
Improving MapReduce Performance in a Heterogeneous Cloud:  

A Measurement Study 

Xu Zhao
1,2

, Ling Liu
2
, Qi Zhang

2
, Xiaoshe Dong

1
 

1
Xi’an Jiaotong University, Shanxi, China, 710049, e-mail: zhaoxu1987@stu.xjtu.edu.cn, xsdong@mail.xjtu.edu.cn 

2
Georgia Institute of Technology, Atlanta, Georgia, USA, 30332, e-mail: {ling.liu, qzhang90}@cc.gatech.edu 

 

Abstract—Hybrid clouds, geo-distributed cloud and 

continuous upgrades of computing, storage and networking 

resources in the cloud have driven datacenters evolving towards 

heterogeneous clusters. Unfortunately, most of MapReduce 

implementations are designed for homogeneous computing 

environments and perform poorly in heterogeneous clusters. 

Although a fair of research efforts have dedicated to improve 

MapReduce performance, there still lacks of in-depth 

understanding of the key factors that affect the performance of 

MapReduce jobs in heterogeneous clusters. In this paper, we 

present an extensive experimental study on two categories of 

factors: system configuration and task scheduling. Our 

measurement study shows that an in-depth understanding of these 

factors is critical for improving MapReduce performance in a 

heterogeneous environment. We conclude with five key findings: 

(1) Early shuffle, though effective for reducing the latency of 

MapReduce jobs, can impact the performance of map tasks and 

reduce tasks differently when running on different types of nodes. 

(2) Two phases in map tasks have different sensitive to input block 

size and the ratio of sort phase with different block size is different 

for different type of nodes. (3) Scheduling map or reduce tasks 

dynamically with node capacity and workload awareness can 

further enhance the job performance and improve resource 

consumption efficiency. (4) Although random scheduling of reduce 

tasks works well in homogeneous clusters, it can significantly 

degrade the performance in heterogeneous clusters when shuffled 

data size is large. (5) Phase-aware progress rate estimation and 

speculation strategy can provide substantial performance gain 

over the state of art speculation scheduler. 

I. INTRODUCTION  

Cloud datacenters typically employ cluster computing 

infrastructure for big data processing and cloud service 

provisioning. Hadoop MapReduce [2] clusters are one of the 

most popular cluster deployment in the cloud. Although 

compute clusters in datacenters are homogeneous by design, 

as CPU, memory, storage and network communication 

technologies advance over time, most datacenters continue 

to upgrade their computing infrastructure. At the same time, 

hybrid cloud and geo-distributed cloud become popular 

solution approach to instantaneous demand of additional 

computational resources to expand in-house resources and 

to maintain peak service demands. As a result, most data 

centers are equipped with heterogeneous sets of servers, 

typically ranging from fast nodes with high CPU and 

memory capacity to slow nodes with lower CPU and 

memory capacity (physical machines or virtual machines). 

Cloud datacenters provide different capacity of nodes at 

different price, represented by Amazon EC2. In order to 

meet the performance requirements of different workloads 

at affordable cost, the mix of nodes with different compute, 

storage and networking capacities is needed.  

Unfortunately, most MapReduce implementations are 

designed and optimized for homogeneous clusters and 

deliver unstable and poor performance on heterogeneous 

clusters. In recent years, a fair amount of independent 

research has studied some problems experienced in 

heterogeneous environments [4,5,7,8,10,12,13,17,18] with 

LATE [4] as the most popular representative. However, 

most existing efforts [5,17,18] only focus on speculation 

schedulers to find the stragglers and schedule a copy of 

straggler tasks on other nodes. Very little efforts have been 

put forward to measure the effectiveness and efficiency of 

setting a proper configuration for the heterogeneous 

environment. In addition, many research efforts on tuning 

MapReduce performance only analyze a subset of 

parameters [6,9,15]. To the best of our knowledge, there is 

no systematic study and in-depth analysis on the root causes 

of unstable and sometimes poor runtime performance of 

MapReduce jobs on heterogeneous clusters. For example, 

how much performance gains and overhead the early shuffle 

will have for data intensive applications with huge 

intermediate data on heterogeneous clusters, how different 

configuration parameters and their correlations may impact 

on MapReduce performance on heterogeneous clusters; 

when do existing schedulers,  including Hadoop-LATE, fail 

to deliver good performance and why. The ability to answer 

these and many other related questions on performance 

optimization of MapReduce jobs are critical for developing 

the next generation cluster computing solutions.  

