
1

Verifying Correct Microarchitectural Enforcement of
Memory Consistency Models

 Daniel Lustig, Princeton University

Michael Pellauer, Intel

Margaret Martonosi, Princeton University

Abstract

 Memory consistency models define the rules and guarantees about the ordering and
visibility of memory references on multithreaded CPUs and systems-on-chip (SoCs).
PipeCheck offers a methodology and automated tool for verifying that a particular
microarchitecture correctly implements the consistency model required by its architectural
specification.

Memory consistency models (MCMs) are notoriously difficult to work with. Although they are central to correct
system operation, they are hard to build, to verify, and even to define. Weak memory models were originally
developed in the 1980s to sacrifice the intuitive simplicity of sequential consistency in favor of a large boost in
performance. Most now consider this tradeoff to be worthwhile; few modern processors implement sequential
consistency.

Unfortunately, architects have not converged on any single point within the performance vs. simplicity spectrum,
leaving a wide variety of MCMs in use today. Models such as total store ordering (TSO), used by SPARC and x86(-
64), are more conservative but may leave some performance on the table. Power and ARM processors reorder
liberally by default, but reasoning about how to enforce ordering (e.g., via fences) in these models is difficult even
by consistency model standards.

The complexity of memory consistency models is exacerbated by the modern trend towards architectural
heterogeneity. Systems are no longer composed of CPUs sharing a single instruction set architecture (ISA). Instead,
there may be as many as a half dozen ISAs—and hence a half dozen consistency models—on a modern mobile
system-on-chip (SoC), and this number is likely only to increase. Furthermore, memory-accessing elements such as
fixed-function video decoders may not even have traditional ISAs at all; these elements rely solely on the memory
consistency model to communicate. Thus MCMs have become a central form of abstraction in an increasingly
heterogeneous landscape. All of these problems motivate the need to pay increased attention to properly specifying
and verifying the correct consistency model behaviors of the multitude of compute elements on chip.

This article describes an analysis methodology for verifying that a given microarchitecture meets the
specifications of a given architectural consistency model, and it presents PipeCheck, an automated tool implementing
this technique. PipeCheck brings axiomatic memory model analysis techniques to the microarchitecture level,
defining “microarchitecturally happens before” graphs at the granularity of instructions passing through particular
stages of a pipeline. Using statements about the reordering behavior of individual stages (e.g., “the decode stage is an
in-order stage”), PipeCheck verifies that each ordering edge that must be preserved according to the architectural
consistency model (e.g., each Store→Store ordering for TSO) is in fact provably maintained by the
microarchitecture. As a result, PipeCheck reduces the problem of verifying global consistency model implementation
correctness to the more tractable problem of verifying local reordering properties at various points in the
microarchitecture.

Our hope is that architects will use our open-source PipeCheck tool and its analysis techniques to design chips
with increased resilience against the kinds of consistency and memory system bugs that continue to haunt hardware
even today.

Sidebar: Memory Model Analysis

Digital Object Indentifier 10.1109/MM.2015.47 0272-1732/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

2

Core 0 Core 1
(i1) [x] ← 1 (i3) r1 ← [y]
(i2) [y] ← 1 (i4) r2 ← [x]

Proposed outcome at core 1: r1=1, r2=0
Outcome forbidden under TSO

(a) Code for message passing (mp) litmus test

 Load Store
Load
Store — (mfence)

: enforced by default
—: not enforced by default

(mfence): enforced by mfence

(b) Summary of preserved program order (ppo) in the total store
ordering (TSO) memory model. Key: must an access of the type in
the row heading maintain its ordering with respect to a subsequent

instruction of the type in the column heading?

(c) Architecture-level analysis of mp. The cycle indicates that this execution is forbidden under the rules of TSO.

Figure 1: Load→Load and Store→Store ordering litmus test iwp2.1/amd1/mp.

Axiomatic memory models represent programs as graphs. Vertices represent instructions; an edge from a node s
to another node d indicates that s happens before d in a formal sense defined by the model. A cycle in an axiomatic
memory model graph indicates that a proposed execution is disallowed, with important exceptions made to account
for certain weak memory behavior [2]. This reflects the intuition that an instruction cannot happen before itself.
Acyclic graphs correspond to permitted executions.

