the traditional update-in-place index-
ing technique does (which is also widely used in many cloud
databases [10], [11]). However, this strategy causes performance
problems when applied to the LKVS case: Recall that a Get
operation in LKVS is slow, and by attaching expensive Get
to the data write path, it could increase the write overhead
and slow down the system throughput, especially when the
workload is dominated by data writes. To improve the online
index maintenance efficiency, DELI employs a simple strategy
to execute the Put-only 3 operations (i.e. operations 3) and 4))
synchronously and defer the execution of expensive index repair
operations (i.e. operations 1) and 2)) to later time. Algorithm 1
illustrates the online Write algorithm. The two Put calls are
annotated with the same timestamp ¢s. Here, we deliberately put
the index update ahead of the base table update for the fault-
tolerance concerns which will be discussed.

B. Processing Reads

The Put-only index maintenance may lead to obsolete index
data (e.g. (V/,k) is present in the index table after (k,v) is written).
This requires a ReadValue query to always check whether an
index entry is fresh. Given an index data (V' k), the freshness
check is done by checking with the base table, from which
multiple value versions of key k are co-located at the same
place and version freshness can be easily known. Algorithm 2
illustrates the evaluation algorithm for ReadValue(v,ts,m): It
first issues a Get call to the index table and reads the related
index entries before timestamp ¢s. For each returned index entry,
say ts', it needs to determine whether the entry is fresh under the
m-versioning policy. To do so, the algorithm reads the base table
by issuing a ReadKey query (which is a simple wrapper of a
Get call to the base table), which returns all the latest m versions
{ts""} before timestamp ts. Depending on whether ts’ show up in
the list of {zs”'}, the algorithm can then decide that it is fresh or
obsolete. Only when the version is fresh, it is then added to the
final result. If it is found that the index version zs’ is not present

3Since Put is an append-only operation in LKVS, we may use the term “Put-
only” and “append-only” interchangeably in this paper.

TABLE I: Algorithms for online writes and reads

Algorithm 1 Write(key k, value v, timestamp £s)

1: index.Put(v,k,1s)
2: base.Put(k,v,ts)

Algorithm 2 ReadVaIue(value v, timestamp ts, versioning m)

1: {({k,ts')} < index.Get(v,ts)
2: for V{k,ts') € {{k,ts'}} do

>ts <ts

3: {{k,V',ts")} < ReadKey(k, ts, m) > ts” is earlier than rs
4: if 15’ € {{k,V/,ts")} then 15 is a fresh version regarding ts
5: result_list.add({(k,v,zs') })

6: else

7: if 75’ > min{(k,v,ts")} then

8: index.Delete(v, k,ts) > Cleanup dangling index data
9: end if

10: end if

11: end for

12: return result_list

in the base table, implying the occurrence of a failure, it issues
a Delete call to remove the dangling index data.

C. Fault Tolerance

In a cloud environment where machines fail, it is possible
that a Write can fail with only one Put completed. To deal with
failure, our API has the following semantics.

o A Write is considered to succeed only when both Put op-
erations complete. A read (either ReadKey or ReadValue)
will return data that must be written successfully, and will
not return any data unsuccessfully written.

Under this semantics, DELI can achieve consistent data reads
and writes with efficiency. We consider the scenario where the
machine issuing a Write call fails. It is a trivial case when the
failure occurs either before or after the Write invocation; in this
case, nothing inconsistent will be left in the LKVS and this can
be guaranteed by the fault-tolerance and atomicity property of the
underlying LSM tree. Thus, what is interesting is the case that
failure happens between index.Put(v,k,t) and base.Put(k,v,t) in
the write path. This case can lead to dangling index rows without
corresponding data stored in the base table. This (inconsistent)
situation can affect the reads under three circumstances: 1)
ReadValue(v), 2) ReadValue(v') where V' is the version right
before v and 3) ReadKey(k). For case 1), Algorithm 2 is able
to discover the dangling index data (as in Line 7) and would
correctly neglect such data to comply with our API semantics.
It actually issues an index.Delete((v,k)) to remove the dangling
data from being considered by future ReadValue(v) invocations.
For case 2), Algorithm 2 will not find any version that overwrites
v in the base table and would return (k,v'). For case 3), ReadKey
returns (k,v'). In all cases, our API semantics holds. It is fairly
easy to extend this analysis to multiple failed Write’s.

V. Offline DELI: Batched Index Repair

In DELI, the index repair process eliminates the obsolete
index entries and can keep the index fresh and up-to-date. This

section describes the design and implementation of an offline and
batched repair mechanism in DELIL.

A. Computation Model and Algorithm

To repair the index table, it is essential to find the obsolete
data versions. A data version, say <v’ ko ts'), is considered to be
obsolete when either of the following two conditions is met.