Bearing these open issues in mind, in this paper, we 

present a comprehensive experimental study with in-depth 

analysis on two categories of performance factors: system 

configuration and task scheduling, especially how different 

configuration parameters and different scheduling 

parameters may interact and impact on the MapReduce 

performance in a heterogeneous environment. Our 

measurement study shows that an in-depth understanding of 

these factors is critical for improving MapReduce 

performance in a heterogeneous environment.  

The rest of the paper is organized as follows. Section 2 

gives a brief overview of MapReduce execution model, and 

the framework for distributed task scheduling. Section 3 

describes the methodology of our measurement study. We 

present the experimental results and analysis in Section 4 to 



 
 

Figure 1. MapReduce execution model 

experimentally analyze the hidden problems and the 

limitations of the current Hadoop MapReduce task 

scheduler (Hadoop-LATE), including the scenarios in which 

it performs poorly and the in-depth experimental analysis of 

the root causes for such limitations. We conclude the paper 

with a discussion on related work and a summary of our 

original contributions. 

II. OVERVIEW AND BACKGROUND 

A. MapReduce execution model 

A MapReduce cluster typically consists of one master 

node and a set of worker nodes. The JobTracker runs on the 

master node for job execution and task scheduling, and the 

TaskTracker runs on each worker node for launching and 

executing tasks assigned by the JobTracker. The input data 

of a MapReduce job is typically divided into multiple input 

blocks, one per Map task. By default configuration, a 

worker node typically has two map slots and one reduce slot 

and it runs tasks on its task slots. A sketch of MapReduce 

operational framework is given in Figure 1. A map task 

consists of two phases: read and sort and its output file is 

stored in the local storage of the node. A reduce task 

consists of three phases: shuffle, sort and reduce. In the 

shuffle phase, a reduce task first obtain the reduce input by 

copying its input pieces from each map node based on its 

partition ID. The reduce task can only enter the sort phase 

after all the reduce input pieces have been copied to local 

storage.  

B. Early shuffle v.s. no early shuffle. 

No early shuffle refers to the reduce tasks cannot start 

shuffle phase until all map tasks of a job have completed. In 

contrast, early shuffle breaks this rigid bulk synchronization 

point by allowing the reduce task to start shuffle phase as 

soon as some map tasks have completed and their map 

output files are available. For example, the default early 

shuffle condition in the Hadoop MapReduce configuration 

is 5% of map tasks completed. Early shuffle utilizes the 

parallel computing to mitigate bisector network congestion 

of the cluster and work well when the number of map tasks 

and intermediate data are large.  

Although early shuffle can reduce the overall job 

execution time, there is no reported study to date on the 

additional overhead introduced by early shuffle when 

shuffle data is large and its impact on (i) the execution 

performance of concurrent map tasks, (ii) the amount of 

performance degradation incurred at map nodes to 

accommodate the early shuffle workloads, and (iii) the best 

scenarios where early shuffle gives the most overall 

performance gains.  

C. Speculative execution in Hadoop 

Speculative execution refers to the duplicate execution 

of a task that is currently running at another straggler node 

due to its poor performance compared to other peer nodes 

for the same workload (same computation task).  Two key 

factors that may impact on the efficiency of speculative 

execution are the accuracy of detecting straggler nodes and 

the accuracy of selecting speculative execution nodes.  

  Hadoop Speculative scheduler is a core component of 

the Hadoop MapReduce middleware package. Hadoop-Late 

is the most recent production speculative scheduler that 

replaced the previous Hadoop Speculative scheduler. It 

incorporates the LATE strategy [4], which estimates the 

remaining time of each task using the longest approximate 

time to end. Although LATE and Hadoop LATE are simple 

and light-weight, the current implementation does not take 

into consideration of early shuffle.  

III. MEASUREMENT METHODOLOGY 

In this section we outline the objectives of this 

measurement study and the methodology we use to design, 

setup and conduct the experiments. 

A. Objectives of the Measurement study. 

The main objective of this measurement study is two 

folds: First, we report the performance degradations that are 

observed when measuring the current Hadoop Late task 

scheduler under varying system configurations and with 



different workload characterizations. To the best of our 

knowledge, many of the observations have never been 

reported before. Second, for each of the problems observed, 

we design and conduct in-depth experimental analysis to 

identify and understand where the root causes of the 

problem may be, especially in the context of distributed task 

scheduling, the system configuration and parameter setting 

choices. 

We argue that such an in-depth measurement analysis 

of the performance problems and the limitations of the 

Hadoop LATE scheduler can provide deep insights and 

optimizations for system developers to further improve the 

availability, the robustness and the performance of Hadoop 

MapReduce task scheduling. More importantly, this 

measurement study also provides valuable guidance on 

designing the next generation distributed task scheduling 

algorithm that can provide high overall execution efficiency 

for distributed long running jobs running on heterogeneous 

clusters with early shuffle, while minimizing unnecessary 

consumption of compute resources.  

