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ABSTRACT

Recent work has demonstrated that the use of programmable
GPUs can be advantageous during relational query process-
ing on analytical workloads. In this paper, we take a closer
look at graph problems such as finding all triangles and
all four-cliques of a graph. In particular, we present two
different join algorithms for the GPU. The first is an im-
plementation of Leapfrog-Triejoin (LFTJ), a recently pre-
sented worst-case optimal multi-predicate join algorithm.
The second is a novel approach, inspired by the former but
more suitable for GPU architectures. Our preliminary per-
formance benchmarks show that for both approaches using
GPUs is cost-effective. (the GPU implementation outper-
forms respective CPU variants). While the second algo-
rithm is faster overall, it comes with increased implemen-
tation complexity and storage requirements for intermedi-
ary results. Furthermore, both our algorithms are compet-
itive with the hand-written C++ implementation for find-
ing triangles and four-cliques in the graph-processing system
GraphLab executing on a multi-core CPU.

1. INTRODUCTION
The explosive growth of “Big Data” in the enterprise has

been accompanied by a growing demand for increased pro-
ductivity in developing applications for sophisticated data
analysis tasks involving relational analysis over large data
sets. High performance relational computing (HPRC) has
emerged as a discipline that mirrors high performance sci-
entific computing in importance. HPRC promises to pro-
foundly impact the way businesses grow, the way we access
services, and how we generate new knowledge. We are inter-
ested in relational analysis over data sets organized as con-
ventional relational databases, particularly those that repre-
sent graph models in a relational form. Graph problems are
essentially relational problems as examplified by this paper
and it is a great advantage for a relational database system
to own the capability of solving graph problems for the sake
of productivity. The explosive growth of graph sizes towards
billions of nodes has pushed graph analysis to the forefront
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of numerous data intensive applications and is the focus of
this paper.

Our target systems are cloud systems comprising high
performance multi-core processors accelerated with general-
purpose graphics processing units (GPUs), such as those
from vendors NVIDIA, AMD, and Intel. While discrete
GPU accelerators provide massive fine-grained parallelism,
higher raw computational throughput, and higher memory
bandwidth compared to multi-core CPUs, there are signif-
icant algorithmic and engineering challenges in harnessing
this performance for relational analysis over graphs.

For example, while queries appear to exhibit significant
data parallelism, relationships between nodes are more often
irregular and unstructured. Thus, computations over these
relations tend to exhibit poor spatial and little temporal lo-
cality while modern processors and memory hierarchies are
optimized for locality. Further, computations at the nodes
of a graph are relatively simple. Thus, algorithms tend to
exhibit low compute density, i.e., the ratio of arithmetic op-
erations to memory accesses is lower than traditional engi-
neering computations. Coupled with low locality, queries
make poor use of memory bandwidth. Finally, computa-
tions over relations are highly data dependent. Control flow
and memory access behaviors are difficult to predict while
available concurrency is time varying, data dependent, and
also difficult to predict. Thus, the ability to harness the
tremendous compute and memory bandwidths of GPUs will
require algorithmic advances to effectively harness the mas-
sive parallelism and memory bandwidths of GPUs. These
algorithmic advances is the focus of this paper.
This paper proposes two, multipredicate join algorithms

for GPUs. One is a GPU-optimized implementation of Veld-
huizen’s Leapfrog Triejoin (LFTJ) [23]. The second algo-
rithm is novel. Both methods effectively fuse multiple join
operations at the algorithmic level thereby reducing (inter-
mediate) data traversals through the GPU memory hierar-
chy and increasing GPU core utilization. The throughput
improvements possible with these algorithms are demon-
strated on several important graph computations.
This papers seeks to make the following contributions.
1. We describe how to obtain a GPU-efficient implemen-

tation of Leapfrog Triejoin. Our efficient implementation
is amenable to CPU and GPU execution thereby support-
ing flexible run time scheduling for execution on the CPU
or GPU. For finding triangles on pre-sorted data, our im-
plementation executed on the CPU is 3.5-10X faster than
GraphLab [15]. Running on the GPU, we obtain an addi-
tional 2-3X performance improvement.



2. We propose a second new multipredicate join algo-
rithms for GPUs that is tailored to the GPU architecture
and delivers an additional 1.5-10X improvement in through-
put on the GPU version from above.

3. The nuances of data structure and algorithm design for
these irregular operations on GPUs are described.

4. We apply these algorithms to compute triangles and 4-
cliques over a relational representations of graphs to demon-
strate the capability of using relational computation to solve
graph problems. We evaluate their performance as well as
memory requirements.

2. BACKGROUND

2.1 Motivation for General Purpose GPUs
The use of programmable GPUs has appeared as a poten-

tial vehicle for an order of magnitude or more performance
improvement over traditional CPU-based implementations
for large footprint relational query processing. This expecta-
tion is motivated by the fact that GPUs have demonstrated
significant performance improvements for data intensive sci-
entific applications and the recent emergence of GPU accel-
erated cloud infrastructures for small and medium enter-
prises such as Amazon’s EC-2 with GPU instances.

The current implementation targets NVIDIA GPUs and
therefore we adopt the terminology of the bulk synchronous
execution model [22] underlying NVIDIA’s CUDA language.
Figure 1 shows an abstraction of NVIDIA’s GPU architec-
ture and execution model. A CUDA application [17] is
composed of a series of multi-threaded data parallel ker-
nels. Data-parallel kernels are composed of a grid of par-
allel work-units called Cooperative Thread Arrays (CTAs)
which in turn consist of an array of threads that may period-
ically synchronize at CTA-wide barriers. In the processors,
threads within a CTA are grouped into logical units known
as warps that are mapped to SIMD units called stream mul-
tiprocessors (SMs). Hardware warp and thread scheduling
hides memory and pipeline latencies. Global memory is used
to buffer data between kernels as well as to communicate be-
tween the CPU and GPU. Each SM has a shared scratch-pad
memory with allocations for each CTA and can be used as
a software controlled cache. Registers are privately owned
by each thread to store immediately used values.

Performance is maximized when all of the threads in the
warp take the same path through the program. However,
when threads in a warp do diverge on a branch, i.e., differ-
ent threads take different paths, performance suffers because
the execution of two paths is serialized. This is referred to as
branch divergence. Memory divergence occurs when threads
in a single warp experience different memory-reference la-
tencies and the entire warp has to wait until all memory
references are satisfied.

GPU DRAM organizations favor coalesced memory ac-
cesses which are deep queues of coarse-grained bulk oper-
ations on large contiguous chunks of data, so that all data
that is transferred to the row buffer is returned to the proces-
sor, and that it is accessed sequentially as a long burst. How-
ever, a large number of requests directed to addresses that
map to different row buffers will force the memory controller
to switch pages and trigger premature row buffer transfers,
reducing effective bandwidth. Purely random accesses result
in frequent row buffer transfers and address traffic, which
significantly reduce effective DRAM bandwidth.
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Figure 1: NVIDIA GPU Architecture and Execu-
tion Model.