1. There are at least m newer key-value versions of key & that
exist in the system.

2. There is at least one newer Delete tombstone* of key k that
exists in the system.

The process to find the obsolete versions, called index garbage
collection, is realized by scanning the base table. Because the
base table has the data sorted in the key order, which helps verify
the above two conditions. Algorithm 3 illustrates the batched
garbage collection algorithm on a data stream that is output from
the table scan; the data stream is assumed to have key-value
pairs ordered first by key and then by timestamp. The algorithm
maintains a queue of size m and emits the version only when
it is older than at least m versions of the same key k in the
queue and it has not been repaired by previous repair processes
(will be discussed in next paragraph). In the algorithm, it also
considers the condition regarding a Delete tombstone; it will
emit all the versions before the Delete tombstone marker. Note
that our algorithm requires a small memory footprint (i.e. the
queue of size m).

Our offline index repair process runs periodically (e.g. on
a daily or weekly basis). To avoid duplicated work between
multiple rounds of repairs, we require that each run of an index
repair process is marked with a timestamp, so that the versions of
interest to this run are those with timestamps falling in between
the timestamp of this run and that of previous run (i.e. #s.,5). Any
version that is older than 7s,s was repaired before by previous
index-repair processes and is not considered in the current run.

B. Compaction-Aware System Design

To materialize the table scan in the presence of an offline
compaction process, one can generally have three design options,
that is, to run the index repair 1) before the compaction, 2) after
the compaction or 3) coupled inside the compaction. In DELI, we
adopt the last two options (i.e. to couple the index repair either
after or within the compaction). Recall that in an LKVS, the
read performance is significantly improved after the compaction.
The rationale of such design choice is that the table scan, being
essentially a batch of reads, has its performance dependent on the
compaction: Without the compaction, there would be a number
of on-disk files and a key-ordered scan would essentially become
a batch of random reads that make the disk heads swing between
the multiple on-disk files.

Overall, the offline DELI runs in three stages; as illustrated
in Figure 4, it runs the offline compaction, garbage collection
and index garbage deletion. After a Compact call is issued,
the system runs the compaction routine, which then triggers the
execution of index garbage collection and deletion (for the index
repair). Specifically, the garbage collection emits the obsolete

“In an LKVS, a Delete operation appends a tombstone marker in the store
without physically deleting the data.

Algorithm 3 BatchedGC(Table-scan stream s, versioning m, £SLast)

1: kprey < NULL > kprev is previous key in the stream
2: g4 + NULL © g, maintains potential key-value pairs for deletion
3: for V{k,v,ts) € s do > Stream data sorted by key and in
time-ascending order (i.e. from past to now)

4: if kprey == k then
5: if g;.size() <m then
6: qq-enqueueToHead((k, v, zs))
7: else if g,;.size == m then
8: qq-enqueueToHead((k, v, 1s))
9: (k,V',ts") < q4.dequeueFromTail() > All pairs in g4 are
of same key kprey = k
10: if s’ > tsp. then > ts' is no older than fsy a
11: emitTolndexDel({k,V,ts"}) > emit the data to
index-deletion stage
12: end if
13: end if
14: else
15: loop ¢,.size()> 0 > Clear g4 for index deletion
16: (k,V',ts") < q4.dequeueFromHead()
17: if (k,V/,t5') is a Delete tombstone then
18: emitTolndexDel(g,.dequeueAll())
19: end if
20: end loop
21: kprev < k
22: qq-enqueueToHead((k, v,zs))
23: end if
24: end for

data versions to the next-stage garbage deletion process. The
index garbage deletion issues a batch of deletion requests to
the distributed index table. In the following, we describe our
subsystems for each stage and discuss the design options.

Node 1(base table) Node 2

(index table)

Garbage

Compaction collection Index garbage deletion
Merge sort [—» Buffer Shuffle Sl
Node 3
(index table)
D
Staged / Streaming

o we)
=

Fig. 4: Compaction-aware index repair

1) The Garbage Collection: We present two system designs
for garbage collection, including a staged design that puts the
garbage collection right after the compaction process, and a
streaming design that couples the garbage collection inside the
compaction process.

A staged design: The garbage collection subsystem is
materialized as a staged component that runs after the previous
compaction completes. As portrayed in Figure 4, the system mon-
itors the number of sorted data files in the local machine. When
an offline compaction process finishes, it reduces the number of
on-disk files to one, upon which the monitor component triggers
the garbage collection process. In this case, the garbage collection

reloads the newly generated file to memory (and the file system
cache may still be hot), scan it, and run Algorithm 3 to collect
the obsolete data versions.