B. Measurement Design 

In order to meet the above goals of our measurement 

study, we plan to focus our experiments and measurement 

analysis on the following two categories of issues, which 

have not been studied in depth in the literature but are 

critical to the cloud consumers to better understand how to 

configure their systems and clusters in the cloud data centers, 

and the cloud service developers to design and implement 

the next generation MapReduce task scheduler.  

The first category is about system configuration. We 

argue that correct configuration is a key factor for 

MapReduce performance.  We are interested three 

fundamental aspects of correct configurations: (i) Finding 

the problems inherent with certain default configuration 

parameters; (ii) Analyzing and understanding the root 

causes of the problems; and (iii) Learning the best practice 

and possibly the automated method to set the configuration 

parameters. We show that by conducting extensive 

experiments with different settings of configuration 

parameters, it can guide us to find the interesting 

correlations between different parameters and different 

settings of parameters, which further facilitate our analysis 

on the root causes of the problems found due to the design 

choices made in the Hadoop MapReduce middleware. 

The second category is about task scheduling, a core 

component of Hadoop MapReduce software package. We 

argue that efficient task scheduling and effective system 

configuration are equally important for improving 

performance of MapReduce jobs. Although a lot of efforts 

have been made to improve the Hadoop LATE task 

scheduler, most of existing works show improvements on 

restricted workloads under specific configurations with 

much higher complexity compared to Hadoop LATE, due to 

the lack of in-depth understanding of the strengths and the 

inherent weakness in the current task scheduler. In this 

measurement study, we conduct targeted experiments to 

identify the root causes of the inefficiency displayed by the 

current MapReduce task scheduler and provide in-depth 

analysis of the problems due to executing MapReduce jobs 

in a heterogeneous cloud environment from both task 

scheduling and system configuration perspective. 

C. Experiment Environment 

Our measurement results reported in this paper are 

conducted on a heterogeneous Hadoop0.21 cluster with 

three types of nodes: (i) 10 fast nodes with 64-bit Intel Quad 

Core Xeon E5530, 12G memory, 500G 7200 rpm Western 

Digital SATA disk. (ii) 3 slow nodes: Core 2 Duo, 2G 

memory, 250G disk. (iii) 3 slowest nodes: 64-bit Xeon 1 

core 3 GHz, 2GB memory, 146G disk. And take one fast 

node as master node. 

As we mentioned earlier, the intermediate result size 

such as map outputs can be a dominating factor for 

execution time of shuffle phase. By switching on local 

combine, we may reduce the size of intermediate results 

significantly for some applications such as WordCount. 

However, local combine may not be applicable to some 

other applications such as Hadoop TeraSort. Thus we design 

three types of benchmarks for our measurement study: (a) 

Type 1, data-intensive applications with large shuffle data: 

such as WordCount without local combine and 

InvertedIndex which takes a list of documents as input and 

generates word-to-document indexing. (b) Type 2, data-

intensive applications with small shuffle data: e.g., 

WordCount with local combine turned on. (c) Type 3, 

compute-intensive applications with no shuffle data: e.g., 

Kmeans.    

IV. PERFORMANC MEASUREMENT AND ANALYSIS  

In this section, we study the key factors that affect the 

performance of a MapReduce job running on a 

heterogeneous cluster. We divide the set of key factors into 

two categories and report our measurement results. For each 

result, we further provide experimental analysis and 

discussion to gain better understanding of the root causes. 

The first category of key factors is the system configuration 

settings. We design and conduct several sets of experiments 

with different combinations of configuration settings and 

identify strong and interesting correlations between different 

configuration parameters and different settings of 

parameters, then we conduct in-depth analysis of the root 

causes from the perspectives of Hadoop MapReduce 

implementation. The second category of key factors is 

related to task scheduling. Similarly, we design and conduct 

a suite of experiments to expose the problems of current 

MapReduce task scheduler and analyze the root causes from 

both the design of the task scheduling algorithms and the 

runtime execution information. 

A. Performance impact of system configuration 



   
       (a) job execution time                (b) map phase execution time 

Figure 3. Effectivenees of speculation  

 

 
   (a) Wordcount without combine             (b) InvertedIndex 
                Figure 4. Map task execution time on fast node 

 

 
                  (a) Map phase Execution time 

 
(b) Job Execution time 

Figure 2. Performance of five job execution models 

 

In this section, we study the effect of three types of 

system configurations on the performance of MapReduce 

jobs. We first study the effect of early shuffle and 

speculation. Then we study the effect of map input block 

size and memory buffer size on the performance of jobs. 