Compared with a traditional multi-core CPU, GPUs have
a considerably larger number of (simpler) computation cores
and higher memory bandwidth. However, discrete GPUs
are interconnected with the CPU via the PCIe intercon-
nect which has relatively much smaller bandwidth compared
with either the CPU or GPU memory bandwidth. Moreover,
the memory capacity of modern GPU boards is not large -
12GBytes is the largest today. Thus for practical data foot-
prints, efficient staging and management of data movement
between the host and GPU memories is very important.

2.2 Clique Problems
Finding triangles is an important operation for graphs; it

is used as input for various graph properties and metrics such
as the graph’s clustering coefficient, triangular connectivity
and others [5, 14]. Formally, given a graph G = (V,E) its
triangles are all sets {x1, x2, x3} such that (xi, xj) ∈ E. As
is convention, we store each undirected {a, b} edge as two
directed edges (a, b) and (b, a) in a binary relation E(x,y).
The unique triangles are then computed via the following
relational query expressed as a Datalog rule:

tr(x,y,z) ← E(x,y),E(y,z),E(x,z),x<y<z.

Here, the first join E(x,y),E(y,z) “computes” all paths of
length 2; these are then complemented by the third edge
E(x,z) to form a triangle. The condition x<y<z is necessary
since otherwise each triangle would occur 6 times. Similarly,
4-cliques are sets of four nodes such that each node is con-
nected with each other. The Datalog rule to compute all
unique 4-cliques is:

4cl(x,y,z,w) ← E(x,y),E(x,z),E(x,w),E(y,z),

E(y,w),E(z,w),x<y<z<w.

2.3 Leapfrog Triejoin
Our first GPU join-algorithm is an implementation of

leapfrog triejoin (LFTJ) [23] adapted for the GPU. This
section thus reviews this join algorithm. For a more de-
tailed exposition please see [23]. We start by describing
the basic building block leapfrog join, which computes joins



between unary relations. These are essentially multi-way-
intersections. We then generalize to multi-way-joins over
general predicates to yield leapfrog triejoin.

2.3.1 Linear Iterators
A unary input relations R is accessed via a linear iterator

interface that presents the data in sorted order. It is con-
venient to imagine the data to be stored in a sorted array
of size |R|+ 1 where the last cell is left empty. In fact, this
is how we will layout data in memory A linear iterator be-
haves much like a pointer into this array. It is initialized
at the first element and provides methods for data access
and iterator movement: (1) bool atEnd() returns true if
the iterator is positioned at the last array element (which
does not correspond to a data value in R). Note that for an
empty relation atEnd() will return true immediately after
initialization. (2) T value() returns the data value the iter-
ator is positioned at. It must not be called if the iterator
is atEnd(). (3) void next() moves the iterator to the next
array cell. Like value(), this method must not be called if
atEnd() is true. (4) void seek(x) moves the iterator to the
data value x. If x is not in R then the iterator is moved to
the smallest element y that is larger than x; or to the last
empty cell if such a y does not exist. Must only be called
when the iterator is not atEnd() and the current value() is
smaller than x.

2.3.2 Leapfrog Join
The leapfrog join between a series of unary relations (e.g.,

R, S, and T ) behaves somewhat similar to the merge-phase
of merge-sort. The crucial difference is that we are only
interested in values that occur in all input relations. Thus,
if one relation has a large value x we can skip forward in the
other relations to the value x. Skipping forward is done via
the seek(.) operator. We will also always seek the iterator
that presents the smallest current value to (or past) the
value presented by the iterator that is most advanced. This
leap-frogging motivates the name of the method.

We present the result of the join via a linear iterator itself.
The implementation of the leapfrog join is given in Fig. 2.
After leapfrog init, the algorithm maintains the invari-
ant that Iter[p] is the iterator with the smallest value
while Iter[p−1 mod k] has the largest value; and the it-
erators in between are in ascending order. The core method
is leapfrog search where we repeatedly seek the itera-
tor with the smallest value to the iterator with the largest
value until all iterators have the same value –a join result is
found– or any of the iterators is atEnd() indicating that no
result will be found anymore.

For a fixed query, leapfrog join’s runtime complexity is
O(Nmin log(Nmax/Nmin)) where Nmin and Nmax are the
cardinality of the smallest and largest relation, respectively
[23]. This complexity bound holds if the following complex-
ity bounds are satisfied for the linear iterator operations:
key() and atEnd() need to be in O(1); next() and seek(.)
are required to be in O(logN) where N is the size of the
relation. Furthermore, if m values are visited in ascend-
ing order, then armortized complexity of seek() and next()
must not exceed O(1 + log(N/m)). With an array repre-
sentation, these bounds can easily be obtained as described
in Section 3. The bounds can also easily be obtained when
data is stored in more standard paged data structures such
as B-Trees.

Leapfrog join Algorithm [23] as Linear Iterator

globals: Array Iter, integer p, bool atEnd

leapfrog init():

if any iterator is atEnd():

atEnd := true

else:

sort Iter[0..k−1] by value() of each iterator
p := 0; atEnd := false

leapfrog search()

leapfrog search():

max value := Iter[(p−1) mod k].value()

while true:

min value := Iter[p].key()

if min value == max value:

return

else:

Iter[p].seek(max)

if Iter[p].atEnd():

atEnd := true

return

else

max = Iter[p].value()

p := p + 1 mod k

leapfrog next():

Iter[p].next()

if Iter[p].atEnd():

atEnd := true

else:

p := p + 1 mod k

leapfrog search()

leapfrog seek(seeked value):

Iter[p].seek(seeked value)

if Iter[p].atEnd():

atEnd := true

else:

p := p + 1 mod k

leapfrog search()

leapfrog atEnd(): return atEnd

leapfrog value(): return Iter[0].value()

Figure 2: Leapfrog-Join algorithm computing the
intersection of k unary predicates given as an array
Iters[0..k − 1] of linear iterators.

Leapfrog Triejoin [23] as Trie-Iterator

globals: Array LeapFrogs, integer d

lftj open():

d := d + 1

for each iter used in LeapFrogs[d]:

iter.open()

LeapFrogs[d].leapfrog init()

lftj up():

for each iter used in LeapFrogs[d]:

iter.up()

d := d − 1 // backtrack to previous var

lftj value(): return LeapFrogs[d].leapfrog value()

lftj next(): LeapFrogs[d].leapfrog next()

lftj seek(): LeapFrogs[d].leapfrog seek()

lftj atEnd(): LeapFrogs[d].leapfrog atEnd()

Figure 3: Leapfrog Triejoin Implementation
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2.3.3 Trie-Iterators
Again, following [23], we extend the linear iterators to

allow iteration over arbitrary relations. For this, we imagine
the data of a relation R to be organized as a Trie (see Fig. 4)
Here, every tuple in the relation is represented as a path
from the root to a leaf node. Besides the linear iterator
operations we add methods that allow moving up and down
in the tree: open() positions the iterator at the first children
of the current node. This method may only be called if the
iterator is not atEnd(); and up() moves the iterator back to
the parent node.

