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ABSTRACT

The flexibility of the RDF data model has attracted an in-
creasing number of organizations to store their data in an
RDF format. With the rapid growth of RDF datasets, we
envision that it is inevitable to deploy a cluster of comput-
ing nodes to process large-scale RDF data in order to deliver
desirable query performance. In this paper, we address the
challenging problems of data partitioning and query opti-
mization in a scale-out RDF engine. We identify that ex-
isting approaches only focus on using fine-grained structural
information for data partitioning, and hence fail to localize
many types of complex queries. We then propose a radically
different approach, where a coarse-grained structure, namely
Rooted Sub-Graph (RSG), is used as the partition unit. By
doing so, we can capture structural information at a much
greater scale and hence are able to localize many complex
queries. We also propose a k-means partitioning algorithm
for allocating the RSGs onto the computing nodes as well
as a query optimization strategy to minimize the inter-node
communication during query processing. An extensive ex-
perimental study using benchmark datasets and real dataset
shows that our engine, SemStore, outperforms existing sys-
tems by orders of magnitudes in terms of query response
time.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—distributed data-
bases, query processing

Keywords

RDF, SPARQL, Partitioning, Query Processing

1. INTRODUCTION

RDF (Resource Description Framework) is a simple yet
powerful data model for representing information in the form
of triple statements: (subject, predicate, object). Such sim-
ple statements can be used to represent complicated rela-
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tionship among different resources. An RDF dataset can be
modeled as a labeled and directed graph with each triple
modeled as two vertices and a directed edge, labeled by
the predicate, from its subject vertex to its object vertex.
SPARQL is the standard query language of RDF data. Due
to the flexibility and dynamicity of the RDF data model, an
increasing number of communities making their data avail-
able in the RDF format. The statistics from Linked Open
Data Project1 show that more than 31 billion triples had
been published in RDF till Sep. 2011.

In the past decade, many researches focused on techniques
for RDF data management and SPARQL query optimization
in a centralized environment, such as [4, 5, 16, 22, 25]. With
the rapid growth of the data sizes, a single machine would
not be capable to deliver satisfactory query performance [5].
Consequently, it is highly desirable to develop techniques for
distributed RDF data processing that are scalable to large
RDF datasets. Recently, there exist many efforts devoted to
building scale-out RDF engines [9,10,12–15,18,24]. In these
engines, data are partitioned and allocated to multiple com-
puting nodes and the processing of SPARQL queries often
involves distributed join processing. As indicated in previous
results [12,15,17], distributed joins are much more expensive
than local joins due to their excessive communication cost.
Therefore, the fundamental challenge in building a scale-
out RDF engine is how to partition the RDF data across a
computing cluster such that queries can be evaluated with
minimum communication cost incurred by distributed joins.

The most common data partitioning algorithm is edge-
based hash partitioning algorithm [9,10,14], which uses the
edges in RDF graph as partition unit, and assigns the edges
to each node by computing a hash key over either subject
or object of the edges. More recent approaches [12, 15] use
n-hop blocks as the partition unit. For each vertex v in RDF
graph, an n-hop block anchored at v is formed by including
all the vertices whose distance from v is less than or equal to
n. These approaches then allocate the n-hop blocks to differ-
ent partitions by using a hash function or a graph partition-
ing algorithm. Using edges and n-hop blocks as the partition
unit works well for queries with small scopes, which involve
joins on a single vertex, such as star queries, or joins on ver-
tices with limited distances. For queries that involve joins
on vertices that are of greater distances, especially those
with a long sequence of subject-object joins, they often have
to resort to expensive distributed joins across multiple com-
puting nodes. This can be attributed to the fact that they

1http://lod-cloud.net/state/
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(b) Query and Match
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(c) Edge-based Hash Partitioning
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(d) 1-hop based Hash Partitioning

Figure 1: RDF Graph, SPARQL Query, Query Matches and Query Decomposition Plans with regard to Two
Data Partitioning Algorithms: Edge-Based Hash Partitioning and 1-hop Based Hash Partitioning.

fail to make use of larger-scale structural information in the
RDF graph but rather focusing on fine-grained information.