Finally, we study the effect of varying of task slots on 

different types of nodes on the performance of jobs.  
 

1) Effect of early shuffle and speculation 

To better understand the effect of early shuffle and 

speculation on the performance of MapReduce jobs, we 

consider five execution models based on whether to turn on 

or off early shuffle and speculative execution. To better 

understand the advantage of early shuffle, we use the type 1 

benchmark applications with large intermediate results. We 

varying the block size and the input data size and set the 

number of reducers to 9, which equals to the number of fast 

nodes. Every experimental plot is the average of 3 runs. 

Figure 2 (a) shows map phase execution time of the five 

models with input data size varying from 15G to 30G and 

map input block size from 256MB to 512MB. This set of 

experiments shows a number of interesting observations. 

First, when block size increases from 256MB to 512MB, the 

map phase execution time is increased in all five models. 

This is expected. However, it is unclear whether the smaller 

block size will always lead to better performance. This 

motivates us to design another set of experiments to be 

discussed in the next section (see Figure 4, 5).  Second, 

when turning on early shuffle, the map phase execution time 

is increased compared to no early shuffle, as expected. Also 

speculation can improve the effectiveness of early shuffle. 

The third observation is that the map phase execution time 

with only map speculation is more efficient than with both 

map and reduce speculation. This implies that reduce 

speculation can add additional overhead on map execution.  

Figure 2 (b) shows the overall job execution time in all 

five models. We observe that early shuffle always provides 

faster job response time than without early shuffle. Early 

shuffle combined with speculative execution offers the best 

performance among all five models. Also speculation can 

significantly improve the overall job response time, which 

shows the effectiveness of the current speculative scheduler, 

Hadoop Late. However, by looking closer at the 3rd group 

of histograms (30G, 256m), we make an interesting 

observation: the performance of the execution model with 

no early shuffle and speculation is surprisingly poor 

compared to other three groups of histograms. This indicates 

that the speculative execution may not offer stable 

performance gain (effectiveness). This motivates us to 

design the next set of experiments shown in Figure 3(a). By 

examining the best, worst and average job response time 

with block size of 256MB and 512MB, we observe that the 

speculative execution indeed shows unstable effectiveness. 

Also the worst case is almost 40% longer than the best case. 

Figure 3 (b) shows the map phase execution time for type 2 

benchmark applications WordCount with local combine 

turned on with the input data size of 18G, block size of 

256MB. We observe that speculation does not reduce the 

execution time, which indicates that speculation may not be 

always effective.  

2) Effect of block size and memory buffer size 

Recall Figure 2(a), the map phase execution time will 

increase as the block size increases. In this section, we first 

study map task execution time by varying block size from 

128MB, 256MB to 512MB. We use type 1 benchmark 

applications in the experiments reported in this section. 

Figure 4 shows the map task execution time of two type 1 

applications on fast node, we observe that although the map 



 
(a) Fast node                  (b) Slow and Slowest node 

Figure 6. Map task execution time with different map slots  

 
(a) CPU utilization                           (b) Memory utilization 

Figure 7.  CPU and Memory utilization with different map task slots 
on fast node (WordCount without combine) 

 

   
           (a) (K,V) map phase                           (b) Sort phase 

        Figure 5． Two phases’ ratios with different block sizes  

       
 (a) CPU utilization                            (b) Memory utilization 

Figure 8. CPU and Memory utilization with different map task slots 
on fast node (Kmeans) 

 

task execution time is not linear to input block size, the 

(K,V) map phase is almost linear to the input block size. 

Thus we design the next set of experiments to measure the 

execution time for each of the two phases by running on 

three types of nodes respectively. Figure 5 shows the results 

of running the application WordCount without combine. We 

observe that (K,V) map phase and sort phase have different 

sensitivity to input block size. The (K,V) map phase is 

linear to the input block size. However, the execution time 

of sort phase is not linear to input block size. Also the ratio 

of sort phase with different block size is different for 

different type of nodes  

In summary, small block size can reduce the execution 

time of speculative map task, while bigger block size can 

reduce the number of map tasks. Also different types of 

workloads may produce different sizes of intermediate data. 

Although the best configuration can be different for 

different types of workload, it is helpful to gain an in-depth 

understanding of how block size, memory buffer size in 

map task and JVM memory size may have different impact 

on the execution time of map task and reduce task.  
 