An example of how the data of a relation can be examined
via trie-iterator operations is provided in Fig. 2.3.3. Note
that (1) all children of a node are sorted and unique, and
(2) only the children of a node are represented via a linear
iterator and not necessarily all elements of a certain level;
for example, if the iterator is positioned at the first 3 from
left in the lowest level, and next() is called, atEnd() is true.
To move to the neighboring 3, one needs to call up(), next(),
and open().

2.3.4 Leapfrog Triejoin
Leapfrog triejoin (LFTJ) is a multi-predicate-join algo-

rithm ; that is it computes the result of Select-Project-Join
queries directly without employing pair-wise joins. We ex-
plain LFTJ on the example of

T(x,y) ← R(x,y),S(x),T(y)

LFTJ is configured by an order of the variables occurring in
the body of the defining rule. Furthermore, the sequence of
variables in each atom must be a subsequence of the chosen
variable ordering. In the example above, we can choose
x, y, z because x, y in the first atom, x in the second atom,
and y in the third atom are all subsequences of x, y, z.

The order of variables in join atoms can be permuted by
deploying alternative indexes: S(x, y) can be presented as
S′(y, x) with S′(y, x) ← S(x, y). The chosen variable or-
dering, in general, influences the performance of the join
evaluation. Finding a good ordering is usually deferred to a
query optimizer, and is beyond the scope of this paper.

LFTJ finds result tuples by using leapfrog joins to find
assignments to the variables; one leapfrog join is used for
each variable. Consider the example from above: first LFTJ
performs a leapfrog join between R(x, ) and S(x); this is
done by opening the TrieIterators for R and S and using
leapfrog join at the first level of the two Tries. However,
whenever a result c for x is found, we open the Trie-iterators
for R and T since these have the variable y. We then perform
a leapfrog join for y. Once this is finished, we back-track to
the join at level x, search for the next match at level x and
then descend again to level y once a match has been found.

LFTJ implementation. For each atom in the rule body
(e.g., R, S, and T ) a TrieIterator is instantiated. Further-
more, we maintain an array of leapfrog joins, one join for
each variable according to the variable order. The leapfrog

join for a variable X has a pointer to the TrieIterators of
those atoms in which X appears. In the above example, the
leapfrog join for x points to the TrieIterators for R and S,
while the leapfrog join for y points to the TrieIterators for
R and T . LFTJ itself is implemented as a TrieIterator that
presents the join result; so we only need to give implementa-
tions for the TrieIterator interface. We use a variable depth
to keep track at which variable we currently operate (cor-
responding to the depth of the LFTJ-Trie). The methods
next(), seek(), atEnd(), and value() are delegated to the
leapfrog join for the active variable. The operation open()
and up() are given in Fig. 3.

To actually obtain the set of resulting tuples, we simply
iterate over the Trie provided by the LFTJ.

Trie-Iterators for Non-Materialized Predicates. No-
tice how the leapfrog triejoin operates on the Trie-Iterator
interface rather than on raw data directly. This is beneficial
not only for switching out different data storage schemes,
but it also allows infinite relations to participate in joins.
These are beneficial to allow built-in functions such as com-
parison or arithmetic operators. For example, consider the
predicate smaller than(x,y). When operating over int64
the content can be defined as:

smaller than = {(x, y) | x, y ∈ int64 with x < y}

3. GPU-BASED LEAPFROG TRIEJOIN
Our first GPU algorithm, referred as LFTJ-GPU, is an

implementation of leapfrog triejoin with minor modifica-
tions. These are mostly geared to avoid virtual method calls
during join evaluation as virtual methods are expensive on
the GPU. On the data-structure level, we store relations
in an array-based data structure representing the Trie of
the relation. We further implement a rather simplistic par-
allelization strategy that worked surprisingly well for our
data-sets. In the following, we describe each of these parts
in more detail.

3.1 The Trie-Array Data Structure
We restrict our attention to cases in which input data fits

into the GPU memory. We store the data in sorted arrays
that represent the Trie structure. The structure is inspired
by the commonly used Compressed-Sparse-Row (CSR) for-
mat used for graphs and matrices. This allows us to im-
plement the Trie-Iterator operations very efficiently. As an
example, the Trie-Array for the relation A from Fig. 2.3.3 is
shown in Fig. 4 on the right. For n-ary relations, we have n
arrays each storing the nodes of the Trie at the correspond-
ing depth. The length of the i-th array is the width of the
Trie at the i-th level + 1. Furthermore, we have n− 1 index
arrays that match the size of the value-arrays. The number
x idx[j] identifies the index of y val that is the first child
of the node j. Thus the children of a node x val[j] are
the elements in y val with positions in the interval from
x idx[j] inclusively to x idx[j+1] exclusively.

3.2 Avoiding Virtual Method Calls and
Minimizing Branching

While keeping the Trie-Iterator interface as an architec-
tural abstraction to support built-ins and different storage
implementations, a conventional implementation would re-
sult in virtual method dispatch. This is (1) expensive on
GPUs and (2) makes migrating data structures between



CPU and GPU more difficult. We thus designed and imple-
mented a templated version of leapfrog triejoin that avoids
virtual method calls entirely. Having compile-time fixed dis-
patch also allows the compiler to perform more aggressive
inlining. Before we describe our templated LFTJ, we present
our TrieIterator implementation.

Avoiding branching in TrieIterators. It is usually ben-
eficial to avoid branch divergence. We thus changed the
TrieIterator interface to require all operations to provide the
current depth at which the operation is applied as a tem-
plate parameter. This often removes code branches within
the TrieIterator since different levels in TrieIterators often
have different implementations - which we would need to
switch to at runtime based on the depth value. Furthermore,
removing branches, often leads to more aggressive inlining
by the compiler and the remaining machine-code for oper-
ators is often very small. For example, next() operations
are only a few instructions: increasing the array-index and
checking whether the end has reached to set atEnd to true;
furthermore, up() is often implemented as a No-Op and is
completely removed from the code by the compiler.

TrieIterator Methods. The TrieIterators for predicates
are conceptually easy to implement. Each TrieIterator for
an n-ary relation has an n + 1-sized boolean array where
we store atEnd values and an n-sized array of integers that
specifies the current operator position at each level in the
tree. open<d>() initializes the index for position d + 1 to
the first node in the subtree; close() is a No-Op. All im-
plementations for the linear iterator methods except seek(),
which we treat separately below, are straight-forward. For
example: value<d>() does a single array-lookup using the
array and index at depth d. We also experimented with
having initialize(), next(), and seek() return a boolean
value instead of providing the method atEnd() and using
a boolean variable array. Here we observed that the variant
with atEnd() is slightly faster.
The TrieIterator for LessThan3 or other simple builtin

functions are conceptually straight-forward. We omit their
details here.