Figure 1 depicts the standard axiomatic analysis of the message passing (mp) litmus test, a program written
specifically to test a consistency model (Figure 1a). This particular test asks whether some execution of the two
threads produces the result r1=1 and r2=0 on a processor implementing the total store ordering (TSO) consistency
model (Figure 1b), used by SPARC and x86(-64). All memory locations are assumed to hold the value 0 originally.
Working backwards, since r1 receives the value 1, (i2) must have happened before (i3). Similarly, (i4) must have
happened before (i1), because otherwise (i4) would also have returned the value 1. As indicated in Figure 1b, TSO
itself guarantees the Load→Load and Store→Store orderings within each thread; these constraints are known as
“preserved program order” (ppo). As shown in Figure 1c, these four edges form a cycle, indicating that the outcome
is forbidden under TSO.

1 PipeCheck: Microarchitecture-Level Analysis
Architecture-level memory consistency model specifications say nothing about the behavior of any individual
microarchitectural implementation. On one hand, certain architecturally-permitted behaviors may not be observable
on a given microarchitecture. For example, a sequentially consistent (SC) pipeline is a valid implementation of the
TSO memory model, although many executions that are legal under TSO will not be observable in such a pipeline—
the microarchitectural memory model is stricter than the architectural MCM requires. On the other hand,
architecturally-forbidden behaviors may be observable on a given microarchitecture—this would mean the
implementation has a bug.

The goal of PipeCheck is to formalize and automate this comparison of microarchitecture vs. architecture.
PipeCheck extends axiomatic memory model analysis techniques to the microarchitecture space, creating
microarchitecture-level happens-before graphs. The rest of this section describes how these graphs are created and
then used for verifying the correctness of a microarchitecture with respect to a given memory model.

1.1 Microarchitecture-Level Happens-Before Graphs
Orderings between instructions are often too complicated to be captured by a single architecture-level happens-
before edge. A single pair of instructions may fetch in order, issue out of order, execute in order, commit in order,
and reach memory out of order. PipeCheck therefore defines microarchitecturally-happens-before (μhb) edges in
terms of both instructions and particular locations within the pipeline:

(i1) (i2) (i3) (i4)
po & ppo reads from (rf) po & ppo

from-reads (fr)
a.k.a. reads before

Digital Object Indentifier 10.1109/MM.2015.47 0272-1732/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

3

Definition 1 (Microarchitecturally Happens Before) A μhb graph is a directed graph (V,E) in which
each vertex (inst@loc) V represents a memory instruction inst passing through a particular location loc,
and each edge (insti@loca, instj@locb) represents a guarantee that instruction insti passes through location
loca before instruction instj passes through location locb.

We depict μhb graphs in a grid with instructions along the x-axis and microarchitectural locations along the y-
axis. Not all instructions pass through all locations (e.g., loads do not occupy the store buffer), and so some entries in
the grid are left empty. Despite the grid depiction, only relationships depicted by arrows provide any ordering
guarantee.

Figure 2: PipeCheck microarchitecturally happens before (µhb) graph. The depicted execution of mp (see the sidebar) has a cycle

and hence is not observable on this pipeline.

Figure 2 shows the μhb graph for the mp litmus test (discussed in the sidebar) executing on a processor with

standard five-stage in-order pipelines. The four memory operations, (i1), (i2), (i3), and (i4), are depicted from left to
right, and various locations in the microarchitecture are shown from top to bottom. Each vertex represents an
instruction at a particular location within the microarchitecture. Each row of vertices captures the ordering of
instructions at a particular location within the pipeline, and each column of vertices therefore corresponds to an
instruction progressing through various locations in the microarchitecture.

1.2 Microarchitecture Definition
In PipeCheck, a microarchitecture is defined by:

• A list of locations

• Legal path(s) per instruction type.

• Performing locations within each path

• A local ordering guarantee at each location

• Non-local edges: edges which are both inter-instruction and inter-location

These terms are more carefully defined below.