To address this problem, we propose a drastically different
approach. Rather than using a fine-grained partition unit,
such as edges or n-hop blocks, we adopt a coarse-grained
unit, namely Rooted Sub-Graph (RSG), which is capable
to capture structural information with a greater scope. We
prove that any star, chain, tree and cycle queries would only
involve joins on vertices within RSGs. Therefore, placing a
complete RSG to only a single node would localize all these
four common types of queries. In this paper, we particularly
address the two major challenges in realizing this approach.
First of all, as an RDF triple could appear in multiple differ-
ent RSGs, there would be overlaps between RSGs and hence
may potentially involve duplicate triples. To reduce the data
redundancy and further localize more complex queries, we
propose a k-means clustering algorithm to place the RSGs
into partitions and design a suitable distance measure and
centroid to capture the correlations among different RSGs.
Second, for the queries where distributed joins are unavoid-
able, we design a partition-aware query optimizer that can
capitalize on the data partitioning strategy to generate op-
timized plans at both compile time and run time.

In summary, our major contributions in this paper include
the following:

• We present a radically new RDF data partition method,
which takes Rooted Sub-Graph as the partition unit, and
prove that by doing so can efficiently localize the four afore-
mentioned common types of SPARQL queries.

• We present a k-means partitioning algorithm with the
tailored distance measure and centroid to place the RSGs
across a computing cluster. The algorithm can significantly
reduce the data redundancy among the computing nodes
and maximize the possibility of queries other than the four
common ones to be processed locally. To deal with large
datasets, we also present how to implement this algorithm
using the popular MapReduce framework.

• We provide a partition-aware query decomposition al-
gorithm and a dynamic two-stage (compile-time and run-
time) query optimization technique to reduce the cost of
distributed join processing.

• We introduce the architecture of SemStore, a semantic-
preserving distributed triple store that implements all these
techniques as integral parts, where each computing node in
the cluster running an instance of a centralized RDF engine.

• We conduct a comprehensive experimental study by
comparing the performance of SemStore over two datasets,
namely LUBM [8] and UniProt [2], with a number of exist-
ing systems or approaches, including TripleBit [22], RDF-
3X [16], Trinity.RDF [24], SHARD [18], Hybrid system [12,
15] and Hive.
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Figure 2: Query Types

2. BACKGROUND

2.1 RDF and SPARQL

RDF dataset is a set of triples in the form of (subject,
predicate, object). In fact, an RDF dataset can be repre-
sented as a directed labeled graph with subject and object as
the vertices connected by an edge labeled by predicate. An
RDF graph can be defined as follows:

Definition 2.1 (RDF Graph). An RDF graph is a di-
rected labeled graph, denoted as G = (V,E,LE), where V is
a set of vertices, corresponding to subjects and objects, and
E is a set of directed edges from the subjects to the objects.
LE is a set of edge labels, referring to the predicates associ-
ated with the edges. A vertex with indegree as zero is called
a source vertex.

Figure 1(a) shows an example of the RDF graph. Here we
use IDs instead of URIs and Literals for simplicity.

SPARQL is a standard query language for RDF data. A
SPARQL query consists of triple patterns, each of which is
a triple that contains variables in the subject, predicate or
object. A SPARQL query Q can be represented as Q =
{tp1, ..., tpn}, where tpi (1 ! i ! n) is a triple pattern and
triple patterns are connected by common vertex (a constant
or a variable). Similarly, a SPARQL query can be repre-
sented as a directed graph. Thus, to evaluate a SPARQL
query is to find all matches of a query graph pattern and
each match is a subgraph of the RDF graph. Figure 1(b)
shows a query graph and a match of this query graph.

We note that triple patterns are connected by shared sub-
jects or objects, which means joins between triple patterns
are on their shared subjects or objects. Thus, the typi-
cal types of join in SPARQL are subject-subject join (S-S
join), subject-object join (S-O join) and object-object join
(O-O join). In this paper, we do not consider the predi-
cate join, since predicate join is not common [7]. Based on
the join types, we can classify the SPARQL queries into five
categories, star query (only contains S-S join), chain query
(only contains S-O join), tree query (contains S-S join and
S-O join), cycle query (contains S-S join, S-O join and O-O
join) and complex query denote the rest of more complex
queries. Figure 2 shows an example.