3) Effect of map slots and different type of nodes  

In this section, we study the effect of different map 

slots for different type of nodes on the performance of 

MapReduce jobs. To better understand the effect of varying 

map slots, we run this set of experiments with no early 

shuffle. Figure 6 (a) shows the map task execution time by 

varying the number of map slots on fast nodes, ranging from 

2 to 9 per map node. By increasing the allocation of map 

slots from 2 to 4, the map execution time has no obvious 

increase compared to 2 map slots. However, when the 

allocation of map slots is increased to 6 map slots or higher, 

we see that the map task execution time continue to 

increases quickly compared to the allocation of 2 map slots, 

with about 30% increase at 6 slots, 80% of increase at 8 

slots and close to 200% of increase at 9 slots. One obvious 

reason is that as the allocation of map slots on the fast nodes 

increases from 2 to 9, the number of map output files to be 

generated for the map tasks running on fast nodes will 

equally be increased. Thus it may take much longer to 

perform the merge-sort step for each map task. We validate 

this analysis by measuring CPU and memory utilization 

when the allocation of the map slots is changing from 2 to 9.  

 Figure 7 measures the CPU utilization and memory 

utilization on fast nodes when varying the number of map 

slots from 2 to 9. We see that the CPU utilization reaches 

100% most of the time when the allocation of map slots is 

increased to 8 slots. In contrast, with 6 slots, the CPU 

utilization is at 90% most of the time and occasionally 

approaching 100%. But with 4 slots, the CPU utilization is 

increased to the range of 50% to 70% comparing to the CPU 

utilization of about 38% for 2 map slots. Interestingly, for 

memory utilization on fast node, we used the default JVM 

memory setting of 200MB when run the map task or reduce 

task. With the setting of 8 map slots, the memory utilization 

of the map task is approaching 100% only at the end of the 

map task execution, which is the time when merge-sort is 

performed. For all map slot settings, the memory utilization 

curves show consistently that the sort step in the map phase 

consumes much more memory. This set of experiments also 

show that CPU is the main bottleneck during the map 

execution when the map slots are 6 or 8 but when the 

allocation of map slots is increased to 9 or higher, both CPU 

and memory become bottleneck, though the memory 

utilization only reaches 100% at the end of the merge step.  

Figure 8 shows the CPU and Memory utilization when 

varying the number of map slots on fast node for type 3 

benchmark application like Kmeans. We observe that for 

this type of application, CPU can be the bottleneck while 

memory utilization is low. This set of experiments shows 

that assigning the map slots simply based on the capacity of 

memory like Yarn [3] is not always effective.  



  
                  (a) Case one      (b) Case two 

Figure 11. Two cases of reduce task execution time and reduce nodes 
distribution (from left to right is reduce task 0 to reduce task 8) 

         
              (a) Slow node                                       (b) Fast node 
     Figure 9. Map task execution time (1s,2w denotes 1 slot with 2 workloads) 

 

       
            (a) 4 slots on fast node                         (b) 6 slots on fast node 

Figure 10. Varying map slots with three workloads on fast node 

B. Performance impact of task scheduling algorithms 

In this section, we study and analyze the problems of 

current task scheduler from three aspects: (i) Effect of early 

shuffle on map task scheduler; (ii) Effect of early shuffle on 

reduce task scheduler; and (iii) Effect of early shuffle on 

speculation task scheduler (Hadoop-LATE scheduler). 
 

1) Effect of early shuffle on map task scheduler 

When early shuffle starts, each node running map tasks 

may have to run the following three types of workloads 

concurrently: 
 Map workload: It still runs the remaining map tasks. 
 Shuffle serving workload: When there are map output 

files on this node, there will be reduce workload that 
serves other reduce tasks of fetching data from this node.  

 Shuffle fetching workload: If a reduce task is running on 
the node, there will be reduce workload of fetching the 
partition of the map outputs from other map nodes. 

The last two workloads may incur additional and possibly 

excessive burden on slow nodes and sometimes they may 

even slow down the progress rate of the fast node for the 

remaining map task. Consequently, the estimation of map 

progress rate may no longer be accurate, which may mislead 

all the decision made solely based on the progress rate, such 

as straggler detection and speculation task selection in the 

speculation scheduler.  

All experiments presented in this section will measure 

the map task execution time with varying allocation of map 

slots when turn on the early shuffle. For any node that starts 

early shuffle, the node will run two or three type of 

workloads concurrently. For presentation convenience, we 

classify all map nodes into three types in the presence of 

early shuffle: 1) One workload type (Map workload); 2) 

Two workload type (Map workload + Shuffle serving 

workload); 3) Three workload type (Map workload + 

Shuffle serving workload + shuffle fetching workload). First 

we measure the map task execution time on fast node and 

slow node with varying number of map slots when turn on 

early shuffle. 

 Figure 9 (a) shows the map execution time on slow 

node.  We observe that no matter how many map slots are 

set on the slow node, when the node has 3 workloads, the 

map task execution time will become significantly slow. 