(ppo)

(ppo)

fr

popo

rf

FetchStage

DecodeStage

ExecuteStage

MemoryStage

WritebackStage

StoreBuffer

MemHierarchy

(i1) (i2) (i3) (i4)

Arrow Edge Type
Intra-Instruction
Intra-Location
Non-Local

po

enforces ppo
rf, fr, ws

Digital Object Indentifier 10.1109/MM.2015.47 0272-1732/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

4

(a) Graphical Representation

 # Access Type Local Ordering
 Loads Stores Guarantee

 0 Fetch Fetch FIFO
 1 Decode Decode FIFO
 2 Execute Execute FIFO
 3 Memory Memory FIFO
 4 Writeback Writeback FIFO
 5 Store Buffer FIFO
 6 Mem. Hierarchy NoGuarantees

Performing Locations:
• Loads perform globally at the memory stage
• Stores perform locally (i.e., enter the store buffer) at the

memory stage
• Stores perform remotely when reaching the memory hierarchy
Non-local edges:
• Only one store can be outstanding from the store buffer

at a time: for all stores s, for the immediately subsequent
store s', (s@Mem.Hierarchy)(s'@StoreBuffer).

(b) PipeCheck definition

Figure 3: Classic Five-Stage Pipeline plus a store buffer and an unordered memory system.

Running Example. Figure 3 shows the PipeCheck definition of the classic five-stage pipeline used to generate
Figure 2. The rows of the table are microarchitectural locations. The two middle columns define the possible paths
each class of instructions can take through the pipeline. Note that in general, instructions may have more than one
choice of path through the microarchitecture. The last column defines the local ordering guarantees at each location.
The footnotes specify the performing locations for each type of instruction as well as a set of non-local edges
specific to the store buffer.

Instruction Paths. During execution, as instructions flow through the pipeline, they pass through a specified set
of locations along some well-defined path. A memory instruction may have more than one legal path through a
pipeline. For example, a read may take a different path depending on whether it forwards from the store buffer,
reads from the cache via a cache hit, or reads from the cache after a cache miss.

Performing Locations. Each path also defines the set of locations at which each instruction can perform.
Traditionally, a store has performed when a (potentially hypothetical) load may read the value, and a load has
performed when a (potentially hypothetical) store may not change the value returned [5]. The notion of performing is
in turn used to define the behavior of properties such as the cumulativity of fences on some weak architectures. This
classical definition of performing is fundamentally hypothetical and thus difficult to work with, as happens-before
relationships are made to inherently depend on loads and stores which do not actually exist in a program and hence
cannot easily be referenced during analysis. This difficulty is reflected in the wide variety of definitions of
cumulativity used in the literature.

PipeCheck defines perform in terms of location rather than the traditional notion of potential visibility:
Definition 2 (Performing Location) A location l is a performing location with respect to core c if:

• a load at location l can read the value written by a store from core c
• the data being written by a store at location l is visible to core c.

A location l is a global performing location if it is a performing location with respect to all cores.
In contrast, in PipeCheck, the transitivity of edges (discussed below) makes it straightforward to check whether

one instruction performs before another. One simply checks whether there are one or more μhb edges which connect
the performing locations of the two instructions.

Local Ordering Guarantees. To more precisely define in-order and out-of-order, we define a local ordering
guarantee at each location. This specifies the reorderings that location does or does not permit on instructions
passing through it. At one extreme, a FIFO local ordering specifies that all inter-instruction orderings guaranteed at
entry into a location will also be guaranteed leaving that location. At the other extreme, a NoGuarantees local
ordering specifies that no orderings are guaranteed for instructions leaving the location. Other guarantees may lie in
between. The specific guarantees of each pipeline stage will vary from processor to processor.

Non-local Edges. Non-local μhb edges model any ordering guarantees implemented by the pipeline across
multiple instructions and locations. Such non-local μhb edges are relatively rare; they correspond to non-local wires
and/or communication across a chip, making them expensive in practice. However, they often do serve to enforce
critical ordering guarantees. An example of such a non-local edge is a store buffer that enforces that “after issuing a

Digital Object Indentifier 10.1109/MM.2015.47 0272-1732/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

5

request to memory, the store buffer must await an acknowledgment from memory before issuing a subsequent
request”, a property which is often critical to the enforcement of Store→Store orderings in TSO.

1.3 Generating μhb Graphs
Given a microarchitecture definition and a program, PipeCheck automatically enumerates the set of all μhb

graphs representing all possible executions of the program. This process is broken into two steps: 1) enumeration of
static edges, or those which are true in every execution of a program, and 2) enumeration of observed edges, or those
inferred during a particular execution of that program.

Static Edges. We begin by adding a set of intra-instruction μhb edges between consecutive locations along the
path for that instruction. For example, an instruction being in the fetch stage will “microarchitecturally happen
before” the point when that same instruction is in the decode stage. These are the solid black vertical arrows in
Figure 2.