2.2 Related Work

Distributed RDF Engines. With the rapid increase of
the volume of RDF data, there are many recent efforts in de-
signing scalable distributed RDF engines for processing big



RDF datasets. To benefit from the scalability and fault tol-
erance of the MapReduce framework [6], several systems [13,
18] directly store RDF data as files in HDFS (Hadoop Dis-
tributed File System) and process SPARQL queries using
Hadoop’s MapReduce programming model. The authors
in [12,15] propose systems integrating Hadoop and RDF-3X,
an efficient local RDF engine to achieve significant perfor-
mance improvement in comparing to the pure Hadoop-based
systems [13,18]. The main idea is to push as much joins as
possible to the individual local RDF-3X engines by a well
designed RDF data partitioning algorithm. The remaining
distributed joins would be handled using MapReduce jobs.
Even though such distributed joins would be much more
expensive than the local ones, the authors did not provide
any query optimization algorithm to improve their perfor-
mance. Trinity.RDF [24] is one of the most efficient dis-
tributed graph engine for web-scale RDF data, which uses
main memory to store the RDF data and hence can achieve
very low data access latency. Instead of using joins, the
authors proposed an efficient operator, namely graph explo-
ration, to perform SPARQL queries based on the MPI pro-
tocol. While [24] is mainly focused on designing a scale-out
system, our data partitioning algorithm can be employed in
this system to further improve its performance by reducing
the communication cost.
RDF Data Partitioning Approaches. The most com-
mon data partitioning approach is the edge-based hash par-
titioning [9,10,14]. It distributes edges across different par-
titions by computing a hash key of the subject (or object)
vertex of each edge. The principle of edge-based hash parti-
tioning is to group the edges that contain same subject as a
“star” and each of such star is placed in a single computing
node. In this way, the edge-based hash scheme can local-
ize subject-subject joins [12]. Figure 1(c) shows an example
of the edge-based partitioning. The query in Figure 1(b)
has to be decomposed into two subqueries, which only have
subject-subject joins, as shown in Figure 1(c). Each of these
subqueries can be executed in parallel without need for dis-
tributed join. However, to obtain the final results, we should
execute distributed join between the intermediate outputs
produced by SQ1 and SQ2 on join key ?y, which leads to
network overhead.

In [12, 15], the authors proposed RDF data partitioning
approaches using a different partition unit: n-hop blocks.
For each vertex v in the RDF graph, an n-hop block an-
chored at v is formed by including all the vertices whose
distances from v is less than or equal to n. These approaches
essentially allocate the n-hop blocks to different partitions
by using a graph partitioner [12] (e.g. METIS) or a hash
function [15]. These approaches can localize queries where
there is a vertex whose distances to all the other vertices are
at most n. Wang et al. [19] propose a more efficient graph
partitioner that is able to partition billion-node graphs. Fig-
ure 1(d) shows an example using the 1-hop hash partitioning
method. The query in Figure 1(b) does not satisfy the con-
dition that there exists a vertex whose distances to the other
vertices are at most 1. Actually, this query should be decom-
posed into two subqueries illustrated in Figure 1(d), both of
which satisfy the condition. As proposed in [12, 15], they
will be executed in parallel on the computing nodes using
the local RDF database engine and a distributed join will be
performed on the intermediate results to generate the final
ones.
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Figure 3: The Architecture of SemStore

Using the methods based on n-hop blocks, in order to lo-
calize more complex queries that has a greater diameter, one
has to increase the value of n. However, even a moderate n
value may incur a very large block size, especially for those
blocks anchored at vertices with high degrees. This would
lead to a large number of duplicate triples and a skewed data
distribution among the partitions. The duplicate triples
would incur higher query processing cost as each local engine
has to process more data and the distributed joins may be
executed over more intermediate results. Furthermore, the
skewed data distribution may render some computing nodes
become the system’s bottleneck. Consequently, the best n
value reported in [12, 15] is around 2. More experimental
results in Section 6.1 further verify these problems.

Another research direction is dynamic run-time data par-
titioning, which adapts the data partitioning scheme accord-
ing to the run-time changes of system workload [20,21]. Our
data partitioning algorithm can also be used as the initial
partitioning method in [20, 21]. Moreover, the idea of us-
ing a coarse-grained partition unit, RSG, can be applied
to the dynamic partitioning algorithms to further improve
their performance.