3.2.1 Tuning Seek Performance

Guaranteeing algorithmic complexity bounds. We
would like the seek() implementation to be of O(logN)
worst-case complexity as well as to satisfy the amortized
complexity bound of O(1 + log(N/m)) for accessing m val-
ues out of the N elements.
Consider a seek(v) operation on an array R. If we use

binary search from the current position to the end of the
array to find the least-upper-bound of v in R, we do not
satisfy the amortized cost requirement1. However, there is
a simple fix: before binary searching from the middle of the
array, find a value b in R that is larger than v by looking
ahead 1, 2, 4, . . . cells first. Then, simply do binary search
from the last checked value (which was still too small) to the
just found value b. It can easily be shown that any probing
sequence that grows exponentially would work. We found
that using 8i (1, 8, 64, . . . ) as a look-ahead sequence works
well for triangles and fourcliques. We expect the optimal
setting of this parameter to be query and data-dependent.

1Consider an array with values 1, . . . , N and perform the
sequence of seek(i) for i = 1, . . . , N .

Performing well on modern hardware. While the above
strategy satisfies the complexity bound, it requires random
access into the global relation data. We experimented with
an N-ary search-tree index on top of the first attribute of
the edge relation, which we utilized for seeks – very similar
to B-Tree structures. With this index, our CPU perfor-
mance improved for large graphs (e.g., a 2.2x and 35% im-
provement for triangles and fourcliques, respectively, with
the 100-million edge dataset described in Section 5).
For the GPU version, adding the additional index into

global GPU memory did not show any major improvement.
We then experimented to put the higher levels of the search-
tree into the shared memory. Besides the additional com-
plexity, this approach adds some constant cost when threads
start since they need to copy the index from global GPU
memory into the shared memory. In general, the index was
beneficial (e.g., 26% and 3.2x improvement for triangles and
fourcliques, respectively, with the 100-million edge dataset
described in Section 5).

3.2.2 Compile-Time Dispatch for LFTJ
We achieve compile-time fixed dispatch by parameteriz-

ing the leapfrog triejoin with the Trie-Iterator types and
a compile-time data structure that describes at each lev-
els which iterators take part in the join. We then remove
runtime-iteration over TrieIterator arrays by compile-time
looping which essentially unrolls the loops, which can lead
to further optimizations. We heavily use the boost meta-
programming libraries boost::mpl and boost::fusion. These
provide compile-time data-structures and control-flow such
as loops. We annotated the libraries to allow them to be
used in GPU code. Only minor semantic changes are nec-
essary to be performed to leapfrog triejoin: In the compile-
time leapfrog triejoin, we cannot simply sort the iterators
during initialization of the leapfrog join since the sort-order
is data-dependent and thus not known at compile-time. We
instead use an initial phase where we perform seek() opera-
tions conditioned on the relative ordering of the iterators at
runtime. Essentially, instead of sorting an array of TrieIter-
ators, we seek() them appropriately to have their respective
value()s in sorted order. Furthermore, we remove the p in-
teger from leapfrog join: looping over the iterators is fully
unrolled, and within next() or seek(), we always move the
first iterator first.

Example: Triangles. The triangle-configuration for the
template based leapfrog triejoin is shown in Fig. 5. We
have a “query compiler” that creates such descriptions from
datalog-rule bodies like:

e(x,y),e(x,z),e(y,z),LessThan3(x,y,z)

The configurations are not designed for ease of specifica-
tion but for being easily used within our LFTJ implemen-
tation. The first group iterators t defines the types of
the body atom TrieIterators: three times iterators for binary
predicates with integer values, and one TrieIterator that im-
plements a ternary less-than operator over the type int64 t.
boxes t defines the types of the variables in the join. Then,
each of the level x structs defines which iterators take part
in the LFTJ and at which level the iterator is to be used.

3.3 Parallelization
We employ a simplistic parallelization strategy where we

partition the search-space across the first variable in the key



struct LFTJConfig_0 {
typedef mpl::vector<
P_ii_it, P_ii_it, P_ii_it,
LessThanT<Box<int64_t>,3> > iterators_t;

typedef mpl::vector<
Box<int64_t>, Box<int64_t>, Box<int64_t> > boxes_t;

typedef mpl::vector<
mpl::pair<mpl::int_<0>, mpl::int_<0> >,
mpl::pair<mpl::int_<1>, mpl::int_<0> >,
mpl::pair<mpl::int_<3>, mpl::int_<0> > > level_x;

typedef mpl::vector<
mpl::pair<mpl::int_<0>, mpl::int_<1> >,
mpl::pair<mpl::int_<2>, mpl::int_<0> >,
mpl::pair<mpl::int_<3>, mpl::int_<1> > > level_y;

typedef mpl::vector<
mpl::pair<mpl::int_<1>, mpl::int_<1> >,
mpl::pair<mpl::int_<2>, mpl::int_<1> >,
mpl::pair<mpl::int_<3>, mpl::int_<2> > > level_z;

typedef mpl::vector< level_x, level_y, level_z > l_maps_t;
};

Figure 5: Automatically generated C++ configura-
tion for LFTJT to implement the triangle query.

ordering. To do this, we chose a finitie predicate atom (eg.,
E(x,y)) that has the variable occurring first in the key-
order as first attribute. We then determine the number of
distinct values D the atom has in the first attribute (this is
simply the size of its first value array). We then divide up the
index space [0, . . . , D] into small evenly sized intervals; and
assign each interval to a worker-thread. In each GPU thread,
we then simply advise the TrieIterator to only consider the
small interval when presenting the values for x. Choosing
a good interval size generally involves a trade-off: Smaller
intervals are better for load-balancing; while larger inter-
vals minimize the overall thread initialization cost. How-
ever, we observed that (1) our thread-initialization cost is
very low; that is restricting the iterator is very fast (sim-
ple computation based on the thread global index), and (2)
thread launching is very fast. To the extend that choosing a
single-valued interval yielded the best performance for both
triangles and 4-cliques in our GPU experiments.

No explicit representation of all work-items is created dur-
ing the computation. The interval that is to be consid-
ered by each thread is directly computed by uniformly map-
ping the total number of threads T over the interval space
[0, . . . , D] at the beginning of the thread. If T is larger than
D then each thread is assigned the single-value interval; oth-
erwise threads will get larger intervals. This makes the al-
gorithm run correctly independently of the chosen parallel
launch configuration.