Second, each location observes instructions passing through in some order. We assume program order to be the
ordering of instructions at the fetch stage of the pipeline. Some subsequent pipeline stages also guarantee to maintain
intra-location ordering guarantees propagated from previous stages. We add intra-location μhb edges to represent
these per-location guarantees. These are the dashed green horizontal arrows in Figure 2.

Third, we add the non-local edges defined by the pipeline specification. For example, the definition of the five-
stage pipeline of Figure 3 contained a non-local edge to describe the behavior of the store buffer. This is drawn as the
diagonal dashed green edge from (i1 @ MemoryHierarchy) to (i2 @ StoreBuffer) in Figure 2.

Observed Edges. PipeCheck enumerates three types of observed edges. Two examples are discussed in the
sidebar: “reads from” (rf) and “from reads” (fr). The third: “write serialization” (ws), also known as “coherence”,
which places a total order on all stores made to each address.

PipeCheck defines the endpoints of observed edges to be at the performing location(s) of each instruction’s path.
When there is more than one possibility, (e.g., a load can read either from the store buffer or from memory),
PipeCheck analyzes each independently. The cross product of the set of rf, ws, and path choices forms the set of
graphs that need to be evaluated.

1.4 Properties of μhb Graphs
Transitivity of μhb Edges. Axiomatic memory models capture the complexity of weak ordering behavior in one

of two ways. Many models place the complexity into the edges. In such models, graphs are smaller, but execution-
forbidding cycles can only be found within carefully chosen subsets of edges, and the transitive closure of happens-
before edges is not always itself a happens-before edge [2]. Other models, including PipeCheck, define larger graphs
in which each node represents an instruction plus metadata (i.e., in PipeCheck, a pipeline location). The extra
information in nodes (and hence also in edges) means that edges can be transitively composed and that any cycle
serves to forbid an execution. This simplifies the analysis and restores the intuitive one-to-one correspondence
between cycles and forbidden executions.

Graph Size and Tractability. Although PipeCheck μhb graphs are larger than those created by many other
axiomatic models, they nevertheless remain very tractable to analyze. The size of each graph is roughly proportional
to the number of instructions being analyzed times the depth of the pipeline. As such, μhb graphs typically have no
more than a hundred nodes. Furthermore, although each analysis generally produces more than one graph, these
graphs can be analyzed entirely independently in parallel. Nevertheless, the results later in this article will show that
even naive sequential analysis remains tractable, generally running to completion within just a few minutes.

2 Verification Methodology
Below, we describe the high level verification approach as well as the design and usage of our PipeCheck tool which
automates the process.

2.1 Types of Verification
PipeCheck verifies pipeline correctness using two techniques: direct satisfaction tests and litmus tests.

Direct Satisfaction Tests. The first approach is to directly check whether each required architecture-level
happens-before (hb) edge requirement is enforced by one or more microarchitecture-level happens before (μhb)
edges. A given architectural memory model may therefore generate direct satisfaction tests to check preserved
program order (ppo), program order accesses to the same address (po-addr), dependency orderings, fence
orderings, and so on. PipeCheck ensures that the microarchitectural interpretation of each hb edge is in fact present

Digital Object Indentifier 10.1109/MM.2015.47 0272-1732/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

6

in the transitive closure of each μhb graph. As an example, the highlighted blue edges in Figure 2 represent µhb
edges found to enforce the hb requirements of ppo for TSO.

Litmus tests. PipeCheck also evaluates each microarchitecture using a suite of litmus tests built up from existing
repositories [9]. Architectural analysis determines whether the outcome specified by each litmus test is permitted or
forbidden; PipeCheck calculates whether the outcome for each test is observable or not on the given
microarchitecture. A permitted but unobserved outcome means that the pipeline is stronger than strictly necessary. A
forbidden but observed outcome, however, indicates either a pipeline bug or an incorrect microarchitecture
specification.

2.2 PipeCheck Automated Tool

Figure 4: PipeCheck Verification Flow.

The PipeCheck tool flow is depicted in Figure 4. PipeCheck is written using Coq [11], an interactive theorem
prover, to make the code amenable to formal analysis and integration with existing open-source frameworks also
using Coq [1]. To speed up the analysis, we use built-in functionality within Coq to export the code into OCaml and
then compile this extracted code into a standalone binary. We then measured the runtime of this binary executing on
an Intel Xeon E3-1230v2 processor.