A streaming design: Alternatively, the garbage collection
subsystem can be implemented by streaming the compaction’s
output stream directly to the garbage collection service. To be
specific, as shown in Figure 4, the streaming garbage collection
intercepts the output stream from the compaction while the data is
still in memory; the realization of interception is described below.
Then it runs the garbage collection computation in Algorithm 3;
if the data versions are found to be obsolete, they are emitted but
still being persisted (for fault-tolerance concerns). Comparing the
staged design, the streaming design saves disk accesses, since
the data stream is directly streaming in memory without being
reloaded from disk.

a) Implementation: In terms of implementation, the staged
design can be realized as an add-on module to the key-value
store system, since its implementation and deployment require
nothing more than a generic file-system interface. By contrast,
the streaming design may need built-in support from the key-
value store in order to hook its garbage collection actions to
the compaction data flow.> Certain key-value stores expose such
programming interface (e.g. CoProcessor [12] in HBase) to allow
applications to hook external actions to an internal event.

In particular, we have implemented the staged design for
Cassandra, and the streaming design on HBase. For HBase
implementation, for hooking up garbage collection, we used the
PRECOMPACT API available in HBase’s CoProcessor framework.
This API allows an application to view a stream of data sorted
and merged from multiple old HFiles as being loaded from disk
and to customize which key-value records to skip or to be written
back to disk. Implementation of both our designs does not require
any internal code-base change, and can be lively deployed on the
running key-value store.

2) The Index Garbage Deletion: For data emitted from the
garbage collection, they enter the stage of index garbage deletion;
the goal of this stage is to delete the corresponding obsolete
index entries in the index table. Since these index entries could
potentially be distributed on any remote machines, the stage
needs to issue a number of remote Delete calls. Then the remote
index nodes, after receiving the calls, will store the Delete
tombstones. After all base-table nodes finish sending the Delete
calls, each index-table node will then trigger the index-side
Compact which will eventually delete the obsolete index entries,
physically.

In this stage, the performance bottleneck is on the sending of
remote Delete calls which involve a large number of network
messages. To improve network utilization, we propose to “com-
bine” Delete calls to the same destination index node, and pack
them into one (instead of multiple) RPC call. The data flow inside
the stage of index garbage deletion is illustrated in Figure 4; the
incoming data are first buffered in memory and later shuffled
before being sent by a Delete call. The shuffle process sorts
and combines the data key-value pairs based on the value. In the
design of the garbage deletion subsystem, we expose a tunable

SNote that this requirement does not decrease the generality of the DELI
system design, since it is always possible to modify the code-base of underlying
key-value store systems.

knob to configure the maximal buffer size; The bigger the buffer
is, the more bandwidth efficiency it can achieve at the expense
of more memory overhead.

C. Fault Tolerance

We consider a faulty networked system underneath the key-
value store. The data flow in the offline index-repair process may
drop some key-value pairs before the repair action is executed.

To enable and simplify the recovery, we enforce the following
requirement in the regular execution path of index-repair process:

o Given a compaction and index-repair process with #s s,
it does not physically delete any data of interest (i.e. with
timestamp between now and sy ag)-

Note that for any data before #s 5, physical deletion is enabled.

In addition, we assume that the operations in underlying
LKVS are idempotent, that is, there are no additional effects
if a Put (or Delete) is called more than once with the same
parameters. Based on these two properties, we can easily support
fault tolerance of the index-repair process. The logic is the
following: Given a failed run of index repair, we can simply
ignore its partial results and keep the old #sy,s. Upon the next
run of index repair, the above property guarantees that all data
versions from sy, to the present are still there in the system
and the current run, if it succeeds, will eventually repair the index
table correctly. Note that since the previously repaired data is not
deleted, it may cause some duplicated operations which however
do not affect the correctness due to idempotency.

VI. Experiments

This section describes our experimental evaluation of DELI.
We first did experiments to study the performance characteristics
of HBase, a representative LKVS, and then to study DELI’s
performance under various micro-benchmarks and a synthetic
benchmark. Before all of these, we describe our experiment
system setup.