Another interesting observation is that early shuffle will 

cause some startup time before the (K,V) map phase 

actually starts. This startup time is the time spent waiting to 

assign the JVM. This result suggests that the scheduler 

should be sensitive to the types of nodes and do not assign 

reduce task on the slow node before it finishes its map tasks. 

Figure 9 (b) shows the map execution time on fast node. 

As expected, as the number of map slots increases from 2 to 

8, the execution time continues to slow down. We observe 

that when map slots is 2 and 4, the execution time of map 

task on the node with three workloads is only slightly slow, 

however, when map slots become 6 and 8, the node with 

three workloads become dramatically slow. We monitor the 

CPU and memory utilization of the node with three 

workloads. Figure 10 shows the allocation of 4 slots and 6 

slots on fast node. We can see that when the map slot is 4, 

the CPU utilization does not reach 100%, and however, 

when map slot is 6, the CPU utilization reaches to 100%. In 

all cases, the memory utilization can reach up to 100%. 

This set of experimental results suggests that when both 

CPU and memory utilization are approaching 100%, the 

scheduler should not schedule more map tasks on this node. 

Also when early shuffle is turned on, the resource utilization 

is dynamic and more complexity. Thus the current map 

scheduler that assigns all types of nodes uniformly a fixed 

number of map slots may fail to achieve the best 

performance. We need an adaptive scheduler that can fully 

utilize the information of node status and assign tasks 

dynamically. 

2) Effect of early shuffle on Reduce task scheduler 

In this set of experiments, we identify the problems of 

reduce task scheduler in the presence of early shuffle. Recall 

our experimental setup, we set 9 reduce tasks, which equals 

to the number of fast worker nodes in our heterogeneous 

cluster of 16 nodes.  Ideally, the reduce task schedule should 

be able to schedule all nine reduce tasks on the nine fast 

nodes. However, when the reduce phase started, the reduce 

scheduler schedules reduce tasks randomly in the sense that 

the master node will assign the first reduce task 0 (input data 

is partition 0 of all the map output files) to the first node 

with free reduce slot which requests for the reduce task, then 

assign the next reduce task 1 to the second node with free 

reduce slot, and so forth. Unfortunately, the input data of 



Table 3. Slow->Fast case 

Estimate(s) Real(s) 

77.58 180 

51.82 153 

 Table 4. Slowest->Slow case 

Estimate(s) Real(s) 

289.1 183 

 

  Table 2. Fast-> Fast case 

Estimate(s) Real(s) 

217.17 138 

205 102 

 

Table 1. The distribution of speculative tasks  

 Slowest- 

>Slow 

Slow- 

>Slow 

Fast- 

>Slow 

Slowest- 

>Fast 

Slow- 

>Fast 

Fast- 

>Fast 
Map no early 

Shuffle 
3 0 0 0 0 6 

Map early 

Shuffle 
0 0 2 2 4 4 

Reduce early 

Shuffle 
0 0 1 2 1 1 

 

    
     (a) Different nodes         (b) Different workloads      (c) Different slots 

 Figure 12. The ratios between (K,V) map phase and sort phase in Map task 

reduce tasks are skewed because of the partition skewedness. 

So the scheduler may assign the reduce task with largest 

input data to the slowest node, which is the worst case 

scenario.  

Figure 11 shows the two reduce nodes distributions 

obtained by running the same experiment twice. The set of 

experiments in Figure 11 shows clearly that the assignment 

of  reduce tasks is random. Another interesting observation 

is is that reduce 7 with largest input data has been scheduled 

on a slow node in case one and a slowest node in case two. 

This severely hurts the performance of reduce tasks. 

Although, reduce task speculation can alleviate the 

errors made by the reduce task scheduler to some extent, it 

cannot solve the problem.  One approach to address this 

problem is that before scheduling a reduce task to the node 

requesting for reduce task, the reduce scheduler first checks 

if this node is a slow node or not. It only schedules the 

reduce task on it if it is not a slow node.  This approach 

needs a new algorithm to measure the progress rate and the 

performance of the node. 
 

3) Effect of early shuffle on speculation scheduler 

Recall Figure 3 we have shown that the performance of 

speculation is not stable. The problems of current 

speculation scheduler can be summarized as follows: 
 Waste resources: a good portion of speculative tasks 

cannot help reduce the execution time of the detected 
straggler tasks. 