We evaluate PipeCheck by verifying processors implementing the TSO consistency model. TSO imposes non-
trivial ppo ordering requirements on all memory operations and it is in widespread use. Both facts make it a
particularly interesting target.

We analyze four pipelines. The first two are the five-stage pipeline of Figure 3 both without and with a store
buffer. The former is effectively sequentially consistent, meaning that some litmus test outcomes permitted under
TSO may (legally) not be observable. These two microarchitectures reflect pipelines that might be used in
classrooms or as embedded cores. The third is the O3 (out-of-order) pipeline from the gem5 simulator [3]. This
represents an medium-sized core and demonstrates how simulated cores are also amenable to analysis. Finally, we
describe the OpenSPARC T2 pipeline, representing a well-documented industry-strength microarchitecture [10].

We analyze each litmus test on a four core version of each pipeline. We also analyze the set of ppo and po-
addr direct satisfaction tests for each pipeline.

Digital Object Indentifier 10.1109/MM.2015.47 0272-1732/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

7

3 Results Across Litmus Tests

Figure 5: Verification Time Results (computed using extracted OCaml).

 Litmus Test TSO 5-Stg. 5-Stg. gem5 Open-

 (exp.) (no SB) (w/SB) O3 SPARC
 iwp2.1/amd1/mp F = = O2 =
 iwp2.2/amd2/lb F = = = =

 iwp2.3a/amd4/sb P N1 = = =
 iwp2.3b P = = = =

 iwp2.4/amd9 P N1 = = =
 iwp2.5/amd8/wrc F = = O2 =

 iwp2.6 F = = = =
 amd3 P N1 = = =

 amd6/iriw F = = O2 =
 n1 P N1 = = =
 n2 F = = O2 =
 n4 F = = = =
 n5 F = = = =
 n6 P = = = =
 n7 P N1 = = =

 rwc P N1 = = =
“F”: Forbid. “P”: Permit.
“=”: Matches expected TSO outcome.
“O”: Observable. “N”: Not observable.
1Implementation more restrictive than TSO requires.
2Indicates the presence of a bug.

 Table 1: Summary of litmus test results.

Table 1 shows the results of verifying the suite of litmus tests on each modeled pipeline. Individual litmus tests
are depicted as rows. For each row, the table shows whether TSO forbids or permits the outcome proposed by the
test, and then shows its observability on the four microarchitectures. The microarchitecturally-observable behaviors
correspond with the architecturally-specified behaviors in almost all cases. For the five-stage pipeline without a store
buffer, six of the proposed results require non-SC behavior, and these results are confirmed as not being observable
on the SC pipeline. On the other hand, test results for the gem5 pipeline indicate the presence of a bug. This bug will
be explored in detail below.

Figure 5 shows the time taken to complete the verification process for each pipeline. The entire suite runs in less
than ten minutes for each pipeline, demonstrating that even with code optimized for verifiability rather than
performance, PipeCheck analysis is very practical.

 0.001
 0.01
 0.1

 1
 10

 100

iwp2.3a/am
d4

iwp2.3b1

rwc-unfenced

n6 am
d3

n1 iwp2.2/am
d2

d1 d2 iwp2.1/am
d1

n5 iwp2.5/am
d8

iwp2.4/am
d9

am
d6/IRIW

iwp2.6

n7 n2 n4 Geom
ean

R
u

n
ti

m
e

(s
) 5-Stage w/o SB

5-Stage w/ SB
gem5 O3

OpenSPARC T2

Digital Object Indentifier 10.1109/MM.2015.47 0272-1732/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

8

(a) Speculative load reordering. Although ppoarch is not

enforced, a legal replacement pposlr is enforced, and it

completes the cycle.

(b) Pipeline bug shown via the
iwp2.1/amd1/mp litmus test. The
lack of a cycle indicates that the
behavior is (erroneously) observable.

(c) WeeFence [4] eliminates
the slow baseline dependency
while maintaining the
necessary ordering.

Figure 6: Case Studies on the gem5 O3 pipeline.

4 Advanced Microarchitectural Optimizations
Many processors deliver improved performance through microarchitectural optimizations such as out-of-order
execution, speculative load reordering, and value prediction. The desire to include such optimizations was the key
motivation for building weak memory models at all. However, optimizations must make sure to follow the rules of
the architectural memory model within which they are implemented. PipeCheck now provides a rigorous framework
within which such verification can take place.