Client: Storage server:
-
S E
L]
=
£s -
(o) *(-“' Slaves
o L
X Q
w
S
o) Utilt DELI
P HMaster) Base
hd Regionserver I
© X ayer
E pe client library HDFS
S S) Namenode Datanode
3 tore client layer

Fig. 5: Experiment platform and DELI deployment

A. Experiment System Setup

The experiment system, as illustrated in Figure 5, is organized
in a client/server architecture. In the experiment, we use one
client node and a 19-node server cluster, consisting of a master
and 18 slaves. The client connects to both the master and the
slaves. We set up the experiment system by using Emulab [13],
[14]; all the experiment nodes in Emulab are homogeneous in

the sense that each machine is equipped with the same 2.4 GHz
64-bit Quad Core Xeon processor and a 12 GB RAM. In terms
of the software stack, the server cluster uses both Hadoop HBase
and HDFS [15]. The HBase and HDFS clusters are co-hosted on
the same set of nodes, as shown in Figure 5. Unless otherwise
specified, we use the default configuration in the out-of-box
HBase. The client side is based on the YCSB framework [16],
an industry-standard benchmark tool for evaluating the key-value
store performance. The original YCSB framework generates only
key-based queries, and for testing our new API, we extended
the YCSB to generate value-based queries. We use the modified
YCSB framework to drive workload into the server cluster and
measure the query performance. In addition, we collect the
system profiling metrics (e.g. number of disk reads) through
a JMX (Java management extension) client. For each run of
experiments, we clean the local file system cache.

DELI prototype deployment: We have implemented a
DELI prototype in Java and on top of HBase 0.94.2. The
DELI prototype is deployed to our experiment platform in two
components; as shown by dark rectangular in Figure 5, the DELI
middleware has a client-side library for the online operations and
a server-side component for the offline index repair. In particular,
based on system hooks in HBase, the prototype implements both
the staged garbage collection and streaming garbage collection
in the server component.

Dataset: Our raw dataset consists of 1 billion key-value
pairs, generated by YCSB using its default parameters that
simulates the production use of key-value stores inside Yahoo!.
In this dataset, data keys are generated in a Zipf distribution and
are potentially duplicated, resulting in 20,635,449 distinct keys.
The data values are indexed. The raw dataset is pre-materialized
to a set of data files, which are then loaded to the system for each
experiment run. For query evaluation, we use 1 million key-value
queries, be it either Write, ReadValue or ReadKey. The query
keys are randomly chosen from the same raw dataset, either from
the data keys or values.

B. Performance Study of HBase

Read-write performance: This set of experiments evaluates
the read-write performance in the out-of-box HBase to verify
that HBase is aptly used in a write-intensive workload. In the
experiment, we set the target throughput high enough to saturate
the system. We configure the JVM (on which HBase runs)
with different heap sizes. We varied the read-to-write ratio © in
the workload, and report the maximal sustained throughput in
Figure 6a, as well as the latency in Figures 6b. In Figure 6a, as the
workload becomes more read intensive, the maximal sustained
throughput of HBase decreases, exponentially. For different JVM
memory sizes, HBase exhibits the similar behavior. This result
shows that HBase is not omnipotent but particularly optimized
for write-intensive workloads. Figure 6b depicts the latency
respectively for reads and writes (i.e. Get and Put) in HBase.
It can be seen that the reads are much slower than writes, by
an order of magnitudes. This result matches the system model
of LKVS in which reads need to check more than one places
on disk and the writes are append-only and fast. In the figure,

In the paper, the read-to-write ratio refers to the percentage of reads in a
read-write workload.

as the workload becomes more read intensive, the read latency
decreases. Because with read-intensive workload, there are fewer
writes and thus fewer data versions in the system for a read to
check, resulting in faster reads.

ole)

30 ®® HBase-0.5G ®-® Reads
g 15
& 25 %X HBase-1G S X< Writes
a [}
o
220 V¥ HBase2G || £
g 51 e
J:; 15 § °
=] ©
3 8
£ 10 5

° \
i — —y ¥ ’————————X

—% —
0.0 0.2 0.4 0.6 0.8 1.0
Read-to-write ratio

0.0 0.2 0.4 0.6 0.8 1.0
Read-to-write ratio

(a) Maximal sustained throughput (b) Latency

Fig. 6: HBase performance under different read ratios

C. DELI Performance

Online write performance: This experiment evaluates
DELI performance under the write-only workloads. We drive
the data writes from the client into the HBase server cluster.
We compare DELI with the update-in-place indexing approach
described in Section IV-A. We also consider the ideal case
where there is no index structure to maintain. The results of
sustained throughput are reported in Figure 7. As the target
throughput increases, the update-in-place indexing approach hits
the saturation point much earlier than DELI. While DELI can
achieve a maximal throughput at about 14 thousand operations
(kops) per second, the update-in-place indexing approach can
only sustain at most 4 kops per second. Note that the ideal case
without indexing can achieve higher throughput but can not serve
the value-based queries. This result leads to a 3 x performance
speedup of DELI. In terms of the latency, Figure 7b illustrates
that DELI constantly outperforms the update-in-place approach
under varied throughput.