Skew. We can envision example queries and datasets for
which this parallelization strategy is too simple and would
cause load-imbalances. In general, the very small batch-size
works in our favor. In all our experiments, stragglers were
not an issue and the GPU was utilized evenly until the very
end. Investigating alternative methods is part of our future
work.

3.4 CPU-Variant
The GPU-optimized LFTJ implementation can easily be

adapted to run on a regular CPU with multiple threads as
well. We also implemented a CPU-based version referred
as LFTJ-CPU. The only difference between the CPU and
GPU version is how “worker-threads” are spawned and how
work is distributed. In the CPU version, we launch as many
threads as there are (hyper-) cores available in the machine.
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Figure 6: Data structure adopted by GPU-optimized

Each of these threads is in an endless loop in which it (1)
requests a new interval to work on and then, (2) performs
LFTJ on this interval, until no more work is to be done.
The work-requests are received by a lock-free data structure
that uses atomic additions to give out increasing intervals
for [0, . . . , D]. This “scheduler” can now balance giving out
smaller intervals (which are better for avoiding stragglers at
the end of the computation) with larger intervals that cause
less load on the work-scheduler and reduce some initializa-
tion overhead. We deploy a simple strategy that initially
gives out fixed-size arrays which are then shrinking when
the remaining work becomes less and less. In our experi-
ment, an initial interval size of 1000 worked well.

As with the GPU variant, this method generally avoids
stragglers (i.e., all threads finish at around the same time)
but is not robust against very skewed inputs; we postpone
more sophisticated load-balancing to future work.
We will compare the CPU version of templated LFTJ with

the GPU version. Only difference between them is the gran-
ularity of parallelism and the vastly different architecture of
the underlying compute, memory, and thread scheduling.
An interesting avenue for future work is to combine CPU

& GPU implementation. With our current setup, this is
very easy to do: use the CPU mechanism and let the GPU
be a “worker-thread” that is given rather large subsets of
the remaining work. The optimal size of the subsets handed
out could be dynamically adjusted.

4. GPU-OPTIMIZED APPROACH
In the previous approach, a large number of GPU threads

independently run the LFTJ algorithm and vertically chase
down their own subtrees to find matching nodes. The sec-
ond approach, referred as GPU-optimized, adopts the ex-
act same configuration (Figure 5) as the GPU-based ap-
proach with slightly changed data structures, but uses a
carefully designed strategy that is specifically optimized for
GPUs. As shown in Figure 6, the GPU-optimized approach
changes the data structure where the value arrays and in-
dex arrays from all the levels are concatenated respectively.
Correspondingly, the indices stored in the index arrays are
updated to reflect the new positions of the element in the
value array. Starting from the top level, all GPU threads
work together to horizontally intersect one level of nodes
belonging to different predicates. The algorithm continues
in subsequent levels and finishes when the bottom level is
processed. The GPU-optimized approach targets to pursue
the best performance.

The algorithm uses two high performance primitives: vec-
torized sorted search and load-balancing search from Mod-
ernGPU library [2]. These two primitives are both designed
based on the merge path [7] framework which partitions the
workload among each CTA and then among each thread in-
side the CTAs such that workload balance is guaranteed.
The computational complexity of both algorithms is O(N)
where N is the input size. Moreover, these two primitives
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are also optimized for coalesced memory access, bank con-
flicts, instruction level parallelism (ILP), etc.

Vectorized Sorted Search - It reads in two sorted ar-
rays and locates the lower/upper bounds of each element
of the first array in the second array. If elements of both
input arrays are unique, vectorized sorted search can be di-
rectly used to intersect two arrays since a simple check of
the lower/upper bound with the search key can indicate if
the match exists or not.

Load-Balancing Search - It is the reverse operation of
exclusive scan. For example, the children count of the first
level in Figure 6, is an array of {1,2,2,1}. The exclusive scan
of the children count is {0,1,3,5} which corresponds to the
position in the output array where the children nodes can
be expanded to. Running load-balancing search over the ex-
clusive scan result will generate another array {0,1,1,2,2,3}
where each value corresponds to the parent id that can ex-
pand its children to this position. E.g., the second element
has value 1 means parent 1 can expand its children to this
position. Load-balancing search is used by several other
primitives of ModernGPU to balance the workloads.

Every predicate has a result array to store the index of
remaining elements. This array gets updated after every
intersection. Elements at the same position of each index
array from its corresponding predicate point to the subtrees
that will be expanded and intersected in subsequent levels.
These elements are referred as associated elements. Pred-
icates that have been intersected are referred as processed
while the rest are referred as not processed. According to
the status of the two predicates to be intersected (either not
processed or processed), three cases which use different in-
tersecting procedures need to be considered. The problem
of finding triangles (Figure 7) in a graph is shown below
as an example to explain these three cases, followed by the
description of a general algorithm.

4.1 Examples of Finding Triangles
Case 1: Not Processed intersects Not Processed
Processing the first level, level x, involves the two predi-

cates E(x,y) and E(x,z) which are never intersected before.
In fact, this case only happens when processing the highest
level of two predicates because child level has to be processed
after its parent. Moreover, the top level data are always
stored consecutively in the array val. Therefore, the proce-
dure only requires a normal pairwise intersection. Since the
data from each predicate are unique, one vectorized sorted
search can find all the results. As to the clique-problems,
two predicates (e.g. E(x,y) and E(x,z)) contain the same
values in level x so that the intersection results are iden-
tical to the inputs. Thus, the intersection can actually be
skipped. As shown in Figure 8, in the result arrays belong-
ing to predicates E(x,y) and E(x,z) respectively, elements
in the same position point to the matched values. For ex-
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Level y

ample, the first elements of two result index arrays are both
0, which indicates the first elements of E(x,y) and E(x,z)
are matched (the matched value is 0).

Case 2: Processed intersects Not Processed
Processing the second level, level y, requires intersecting

the predicate E(x,y) which is processed in the top level and
the predicate E(y,z) which is a new input to the proce-
dure. Three steps are used in this process: i) expanding the
children of E(x,y) from level x to level y; ii) searching the
matched values in E(y,z); iii) generating the result index
arrays for all three predicates.
The purpose of expanding children is that the following

intersection step can read in the input as a consecutive array
so that the intersection step can evenly partition the input
and access the memory in the coalesced pattern. The over-
head of expanding depends on how many parents need to be
expanded and how many children each parent has. Note that
the parents to be expanded may not be consecutive (consec-
utive in this example but not general cases) and can cause
non-coalesced memory accesses. But, the memory access
pattern is not completely random because children nodes
of the same parent are stored together. Also note that the
expanded children come from different parents so that they
may not be sorted.
A most straightforward approach to expand the children

of E(x,y) from level x to level y is i) running exclusive scan
of the children count to calculate the output position; ii)
mapping the parents to GPU threads such that each thread
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Figure 10: Generating New Results of Level y
expands one parent and stores the children to the calcu-
lated position. A major drawback of this approach is that
the workload of each thread depends on its children count
which varies substantially. Instead, load-balancing search is
used to guarantee that each GPU thread expands the same
amount of children. Figure 9 shows the major computa-
tions to calculate the addresses of the children to load the
values. In this example, six threads independently expand
six children.