An interesting complication arises with microarchitectural optimizations which maintain the appearance of
following the rules even while technically violating them. Much as pipelines are permitted to perform out-of-order
execution as long as in-order semantics are maintained, pipelines are permitted to (and do) implement features such
as speculative load reordering which violate the letter of the memory model specification but which nevertheless
maintain the external appearance of correct behavior. PipeCheck supports verification of these features as well. In
such cases, a literal interpretation of architecture-level requirements such as Load→Load ordering may not be
verifiable, but in such cases correctness may be enforced by replacement μhb edges, as discussed below.

4.1 Case Study: Speculative load reordering
The key principle behind speculative load reordering is that two loads l1 and l2 in program order can be speculatively
reordered (i.e., l2 can perform before l1) as long as the value read speculatively by l2 is the same as it would have
been had l2 in fact performed non-speculatively (i.e, after l1) [6]. The implementation used by the gem5 O3 pipeline
snoops for cache line invalidations. Specifically, if a cache line has not been overwritten or invalidated (due to cache
replacement or external request) since an earlier speculative read of that line, then the core can safely assert that a
subsequent read of that line would return the same value. On the other hand, if the cache line is modified or
invalidated, the core is conservative and assumes that the invalidate indicates a failed speculation.

This implementation of speculative load reordering can be modeled in PipeCheck by including cache line
invalidation as an extra location within the instruction path. Figure 6a shows an example within the gem5 O3
pipeline model for the mp litmus test. Extra vertices represent the invalidations of the cache lines that (i3) and (i4)
read from, and the observed edges in the graph have been adjusted to account for these new vertices. In particular,

po po

(ppoarch)

pposlr

FetchStage

DecodeStage

RenameStage

IssueStage

ExecuteStage

Cache Line
Invalidated

WritebackStage

CommitStage

Store Buffer

Mem. Hierarchy

(i1) (i2) (i3)(i3) (i4)(i4)

po po

(i1) (i2) (i3)(i3) (i4)(i4)

po po

baseline

ppo

WeeFence

(i1) (i2) (i3)(i3)

Digital Object Indentifier 10.1109/MM.2015.47 0272-1732/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

9

the cache line that (i4) reads from must have been invalidated before (i1) wrote to memory to observe the proposed
result.

4.2 Case Study: gem5 Pipeline Bug
For the gem5 O3 pipeline, our ppo direct satisfaction tests indicated that Load→Load ppo ordering was not
guaranteed, and four litmus tests which relied on such ordering failed validation. As an example of one of the failed
tests, the µhb graph for mp executing on this pipeline is shown in Figure 6b. To analyze further, we wrote a
microbenchmark to execute mp in a tight loop. With this test, software observed the forbidden result, confirming the
presence of the bug as well as its cause. This bug was fixed by a third party in revision 10149.

4.3 Case Study: WeeFence
WeeFence is a recent optimization proposal which allows post-fence loads to perform and retire before stores prior
to the fence [4]. WeeFence buffers or bounces invalidation requests to cache lines relevant to a pending fence,
thereby allowing post-fence reads to safely retire non-speculatively even before pre-fence stores have written back to
memory. Although this violates the letter of the fence semantics, it maintains the appearance of correct execution.

Figure 6c demonstrates the use of PipeCheck to validate the WeeFence optimization (within the corrected gem5
O3 pipeline). Both the baseline (non-WeeFence) and the WeeFence approaches enforce the (i1 @ MemHierarchy)→
(i3 @ CacheLineInvalidate) ordering, but WeeFence does so without the slow intermediate step of
(i2.CommitStage), thereby saving latency over the baseline. This analysis demonstrates how PipeCheck can be used
to specify and then to demonstrate the correctness of a new microarchitectural optimization proposal.

5 Conclusion
PipeCheck is a methodology and tool for verifying the correctness of a microarchitecture with respect to its
architecturally-specified consistency model. PipeCheck demonstrates the practicality and tractability of defining
microarchitectures in terms of their location-by-location ordering properties and then using these local
characterizations to verify global enforcement of memory consistency model rules. Our techniques complement
other ongoing efforts to verify the correctness of computation, from the programming language level down to the
microarchitecture. PipeCheck is open-source and is publicly available at github.com/daniellustig/pipecheck.