35| e DELI T e
25
Of| Update-in-place
5 20, @@ DELI
¥—¥ |deal(Nolndex)

X=X Update-in-place

¥—¥ |deal(Nolndex)
o —— o —w—— 3

v v vy v

fun
o

Latency(msec)
=
w

Throughput(kops/sec)
= = g N w

[¢,]

(=]

2.0 4.0 8.0 20.0 100.0

. . 2.0 4.0 8.0 20.0 100.0
Target Throughput(kops/sec)

Ta rqei Th rouqﬁput(kops/sec)

(a) Maximal throughput (b) Latency

Fig. 7: Index write performance
Online read-write performance: In this experiment, we
evaluate DELTI’s performance in the workload that varies from
read-intensive workloads to write-intensive ones. We compare
DELI on top of HBase against two alternative architectures:
the B-tree index in MySQL and the update-in-place indexing
on HBase. For fair comparison, we use the same dataset in both

HBase and MySQL, and drive the same workload there. MySQL
is accessible to YCSB through a JDBC driver implemented by
us, in which we reduce as much as possible the overhead spent
in the JDBC layer. The results are shown in Figure 8. With
varying read-to-write ratios, DELI on HBase is clearly optimized
toward write-intensive workload, as can be seen in Figure 8a.
On a typical write-intensive setting with 0.1 read-to-write ratio,
DELI on HBase outperforms the update-in-place index on HBase
by a 2.5 or more speedup, and the BTree index in MySQL by
10x. When the workload becomes more read-intensive, DELI
may become less advantageous. By contrast, the update-in-place
approach is more read-optimized and the BTree index in MySQL
is inefficient, regardless of workloads. This may be due to that
MySQL uses locking intensively for full transaction support, an
overkill to our targeted use case. In terms of latency, the DELI on
HBase has the lowest write latency at the expenses of relatively
high read latency due to the extra reads to the base table. By
contrast, the update-in-place index has the highest write latency
(due to the reads of obsolete versions in the base table) and a low
read latency (due to that it only needs to read the index table).
Note that in our experiments, we use more write-intensive values
for read-to-write ratios (e.g. more ticks in interval [0,0.5) than
in [0.5,1.0]).

Offline index repair performance: This experiment evalu-
ates the performance of offline index repair with compaction. We
mainly focus on the approach of compaction-triggered repair in
the offline DELI; in the experiment we tested two implemen-
tations, with staged garbage collection and streaming garbage
collection. For comparison, we consider a baseline approach
that runs the batch index repair before (rather than after) the
compaction (i.e. design option 1) in Section V-B). We also
test the ideal case in which an offline compaction runs without
any repair operations. During the experiment, we tested two
datasets: a single-versioned dataset that is populated with only
data insertions so that each key-value pair has one version,
and a multi-versioned dataset populated by both data insertions
and updates which results in 3 versions on average for each
data value. While the multi-versioned data is used to evaluate
both garbage collection and deletion during the index repair, the
single-versioned dataset is mainly used to evaluate the garbage
collection, since there are no obsoleted versions to delete. In the
experiment, we have configured the buffer size to be big enough
to accommodate all obsolete data in memory. 7 We issued an
offline Compact call in each experiment, which automatically
triggers the batch index repair process. Until the end, we collect
the system profiling information. In particular, we collect two
metrics, the execution time and the total number of disk block
reads. Both metrics are emitted by the HBase’s native profiling
subsystem, and we implemented a JMX client to capture those
values.

We run the experiment three times, and report the average
results in Figure 9. The execution time is reported in Figure 9a. In
general the execution time with multi-versioned dataset is much
longer than that with the single-versioned dataset, because of the
extra need for the index deletion. Among the four approaches,

7We try to set up our experiment to be more bounded by local disk accesses
than by the network communications, so that the offline index repair process is
dominated by the garbage collection process than the deletion process.

the baseline is the most costly because it loads the data twice and
from the not-yet-merged small data files, implying that disk reads
are mostly random accesses. The ideal case incurs the shortest
time, as expected. Between the two DELI designs, the streaming
garbage collection requires shorter time because it only needs
to load the on-disk data once. To understand the performance
difference, it is interesting to look at the disk read numbers, as
shown in Figure 9b. We only show the results with the single-
versioned dataset, because disk reads only occur in the garbage
collection. The baseline approach incurs a similar number of
disk reads to the staged design, because both approaches load
the data twice from the disk. Note that the disk reads in the
baseline approach are mostly random access while at least half of
disk access in the staged DELI should be sequential; this leads
to differences in their execution time. In Figure 9b, the ideal
case has a similar cost to the streaming design, because both
approaches load on-disk data once. From the single-versioned
results in Figure 9a, it can be seen that their execution time
is also very close to each other, due to that the extra garbage
collection caused by the DELI approach is very lightweight and
incurs few in-memory computations.
TABLE II: Overhead under Put and Compact operations