Afterwards, the expanded children values search identi-
cal counterparts from the top level of E(y,z) which is not
processed before. Vectorized sorted search cannot be used
here because one of the inputs (the expanded children from
E(x,y)) may not be sorted. Instead, a traditional binary
search is used. The problem of binary search in GPU is
that it will i) generate almost random memory accesses and
ii) cause severe control divergence because different GPU
threads may take different code paths. Section 5 demon-
strate this problem by a set of experiments. The result of
binary search is i) a bitmap that shows if a child of E(x,y)
finds a match ii) and an array that records the matched
indices in E(y,z).

The last step is generating the new result index arrays
for all predicates. Elements of index arrays generated from
E(x,y) and E(y,z) are already associated and point to the
same values. While not directly involved in the computa-
tion of level y, the result index array of E(x,z) from the
previous intersection should be updated such that it is also
associated with the newly generated index array of E(x,y)
and E(y,z) Each updated index array element of E(x,z)
is associated with the parent of each result index array el-
ement of E(x,y). Specifically in this example, the updated
index array elements of E(x,z) should also point to the par-
ents of the new results of E(x,y). The bitmap generated by
the binary search is used to filter several different arrays to
create the final new results. The detail process is shown in
Figure 10. The filtering is implemented as a stream com-
paction process, a common practice [4] in GPGPU.

Case 3: Processed intersects Processed
Last level, level z, of the triangle example involves two

predicates E(x,z) and E(y,z) that have already been pro-
cessed. The computation flow is similar as processing level y,
first expanding children for both predicates, then intersect-
ing them and finally generating the results. The children
expansion step is shown in Figure 11. It should be noted
that some parents have been expanded twice. For exam-
ple, the prev result of the predicate E(x,z) in the fig-
ure has two indices 1s and this parent node is expanded
twice. Redundant expansion consumes more memory space
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but eases the intersection part because it can perform bet-
ter load balancing by using merge-path and more coalesced
memory access. The expanded children of both predicates
may not be sorted. However, the intersections only apply
to the nodes whose parents are associated (i.e., the subtrees
LFTJ is chasing down) which is indicated by the sorted par-
ent id. Furthermore, children of the same parent are sorted
and unique. So, if wrapping the value of each children values
with their parent id and treating it as a single value (i.e.,
parent id.child value), the inputs to be intersected can still
be considered as sorted and unique. Therefore a simple vec-
torized sorted search can find all matches. Figure 12 shows
the major steps in this cases. The output of the intersection
is again a bitmap and an array records all matched indices.
These two outputs are again used to generate the results of
this level as shown in Figure 13 which is similar as level y.

The operations performed by the three cases involve sev-
eral CUDA kernels. Kernels pass data via global memory.
Since the algorithm proceeds through levels, the intermedi-
ate data size scales with the size of the level. The overall
memory footprint should be larger than the GPU-based ap-
proach which scales with the overall input and output.

4.2 General Join Algorithm
The three levels in the example of finding triangles show

how the algorithm handles three different cases. As a general
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multi-predicate join, every level may handle more than two
predicates. The combination of any two predicates always
falls into one of the above three cases. The general algorithm
that processes one level is described as below:

1. Classify the predicates according to their status, pro-
cessed or not processed.

2. For all the not processed predicates, run the pairwise
intersection as Case 1 to find common values of all new
predicates. The memory accesses are mostly coalesced.

3. For all the processed predicates, run the pairwise inter-
section as Case 3. The intersections can reduce the result
size. Some of the memory accesses are index-based indirect
access and may not be coalesced.

4. Use the costly binary search as in Case 2 intersect not
processed and processed predicates.

The above algorithms aggressively selects predicates that
can be processed by the most efficient intersections and use
at most one binary search in one level. Figure 14 shows how
the four clique problems can be solved. Three intersections
belong to Case 1, another three belong to Case 3, and only
two binary searches are used which is much fewer than the
LFTJ-GPU approach. The pairwise intersection happens
in the same level are not independent. Some intermediate
results of the first intersection can be reused by the later
intersections. For example, the later intersection does not
need to expand nodes that has already expanded by the
first intersection. Instead, it only needs to filter the existing
expanded children.

Overall, GPU-Optimized translates the multi-predicate
join problem into a sequence of pairwise intersections and
further into three sub problems: node expansion, intersec-
tion between two sorted arrays or one sorted and one par-
tially sorted, filtering. Node expansion and intersection are
two nontrivial research problems in GPGPU and they still
have a large design space to explore in the future.

GPU-Optimized follows the same programming style as
ModernGPU and uses the same optimization techniques such
as register blocking, texture memory, etc. Moreover, kernels
that use load-balancing searches use merge-path to map ar-
ray elements to GPU threads as many ModernGPU primi-
tives do. Other kernels such as filtering kernels, array ele-
ments are evenly assigned to CTAs and then to threads.

In conclusion, compared with the LFTJ-GPU approach,
GPU-optimized approach i) employs a more sophisticated
algorithm to enable higher parallelism, better load balance,
and more coalesced memory accesses, ii) produces larger
memory footprint which restricts the problem size that can
be fed into the system. Compared with other GPU algo-
rithms designed for pairwise relational join, GPU-optimized
approach i) replaces heavy data reorganization (sorting [2]
or rebuilding hash table [12] when join keys are changed)
with binary searches and ii) has relatively smaller memory

CPU Intel i7-4771 GPU GeForce GTX Titan

G++ 4.6.3 NVCC 6.0

OS Ubuntu 12.04 Driver 331.62

CPU Mem 32GB GPU Mem 6GB (288.4GB/s)

PCIe 3.0 x16

Table 1: Experimental Environment.
footprint because of the uniqueness of the data structure.
The goal of GPU-optimized is to pursue the performance
even at the cost of smaller limitation of problem size as long
as the runnable size is still reasonable. GPU alone cannot
run large data set anyway and it has to rely on a CPU al-
gorithm/runtime to run out-of-core data. The experiments
in section 5 will discuss the tradeoffs with the performance
number.

5. EXPERIMENTAL EVALUATION
We experimentally evaluate the performance of four ap-

proaches: LFTJ-CPU, LFTJ-GPU, GPU-optimized and reg-
ular pairwise relational joins. We here focus on the two
queries that find triangles and four-cliques in randomly gen-
erated graphs. Adapting to a larger set of queries and input
datasets is part of our future work. We use Red Fox [27],
a compiler and runtime system that can evaluate relational
queries on GPUs, to perform regular sort-merge joins. The
joins performed by Red Fox uses subroutines from the Mod-
ernGPU library (as does GPU-optimized). The inputs to
Red Fox are flat arrays and the other three approaches
use the trie data structure. The results of all different ap-
proaches are verified with the LogicBlox platform.