 Degradation of performance: In the case of eager reduce 
task speculation in early shuffle, the additional reduce 
task can hurt the map execution time on the node. In the 
case of wrong speculation, running the speculation task 
on slow node can delay the whole job execution time. 
One of the main reasons for the above problems is due 

to the fact that Hadoop-LATE uses the fixed ratio of 2:1 

between (K,V) map phase and sort phase for calculating the 

map progress rate, and uses the fixed ratio of 1:1:1 for the 

three phases (shuffle, sort and reduce) of the reduce task. 

Our experimental results in Figure 12 show that the ratio 

can be different in different type of nodes (Figure 12 (a)), 

different applications (Figure 4), different time in the same 

node (Figure 12 (b)) and different configurations (Figure 4, 

Figure 12 (c)). Another problem with the current speculation 

scheduler is its eager and simple speculation policy: When 

Hadoop-LATE find the task with the longest remaining time, 

the scheduler will assign this task to the node that has idle 

slot. When do early shuffle, too eager reduce speculation 

will affect the performance of map tasks. To provide in-

depth analysis of why current Hadoop-LATE cannot work 

well in the presence of early shuffle, we conduct three sets 

of experiments: the map speculation performance without 

early shuffle, the map speculation performance with early 

shuffle, and the reduce speculation performance. All use the 

type 1 benchmark application, WordCount without combine. 

We consider six speculation situations: Slowest  Slow; 

SlowSlow, Fast  Slow, Slowest  Fast, Slow  Fast, 

and Fast  Fast. For the case Slowest  Slow, it means 

that Hadoop-LATE detects the task with longest remaining 

time on slowest node and assign the speculative task on the 

slow node.  

Table 1 shows the distribution of speculative tasks of 

the three sets of experiments. We can see that there are 9 

speculative tasks when do map speculation no early shuffle, 

but all of them are not beneficial and have been killed. The 

three incorrect FastSlow speculative tasks are due to the 

wrong slow node detection, where the scheduler does not 

filter the slow node from fast node, and wrong selection of 

slow nodes for speculative tasks.  

When we turn on early shuffle and speculation, we have 

12 speculative tasks (see the distribution in Table 1),  5 of 

which fail to improve the execution time of original map 

tasks, though they are correct speculative tasks. These 5 

speculative tasks are distributed as 2 FastFast, 2 Slow 

Fast, 1 Slowest  Slow. Table 2 shows the two Fast Fast 

cases, from the results we can see the actual remaining time 

is greater than the estimate. Table 3 shows the two Slow 

Fast cases, again the estimate remaining time is larger than 

the actual remaining time. Table 4 shows the case of 

Slowest Slow, the actual remaining time is still smaller. 

In reduce case, Fast Slow and Fast Fast denotes wrong 

detection of slow node and straggler when do early shuffle. 

This set of experiments suggest two design principles 

for developing the next generation speculation scheduler: (1) 

we need method to calculate the progress rate of every 

phase to capture the dynamics of different applications, 

different types of nodes and different configurations. (2) We  

need more practical and yet accurate speculation policies 

that are phase aware and can filter out noises.  



V. RELATED WORK 

A fair amount of research efforts has been dedicated to 

improving the performance of MapReduce [1] in 

heterogeneous environments. However, most of them focus 

on optimizing the task scheduler or auto-tuning the 

configuration parameters. LATE [4] is the first to show the 

problems of MapReduce in heterogeneous environments 

and improves the native speculation scheduler by 

introducing the LATE method to compute the progress rate 

of tasks. Mantri [5], MCP [17], BASE [18] improves LATE 

by optimizing the speculative execution.  

Hadoop auto-tuning are proposed in recent literatures [6, 

9, 13, 15]. The motivation is to automatically find the 

optimal configuration for a job. The self-tuning system 

provides Job-Level tuning. 

Recently, a new Hadoop version Yarn [3] is developed. 

In this version, the JobTracker in Hadoop 0.21 is replaced 

by the ResourceManager and ApplicationMaster. The 

ResourceManager is responsible for computing resource 

allocation and the application-specific ApplicationMaster is 

responsible for task scheduling and coordination. Our work 

on improving the efficiency of the task scheduling in 

MapReduce Job can also help system developer to improve 

the ApplicationMaster in Yarn. 

To the best of our knowledge, none of the existing 

works has provided a comprehensive study of the impact of 

early shuffle on the effectiveness of MapReduce task 

scheduler and the key factors for improving the performance 

of MapReduce in heterogeneous environments.  