Name Exec. time (sec) Number of disk reads
DELI 1553.158 60699
Update-in- place index 4619.456 313662

Name Online Offline Online Offline
DELI 1093.832 | 459.326 0 60699
Update-in- place index 4340.277 | 279.179 | 252964 60698

Mixed online and offline operations: In this experiment,
we compare DELI and the update-in-place indexing approach
as a whole package. In other words, we consider the online and
offline operations together. Because the update-in-place approach
already repairs the index in the online phase, there is no need
to perform index repair in the offline time. For fair comparison,
we run the offline compaction (without any repair actions) for
the update-in-place index. In the experiment, the online workload
contains a series of writes and the offline workload simply issues
a Compact call and if any, the batch index repair. For simplicity,
we here only report the results of streaming DELI. We report
the execution time and the number of disk reads. The results
are presented in Table II. In general, DELI incurs much shorter
execution time and fewer disk reads than the update-in-place
approach. For example, the execution time of DELI (in bold text
in the table) is one third of that of the update-in-place approach.
We break down the results to the online costs and offline costs, as
in the bottom half of the table, which clearly shows the advantage
of having the index repair deferred to the offline phase in DELI.
Although the update-in-place index wins slightly in terms of the
offline compaction (see the bold text “279.179” compared to
“459.326” in the table), DELI wins big in the online computation
phase (see bold text “1093.832” compared to “4340.277” in the
table). It leads to overall performance gain of DELI. In terms of
disk reads, it is noteworthy that DELI incurs zero costs in the
online phase.

VII. Related Work

Log-structured systems and performance optimizations:
Log-structured systems have been studied for more than two

Read-to-write ratio

(a) Maximal throughput

Read-to-write ratio

(b) Write latency

. ®—® B._tree(MySQL) 80r| @@ B-tree(MySQL)
oLy |5 70 s
ﬁ %—X Update-in-place(HBase) § »—X Update-in-place(HBase) 9
0 60} 1w
Q € S
o v = v =
210 DELI(HBase) | ?507 DELI(HBase) 1% 1011
:
§ o ®-® B-tree(MySQL)
1
e | ©
= 5 | 12 *—x Update—in—place(HBase)M
e o 0o 0o o o o 0 o9
7'—'—'—'—'—'—'—'—__"/'/'7 100’ v DELI(HBase)
060 005 02 04 07 09 %00 005 02 04 07 09 %00 005 02 04 07 099

Read-to-write ratio

(c) Read latency

Fig. 8: Performance comparison between DELI in HBase and MySQL

280 === DELI-staged

260 - WA DEL|-streaming
240 |\N\N Baseline-reversed
I (deal

=== DELI-staged
DELL-streaming

NN Baseline-reverse
- deal

Execution time (sec)
Number of disk reads (kops)

single-versioned multi-versioned

single-versioned
Dataset Dataset

(a) Execution time (b) Number of disk reads

Fig. 9: Performance of offline index repair

decades in the system community. The existing work largely
falls under two categories, the unsorted LFS-like systems [17]
and sorted LSM tree-like systems. While the former maintains
a global log file in which data is appended purely by the
write time, the latter organizes the data layout to a number of
spill files, in each of which data is sorted based on the key.
Log-structured systems generally rely on a garbage collection
mechanism to reclaim disk space and/or re-organize the data
layout. In particular, several heuristic-based garbage collection
policies [18], [19] are proposed and adopted in LFS systems.

Recently, due to the burst of write-intensive workloads, log-
structured design has been explored in the context of big data
systems in the cloud. In addition to various LKVS systems,
bLSM [20] aims at improving the read performance on log-
structured stores; the idea is to decompose the cumbersome
compaction process so that it can be run at fine granularity
with costs being piggybacked with other concurrently running
operations. Several key-value stores adopt the unsorted LFS
design. Based on a farm of Flash/SSD storage nodes, FAWN [21]
avoids the costly in-place writes on SSD by a sequential log and
maintains an in-memory index that is updated in place and can
speed up the random reads.

Optimizing the performance for LKVS can be divided into
two aspects: the scalability/elasticity for cross-node communica-
tion efficiency, and the per-node performance. While proposed
optimizations apply for elasticity aspects[22], [23], the essence
of our DELI work is to optimize the per-node IO performance

in the context of secondary indexes layered over LKVS.