Table 1 lists the characteristics of our evaluation environ-
ment. The high-end NVIDIA GeForce GPU is attached as
a device on the host PCIe channel.

Graph sizes range from 10K edges to 100M edges; Edges
are randomly placed between nodes. Nodes are stored as 64-
bit integers. The number of nodes is numEdges(C−1)/(2C−4),
where C is 3 for triangles or 4 for 4-cliques. So, each node in
triangle problem has 2 edges on average and 4-clique has 2×
numEdges1/4 edges. Note how nodes for the 4-clique dataset
have increasing connected edges when the size of the graph
is growing. This will stress the memory footprint of GPU-
optimized approach and Red Fox. The degree-distribution
is chosen that the number of found triangles or 4-cliques is
very sparse, ranging from 0 to 3.

5.1 Overall Performance
In the experiments, both approaches assumes the input

data are transformed into the CSR data structures and resided
in the GPU memory. PCIe transfer time is not included in
the reported result since the paper focuses on in-core algo-
rithm. When extending the algorithms to support out-of-
core or even a complete database system, many optimiza-
tions such as pipeline execution needs to be applied to reduce
PCIe overhead.

Figure 15(a) shows the performance of finding triangles.
Limited by GPU memory capacity, GPU-optimized and Red
Fox can run up to 30M edges. For larger datasets, these
two approaches require space larger than the available GPU
memory (6GB) to store the intermediate data. For prob-
lem sizes up to 30M edges, GPU-optimized is faster than



the other three approaches which demonstrates that all op-
timizations work well. Compared with LFTJ-GPU, GPU-
optimized uses the similar data structure but can more ef-
ficiently utilize GPU resources. Compared with Red Fox,
GPU-optimized works on a more compact data structure
and uses binary searches to replace sorting. Averaging from
10K to 30M, GPU-optimized is 1.72x faster than LFTJ-
GPU, 5.23x faster than LFTJ-CPU, and 2.75x faster than
Red Fox. It is also interesting to notice that LFTJ-GPU is
3.12x faster than LFTJ-CPU averaging from 10K to 100M
although they are originated from the same algorithm; which
demonstrates raw GPU performance.

Figure 15(b) compares the performance for finding 4-cliques.
Recall that 4-clique involves much more computation than
3-clique so that the achieved throughput for all four ap-
proaches is much lower than triangle problem. Here, the ad-
vantage of GPU-optimized is more evident. GPU-optimized
can run up to 3M edges and the limit of Red Fox is 1M.
Averaging from 10K to 3M, GPU-optimized is 5.35x faster
than LFTJ-GPU, 2.36x faster than LFTJ-CPU, and 4.13x
faster than Red Fox (10K to 300K).

As to LFTJ-GPU, it is slower than LFTJ-CPU when the
problem size is small because GPU resources might not be
fully utilized. For edges number larger than 1M, LFTJ-GPU
surpasses its CPU counterpart since more data need to be
processed. LFTJ-GPU is 1.36x faster averaging from 10K
to 100M, and 2.14x faster averaging from 1M to 100M.

Most effort of GPU-Optimized is spent on improving mem-
ory access pattern and load balance between parallel threads.
To verify the effectiveness of our approaches, we use nvprof
to measure the warp execution efficiency and ld/st average
replay. For comparison, Wang et al. [24] measured the above
metrics for a wide range of irregular GPGPU applications
including pairwise binary search based relational join. In
our 30M triangle problems, warp execution efficiency across
all kernels are as high as 95% (100% is ideal) which is as
high as many regular GPGPU applications. As to ld/st av-
erage replay (0 is ideal), binary search kernel is 31 and node
expansion kernel is 19 as expected. Excluding these kernels,
the average number across all kernels is down to 0.96 from
4.62. 4-cliques problem has similar warp execution efficiency
metrics (94% overall for 3M), but much better ld/st aver-
age replay number (0.63). The reason is that it only uses 2
binary searches and its node degree is much larger which is
good for coalesced memory access pattern.

The peak throughput of GPU-Optimized in triangle ex-
ample is around 120 MEdges/sec which equals to 3.75 GB/s
input/output throughput. Similarly, the peak of 4-cliques
is around 0.6 GB/s. Both of them are several times smaller
than the bandwidth of PCIe-3.0. we are continuing improv-
ing the performance of the algorithm to push it to close to
or surpass the PCIe bandwidth. Thus, when extending the
algorithm to a larger system capable of running out-of-core
data, it will only be limited by PCIe.

Comparison with GraphLab. The GraphLab distribu-
tion provides a tool for counting triangles. We used this
to compare with our triangle performance (on the same
hardware). This tool does not use general-purpose join al-
gorithms to compute triangles; instead a a vertex-centric
programming model is used where the triangle counting al-
gorithm is written directly in C++. We did not compare
4-cliques performance because we did not have access to a
highly tuned 4-cliques implementation for GraphLab.

As with our approaches, we only report the time for count-
ing triangles and not the load-time. For the 30M (100M)
datasets, GraphLab took 7.8s (42.0s) while LFTJ-CPU re-
quired 2.1s (9.2s). For smaller datasets LFTJ-CPU was even
faster, averaging an improvement of 7X for data size from
10K to 100M. To compare relative speeds without multi-
core-effects, we also ran both implementations with the con-
figuration to use only a single-thread. Here, the runtime-
numbers for the 30M (100M) dataset are: 27.4s (124s) for
GraphLab and 12.8s (51.9s) for LFTJ-CPU.
It is important to note that (1) GraphLab allows us-

ing cluster-parallelism and will then scale to much larger
datasets; and (2) GraphLab does not require the input data
to be sorted as our approaches do. However, even with sort-
ing LFTJ-CPU outperforms GraphLab on our single ma-
chine. Focusing on the 30M (100M) dataset: using the
CUDA thrust library [3], we can sort in 0.64s (2.5s) on
the GPU; we have not parallelized/optimized building the
TrieArray data structure. Our serial CPU implementation
here takes 0.23s (0.76s).
We did not compare with database-management systems

such as LogicBlox or PostgreSQL since these systems focus
on out-of-core queries and a comparison would thus not be
fair; adding out-of-core functionality to our approaches is
part of future work.