We hope that techniques such as PipeCheck can help bring attention to both the need and the opportunity to
verify new microarchitectural optimization proposals. While performance is the primary motivation for most such
proposals, performance results should only be considered meaningful once correctness has been established.
Incorrect (or even nearly-correct) microarchitectures may (even unintentionally) benefit from artificially-inflated
performance, thereby placing correct proposals at an unfair disadvantage. Litmus tests such as iriw arose after long
discussions in the community about the performance costs of implementing strong ordering semantics for
programming idioms which are widely considered esoteric. Nevertheless, models such as TSO require the strong
semantics in spite of their cost. Proposals which claim to implement TSO should be expected to demonstrated
sequentially consistent semantics for iriw before presenting performance numbers. The time has come for
microarchitects to accept the burden of establishing correctness in a rigorous manner.

Fortunately, analysis techniques and tools are quickly approaching a point at which automated, systematic
verification is possible. There now exist precise formal models of many architectures, and there also exist large,
well-established suites of litmus tests for popular ISAs including x86(-64), Power, and ARM. We hope that
PipeCheck is useful in extending rigorous analysis techniques into the microarchitecture space, thereby providing
researchers with a straightforward and reliable way to demonstrate the correctness of their proposals.

Acknowledgments
The authors would like to thank Jade Alglave, Lennart Beringer, James Bornholt, Doug Clark, and Nirav Dave, and
Kathryn McKinley for their helpful feedback. Daniel Lustig was supported in part by an Intel PhD Fellowship. This
work was supported in part by C-FAR, one of six centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA. This work was also supported in part by NSF under the grant CCF-
1117147.

Digital Object Indentifier 10.1109/MM.2015.47 0272-1732/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

10

References
 [1] J. Alglave, “A formal hierarchy of weak memory models,” Formal Methods in System Design, 41 (2),
2012.
[2] J. Alglave, L. Maranget, and M. Tautschnig, “Herding cats: Modelling, simulation, testing, and data-mining
for weak memory,” ACM Transactions on Programming Languages and Systems (TOPLAS), 36 (2), 2014.
[3] N. Binkert et al., “The gem5 simulator,” SIGARCH Computer Architecture News, 39 (2), 2011.
[4] Y. Duan, A. Muzahid, and J. Torrellas, “WeeFence: Toward making fences free in TSO,” 40th
International Symposium on Computer Architecture, 2013.
[5] M. Dubois, C. Scheurich, and F. Briggs, “Memory access buffering in multiprocessors,” 13th International
Symposium on Computer Architecture, 1986.
[6] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two techniques to enhance the performance of memory
consistency models,” 29th International Conference on Parallel Processing, 1991.
[7] L. Lamport, “How to make a multiprocessor computer that correctly executes multiprocess programs,”
IEEE Transactions on Computing, C-28, 1979.
[8] S. Mador-Haim et al., “An axiomatic memory model for POWER multiprocessors,” 24th International
Conference on Computer Aided Verification, 2012.
[9] S. Owens, S. Sarkar, and P. Sewell, “A better x86 memory model: x86-TSO,” 22nd International
Conference on Theorem Proving in Higher Order Logics (TPHOLs), 2009.
[10] Sun, “OpenSPARC T2 core microarchitecture specification, rev. A,” 2007.
[11] The Coq development team, The Coq proof assistant reference manual, version 8.0, LogiCal Project,
2004.

Bios
Daniel Lustig is is a PhD candidate in the Department of Electrical Engineering at Princeton University. His

research focuses on the design and verification of memory systems for heterogeneous computing platforms.
Lustig has an MA in electrical engineering from Princeton University. He is a student member of IEEE and
ACM. Email: dlustig@princeton.edu

Michael Pellauer is a Senior Research Scientist at Nvidia Corporation. His research focuses on computer

architecture, with emphasis on non-standard accelerator architectures using spatial programming. He has a
PhD from Massachusetts Institute of Technology, a M.Sc. from Chalmers University of Technology, and a
B.A. from Brown University. He performed the research for this article while at Intel. Email:
mpellauer@nvidia.com

Margaret Martonosi is the Hugh Trumbull Adams '35 Professor of Computer Science at Princeton University,

where she has been on the faculty since 1994. Her research interests are in computer architecture and mobile
computing, with particular focus on power-efficient systems. Martonosi is a Fellow of both IEEE and
ACM. Email: mrm@princeton.edu

Digital Object Indentifier 10.1109/MM.2015.47 0272-1732/$26.00 2015 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