Secondary indexes on key-value stores: Recently, a
large body of academic work [10], [24], [11] and industrial
projects [25], [26], [27], [28], [29], [30], [31] emerge to build
secondary indexes as middleware on scalable key-value store
systems. Those systems can be largely categorized by their design
choices in terms of: 1) whether the index is local or global, 2)
how the index is maintained, and 3) the system implementation.
Regarding choice 2), the index can be maintained synchronously,
asynchronously, or in a hybrid way. Synchronous index mainte-
nance indicates real-time query result availability at the expense
of extra index update overhead. Asynchronous index maintenance
means the whole index updates are deferred. The hybrid approach
is essentially the append-only design (as in DELI) in which only
the expensive part of index maintenance is deferred. In terms of
implementation, the index middleware can be in the client or
server side, depending on the preference on system generality or
performance. Our prior work [32] addresses flexible consistency
in context of HBase indexing, but dosn’t consider the asymmetric
read-write performance in LKVS. We summarize these key-value
store indexes in Table III.

In particular, Megastore [28] is Google’s effort to support
the cloud-scale database on the BigTable storage [1]. Megastore
supports secondary indexes at two levels, namely the local index
and global index. The local index considers the data from an
“entity group” of machines that are close by. When the entity
group is small, the local index is maintained synchronously at low
overhead. The global index which spans cross multiple groups
is maintained asynchronously in a lazy manner. Phoenix [26]
is a SQL layer on top of HBase. Its secondary index is global
and it considers two types of indices, a mutable index where
base data updates overwrite previous versions and an immutable
index (e.g. time series data) where data updates are append-
only (semantically). While the immutable data index is easily
maintained by a client (since an index entry never need to be
deleted), the mutable data indexing needs to delete previous
versions overwritten. It addresses the consistency issues when
the data writes come to local nodes out of order, which may
make it delete a wrong version.

While existing literature considers the append-only index

TABLE III: Key-value indexing systems (- means uncertain and *
means DELI is implemented on HBase and Cassandra.)

References Local/Global Index Mntn Impl.
Phoenix [26] Global Hybrid HBase-Client/Server
HyperTable Idx [31] Global - HyperTable-Client
Huawei’s Index [27] Local Sync HBase-Server
Cassandra Index [29] Local - Cassandra-Server
Megastore [28] Local/global Sync/Async BigTable-Client

F1 [30] Global Sync Spanner[33]-Client
PIQL [10], [34] Global Sync SCADR [35]-Client
DELI Global Hybrid General*-Client/Server

maintenance (e.g. Phoenix [26]), it does not address the prob-
lem of scheduling expensive index-repair operations, the lack
of which may lead to eventual index inconsistency and cause
unnecessary cross-table check for query processing. By contrast,
the DELI design is aware of the asymmetric performance charac-
teristic in an LKV S and optimizes the execution of index repairs
accordingly.

In addition, the DELI bears similarity to indexing in dis-
tributed hash tables [36], [37] due to the large-scale network
to index; however the latter is mainly for peer-to-peer network
which exhibits much higher churn than in a data-center environ-
ment.

VIII. Conclusion

This paper describes DELI, a lightweight real-time indexing
framework for generic log-structured key-value stores. The core
design in DELI is to perform the append-only online indexing
and compaction-triggered offline indexing. By this way, the
online index update does not need to look into historic data
for in-place updates, but rather appends a new version, which
substantially facilitates the execution. To fix the obsolete index
entries, DELI performs an offline batched index repair process.
By coupling with the native compaction routine in an LKVS, the
batch index repair achieves significant performance improvement
by incurring no extra disk accesses. We implemented a DELI
prototype based on HBase and demonstrate the performance gain
by conducting experiments in real-world system setup.

Acknowledgments

The first author would thank Tao Zou for his comments. Ling
Liu is partially supported by the National Science Foundation
under Grants IIS-0905493, CNS-1115375, IIP-1230740, and a
grant from Intel ISTC on Cloud Computing.

References

[1]

[2]
[3]
[4]
[5]
[6]
[7]

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A distributed storage system
for structured data,” in OSDI, 2006, pp. 205-218.
“http://hbase.apache.org/.”

“http://cassandra.apache.org/.”

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, ‘“Dynamo:
amazon’s highly available key-value store,” in SOSP, 2007, pp. 205-220.
A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage
system,” Operating Systems Review, 2010.

P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil, “The log-structured
merge-tree (Ism-tree),” Acta Inf., vol. 33, no. 4, pp. 351-385, 1996.

B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon,
H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, ‘“Pnuts: Yahoo!’s hosted
data serving platform,” PVLDB, vol. 1, no. 2, pp. 1277-1288, 2008.

[8]
[9]
[10]
[11]
[12]

[13]
[14]

[15]
[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]
[28]

[29]
[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

M. Yabandeh and D. G. Ferro, “A critique of snapshot isolation,” in EuroSys,
2012, pp. 155-168.

D. Peng and F. Dabek, “Large-scale incremental processing using distributed
transactions and notifications,” in OSDI, 2010, pp. 251-264.