5.2 Memory Footprint
The memory footprint of LFTJ-GPU scales with the in-

put and output size. Considering the fact that the tested
benchmarks have very sparse output, the memory footprint
only scales with the input. In addition to the original in-
put data, the memory footprint of GPU-optimized is also
determined by the largest input and output size of all the
intersections. The input size, which is expanded from cer-
tain parent, can be much larger than the total edges of the
benchmark because some parents are expanded more than
once for the sake of the intersection performance. Take 4-
clique as an example, the ratio between the largest size of
the expanded children and graph edge number grows from
12.5 (10K edges) to 50 (3M). Case 3 intersection requires ex-
panding both inputs which makes things even worse. As to
Red Fox, the memory footprint is caused by the expansion
of the relational join especially when nodes have a lot of con-
nected edges like what 4-clique problem has. Figure 15(c)
and Figure 15(d) show the memory footprint for triangle
and 4-clique problems respectively. The figures proves that
LFTJ-GPU is efficient with memory. GPU-optimized uses
less memory than Red Fox mostly because the data in the
trie are unique.

5.3 Performance Breakdown of GPU-optimized
One of the largest difference between GPU-optimized and

LFTJ-GPU is that LFTJ-GPU only uses binary searches but
GPU-optimized uses three different intersections. If only us-
ing binary searches, the GPU-optimized would be very sim-
ilar as LFTJ-GPU because they have the same amount of
searches to perform considering the fact they use the simi-
lar data structure and same configuration. To better under-
stand the performance of GPU-optimized, Figure 16 shows
the performance breakdown of GPU-optimized for 1M trian-
gle and 1M 4-clique. It is also compared with the breakdown
of Red Fox to provide a better understanding of the tradeoff
between binary searches and sorting. Performance of GPU-
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Figure 15: Experimental Results: (a) Triangle Throughput; (b) 4-Clique Throughput; (c) Triangle Memory
Footprint; (d) 4-Clique Memory Footprint.
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Figure 16: Performance Breakdown of GPU-
optimized and Red Fox.

optimized is broken into time spent in different cases (Others
include time spent in Case 1 and condition checks such as
x<y<z). Meanwhile, sort-merge join performed by Red Fox
is split into two parts, sort and merge. GPU-optimized and
Red Fox use different algorithm and different data struc-
ture. Components belonging to different algorithms cannot
be compared head to head. But they are still related since
they are solving the same problem.

In Figure 16, the top two bars belong to triangle problem.
As to GPU-optimized, the first level only uses Case 1, second
level only uses Case 2, and the third level only uses Case 3.
Levels are independent of each other. The computation of
the first level, Case 1, is negligible. Time spent in Case 2 is
4x of what Case 3 takes. but the input size of Case 2 is just
2.5x larger than Case 3. In Case 3, time spent in expansion,
intersection, and filtering is 61%, 31%, and 8% respectively.
Expansion has lots of indirect memory accesses and the ac-
tual time spent in intersection is relatively small. Without
expansion, this efficient intersection operation could not be
used and the intersection would be mixed and overwhelmed
by the irregular memory access pattern. As to Red Fox, it
uses two merges and one sorting to find triangles. Its per-
formance is dominated by the sorting which is even longer
than the time spent by the entire GPU-optimized. In func-
tionality, this sorting and its following merge is equivalent
to the Case 2 intersection performed by GPU-optimized be-
cause they both connect two edges together. Although bi-
nary search and sorting are both intense workload in GPU,
binary search here is much more efficient.

The bottom two bars in Figure 16 compares the 4-clique
benchmark. The sorting used by Red Fox is again more
time-consuming than any other components. As to GPU-
optimized, time spent on Case 3 is larger than Case 2 be-
cause i) the algorithm largely avoid Case 2 and uses Case 3
instead; ii) Case 2 is used at the end of processing a level
and its input is already filtered by the previous Case 3 if
existing; iii) previous Case 3 expands the nodes for Case
2. Actually, the time spent on the first Case 2 is almost
equal to the binary search time in the triangle example be-

cause they perform on the similar amount of data and the
second Case 2 is negligible because the input size is very
small. Performance breakdown and larger speedup against
GPU-LFTJ in 4-clique prove that the goal to reduce binary
searches to improve performance is achieved.

6. RELATED WORK
Previous GPU-related database research focuses on RA

primitive algorithm design. He et al. [9] designed a se-
ries of join algorithms including sort-merge join, nested-loop
join and hash join which achieved 2-7x speedup over their
CPU baseline. Later, Trancoso et al. [21] also implemented
nested-loop join and hash join in GPU. They reported an
up to 21x speedup compared to a single core system. Di-
amos et al. [6] designed all RA algorithms for GPUs. For
simple operations such as selection, they can achieve the
practical maximum memory bandwidth. Their sort-merge
join implementation is also based on binary searches which
achieved half of peak memory bandwidth. Baxter [2] de-
signed the ModernGPU library including the sort-merge join
algorithms. Both the sort and the merge parts were based
on the merge path framework [7]. His join implementation
reached input/output throughput of 35GB/s for 64-bit ran-
dom keys in a Titan GPU. All the above algorithms assume
the data fit and reside in the GPU memory.

Kaldewey et al. [12] designed a hash join algorithm by
using CUDA UVA to support out-of-core data sets. Their
measurements showed that the performance of the algorithm
was close to the PCIe bandwidth limit. He et al. [10] imple-
mented a Hash Join algorithm in OpenCL that can utilize
fused architectures and perform the computation on both
CPU and GPU. Their experiments performed on a AMD
APU showed that the implementation was 1.53x or 1.35x
faster than computing on CPU or GPU only.

Wu et al. [26, 28] designed a framework, Kernel Weaver,
as a module of Red Fox that can automatically fuse RA
primitives such as several joins together. Using their frame-
work, fusing two pairwise joins is 1.42x faster than running
joins separately, which is worse than the GPU-optimized al-
gorithm presented in this paper. Similar as Red Fox, there
is other system level research that attempts to evaluate full
database queries on GPUs [8, 1, 29, 25, 16, 19].

There is a wealth of work on how to efficiently count or list
triangles (as a survey, see [14]) in main memory. While it
would be interesting to compare these algorithms with ours
in terms of achieved performance, our focus is on general
relational processing.

Recent work in the database community has been study-
ing the graph triangulation problem when graphs do not fit
into main memory [11, 5, 13, 18]. While out-of-core process-



ing was not the focus of this paper, it would be interesting to
investigate the proposed triangle-specific methods for their
applicability to (our) general join algorithms. There also
has been work [20] that uses general join algorithms to solve
graph problems; which, however does not focus on GPUs.

7. CONCLUSION
We have presented two multi-predicate join algorithms for

the GPU. While the first is an efficient implementation of
its CPU counterpart, the second is a novel algorithm de-
signed for the GPU. We investigated their performance and
memory footprint by using them to find triangles and 4-
cliques in undirected graphs on synthetic datasets. Our
benchmarks show that the GPU-Optimized algorithm out-
performs our optimized LFTJ implementation when run on
the GPU, which in turn outperforms the same implementa-
tion run on the CPU, which outperforms GraphLab on the
same hardware. However, the LFTJ has the advantage that
its memory requirement is essentially the sum of its input
and output data, while the GPU-optimized approach uses
potentially large intermediary scratch data.
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