VI. CONCLUSION 

We have presented an in-depth measurement study on 

two categories of factors: system configuration and task 

scheduling, which are critical for improving MapReduce 

performance in a heterogeneous environment. We conclude 

with a number of key findings. First, early shuffle, though 

effective for reducing the latency of MapReduce jobs, can 

affect the performance of both map tasks and reduce tasks 

differently. Second, different workloads may have different 

sensitivity to input block size and thus adequate settings of 

Memory buffer size for map tasks and JVM memory size 

can have drastic impact on both task performance and 

resource utilization. Third, dynamic node capacity and 

workload aware scheduling map or reduce tasks can further 

enhance the job performance and improve resource 

consumption efficiency. Fourth, random scheduling of 

reduce tasks, thought works well in homogeneous clusters, 

can significantly degrade the performance in heterogeneous 

clusters when shuffled data size is large. Finally, we 

conjecture that phase-aware progress rate estimation and 

speculation strategy can provide substantial performance 

gain over the state of art speculation scheduler. To the best 

of our knowledge, this is the first in-depth measurement and 

analysis on critical performance properties of MapReduce in 

heterogeneous environments.  

ACKOWNDEGMENT 

This research is partially supported by grants from NSF 

CISE NetSE program, SaTC program, I/UCRC, an IBM 

faculty award and a grand from Intel ICST on Cloud 

Computing. The first author is also supported by the 

National Natural Science Foundation of China 

(No.61173039), the National High Technology Research 

and Development Program of China (No.2012AA01A306) 

and the National Natural Science Foundation for Youth 

Scholars of China (No.61202041). 

References 
[1] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing 

on Large Clusters. In Communications of the ACM, 51 (1): 107-113, 
2008. 

[2] Hadoop, http://lucene.apache.org/hadoop 

[3] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas,Sharad 
Agarwal, et al. Apache hadoop yarn: Yet another resource negotiator. 
In Proceedings of the Fourth ACM Symposium on Cloud Computing. 
ACM, 2013. 

[4] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, 
Improving mapreduce performance in heterogeneous environments, 
in Proc. of the 8th USENIX conference on Operating systems design 
and implementation, ser. OSDI’08, 2008 

[5] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. 
Saha, and E. Harris, Reining in the outliers in map-reduce clusters 
using mantri, in Proc. of the 9th USENIX conference on Operating 
systems design and implementation, ser. OSDI’10, 2010. 

[6] H.Herodotou, H.Lim, G.Luo, N. Borisov, L.Dong, F.B.Cetin, S.Babu, 
Starfish: A self-tuning Systime for Big Data Analytics,  5 th Biennial 
Conference on Innovative Data Systems Research, CIDR11, 2011 

[7] Y.Kwon, M.Balazinska, B.Howe, J.Rolia . SkewTune : mitigating 
skew in mapreduce applications. In Proc. Of the SIGMOD Conf ,May 
2012 

[8] F.Ahmad, S.Chakradhar, A.Raghunathan, T.N.Vijaykumar. Tarazu: 
Optimizing MapReduce on Hetergogeneous Clusters. ASPLOS’12 , 
March 2012 

[9] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy. A Platform 
for Scalable One-Pass Analytics using MapReduce. In Proc. of the 
SIGMOD Conf., June 2011 

[10] Z.Fadika, E.Dede, J.Hartog, M.Govindaraju. MARLA: MapReduce 
for Heterogeneous Clusters. CCGrid 2012. 

[11] Wenhui Lin, Jun Liu. Performance Analysis of MapReduce Program 
in Heterogeneous Cloud Computing. Journal of Network, VOL 8, 
No.8 ,August, 2013 

[12] M. Hammoud and M. Sakr. Locality-aware reduce task scheduling for 
mapreduce. In 2011 IEEE Third International Conference on Cloud 
Computing Technology and Science (CloudCom 2011) 

[13] Wenhui Lin, Jun Liu. Performance Analysis of MapReduce Program 
in Heterogeneous Cloud Computing. Journal of Network, VOL 8, 
No.8 ,August 2013 

[14] G.Ananthanarayanan , A.Ghodsi, S.Shenker, I.Stoica. Effective 
Straggler Mitigation : Attack of the clones. NSDI 2013. 

[15] Kun Wang , Juwei Shi, Ben Tan, Bo Yang. Automatic Task Slots 
Assignment in Hadoop MapReduce .ASBD 11. October 2011. 

[16] Q. Chen, C. Liu, Z. Xiao, Improving MapReduce Performance 
UsingSmart Speculative Execution Strategy. IEEE Transactions on 
Computer, 2013. 

[17] S. Babu, “Towards automatic optimization of mapreduce programs,” 
in Proceedings of the 1st ACM symposium on Cloud computing. 
ACM, 2010, pp. 137–142 

[18] Z.H. Guo, G. Fox, M. Zhou, Y. Ruan.Improving Resource Utilization 
in MapReduce. 2012 IEEE International Conference on Cluster 
Computing (CLUSTER). pp. 402-410, 2012 