M. Armbrust, K. Curtis, T. Kraska, A. Fox, M. J. Franklin, and D. A.
Patterson, “Pigl: Success-tolerant query processing in the cloud,” PVLDB,
vol. 5, no. 3, pp. 181-192, 2011.

R. Escriva, B. Wong, and E. G. Sirer, “Hyperdex: a distributed, searchable
key-value store,” in SIGCOMM, 2012, pp. 25-36.
“https://blogs.apache.org/hbase/entry/coprocessor_introduction.”
“http://www.emulab.net/.”

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental environ-
ment for distributed systems and networks,” in OSDI, 2002.
“http://hadoop.apache.org/.”

B. E Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in SoCC, 2010, pp. 143—
154.

M. Rosenblum and J. K. Ousterhout, “The design and implementation of a
log-structured file system,” in SOSP, 1991, pp. 1-15.

T. Blackwell, J. Harris, and M. L. Seltzer, “Heuristic cleaning algorithms in
log-structured file systems,” in USENIX Winter, 1995.

M. L. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin, “An implemen-
tation of a log-structured file system for unix,” in USENIX Winter, 1993,
pp- 307-326.

R. Sears and R. Ramakrishnan, “blsm: a general purpose log structured
merge tree,” in SIGMOD Conference, 2012.

D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan, “Fawn: a fast array of wimpy nodes,” in SOSP, 2009, pp.
1-14.

D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas, and N. Koziris,
“Automated, elastic resource provisioning for nosql clusters using
TIRAMOLA,” in 13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing, CCGrid 2013, Delft, Netherlands, May 13-16,
2013, 2013, pp. 34—41. [Online]. Available: http://doi.ieeecomputersociety.
org/10.1109/CCGrid.2013.45

F. Cruz, F. Maia, M. Matos, R. Oliveira, J. Paulo, J. Pereira, and R. Vilaga,
“Met: workload aware elasticity for nosql,” in Eighth Eurosys Conference
2013, EuroSys 13, Prague, Czech Republic, April 14-17, 2013, 2013, pp.
183-196. [Online]. Available: http://doi.acm.org/10.1145/2465351.2465370
P. Agrawal, A. Silberstein, B. F. Cooper, U. Srivastava, and R. Ramakr-
ishnan, “Asynchronous view maintenance for vlsd databases,” in SIGMOD
Conference, 2009, pp. 179-192.

L. George, HBase - The Definitive Guide: Random Access to Your Planet-
Size Data. O’Reilly, 2011.
“http://phoenix.apache.org/secondary_indexing.html.”
“https://github.com/huawei-hadoop/hindex.”

J. Baker, C. Bond, J. Corbett, J. J. Furman, A. Khorlin, J. Larson, J.-M.
Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing scalable,
highly available storage for interactive services,” in CIDR, 2011, pp. 223—
234.

“http://www.datastax.com/docs/1.1/ddl/indexes.”

J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. O. K. Littlefield, D. Menestrina, S. E. J. Cieslewicz, 1. Rae et al., “F1:
A distributed sql database that scales,” The VLDB Endowment, vol. 6, no. 11,
2013.

“http://hypertable.com/blog/secondary_indices_have_arrived.”

W. Tan, S. Tata, Y. Tang, and L. L. Fong, “Diff-index: Differentiated index
in distributed log-structured data stores,” in /7th EDBT 2014, 2014, pp.
700-711. [Online]. Available: http://dx.doi.org/10.5441/002/edbt.2014.76
J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghe-
mawat, A. Gubarev, C. Heiser, P. Hochschild er al., “Spanner: Google’s
globally-distributed database.”

M. Armbrust, N. Lanham, S. Tu, A. Fox, M. J. Franklin, and D. A. Patterson,
“The case for piql: a performance insightful query language,” in SoCC,
2010, pp. 131-136.

M. Armbrust, A. Fox, D. A. Patterson, N. Lanham, B. Trushkowsky,
J. Trutna, and H. Oh, “Scads: Scale-independent storage for social com-
puting applications,” in CIDR, 2009.

Y. Tang, S. Zhou, and J. Xu, “LIGHT: A query-efficient yet low-
maintenance indexing scheme over dhts,” IEEE Trans. Knowl. Data Eng.,
vol. 22, no. 1, pp. 59-75, 2010.

Y. Tang, J. Xu, S. Zhou, and W. Lee, “m-light: Indexing multi-dimensional
data over dhts,” in 29th IEEE ICDCS 2009, 2009, pp. 191-198.