3. SYSTEM OVERVIEW

SemStore is designed to provide a massively scale-out sys-
tem that can run on a cluster of servers for managing big
RDF datasets. Figure 3 illustrates the architectural design
of the prototype of SemStore. SemStore has three main
components: data partitioner, a master node and a num-
ber of computing nodes. The data partitioner partitions the
entire RDF dataset into multiple subsets. Each comput-
ing node receives one subset of triples and builds the local
data indices and statistics for local join processing and op-
timization. The master node is responsible for constructing
a distributed query plan and coordinating distributed data
transmission and processing among the computing nodes.

In our prototype system, each computing node is running
a single-node RDF engine. While our system architecture
allows the embedding of different single-node RDF engines,
in our experiments, we use TripleBit [22], an open-source
centralized RDF engine.
Data Partitioner. When RDF datasets are loaded into the
system, we first build some mapping dictionaries to replace
all strings (URIs, literals and blank nodes) by IDs. The data
partitioner will partition and allocate the triples to the com-
puting nodes. The partitioning method in SemStore adopts
a new partition unit, called Rooted Sub-Graph (RSG). By
using RSGs as the partition unit, we can effectively localize
all the queries in the form of a star, a chain, a tree and a
cycle, which are very common in SPARQL queries. To local-
ize more queries of other types and reduce data redundancy,
we leverage a k-means partitioning algorithm for allocating
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Figure 4: RSG-based K-Means Partitioning

the highly correlated RSGs into the same computing node.
After the partitioning, the data partitioner will also build a
global bitmap index over the vertices of the RDF graph and
collect the global statistics.
Query Processing and Optimization. In SemStore, all
SPARQL queries will be first submitted to the master node.
Upon receiving a query, the master node parses the query
and determines which category this query belongs to, local-
query or distributed-query. If a SPARQL query can be
executed in parallel and locally without collaboration be-
tween computing nodes, this query is a local-query. Other-
wise, it is a distributed-query, which needs to join data from
multiple partitions and hence has to be evaluated collabora-
tively by more than one computing nodes. For a distributed-
query, The query decomposer will generate a query decom-
position plan consists of several subqueries, each being a
local-query. Then distributed query optimizer will generate
a global query plan at compile-time which determines the
joining order of results returned by the subqueries. Further-
more, each local-query will be sent to the computing nodes
holding its results and the local optimizer on each comput-
ing node will optimize each local query at run-time based
on the local statistics.

4. DATA PARTITIONING

In this section, we present our data partitioning method.
We start by presenting the rationale behind the choice of
RSG as the partition unit. Then we present a scalable k-
means partitioning algorithm to assign partition units, that
can be implemented on the MapReduce framework.

4.1 Rooted Sub-Graph

As discussed earlier, the reason that the aforementioned
approaches do not work well for queries involving vertices of
greater distances, such as chain, tree, cycle and some com-
plex queries, is because they only take use of fine-grained
structural information and fail to capture the RDF graph
structure with a greater scope. Furthermore, a previous em-
pirical study [7] analyzed queries generated by both humans
and machine agents over two datasets, and concluded that
the most common types of joins are S-S joins (60%) and S-O
joins (35%). S-S and S-O joins would mainly form queries
as star queries, chain queries and tree queries. Hence a good
partition unit should be optimized for these types of queries.

To address this problem, we propose a new partition unit,
namely Rooted Sub-Graph (RSG), defined as follows:

Definition 4.1 (Rooted Sub-Graph). Given an RDF
graph G = (V,E) and a vertex r ∈ V as the root, a sub-
graph rsg(r) = (Vrsg(r), Ersg(r)) is called a rooted sub-graph
of G rooted at r if and only if the following conditions hold:
(1) for each v ∈ V , if there is a directed path from r to
v then v ∈ Vrsg(r), (2) for each pair of vertices (u, v), if
u, v ∈ Vrsg(r) and (u, v) ∈ E, then (u, v) ∈ Ersg(r).

Algorithm 1: RSGs Generation

Input: G = (V, E), Source vertex set Source
1 foreach v ∈ V do // init all vertices as input
2 Activate(v) ;
3 if v ∈ Source then Out0.Add((v, (v, v))) ;
4 else Out0.Add((v, (v, null))) ;
5 i ← 0 ;
6 repeat
7 Propagation(E, Outi) ;
8 i ← i + 1 ;
9 until no update signal ;

Function: Propagation(E, Outi)

Map1: Input: edges E = {(u, w)}, Outi = {(v, (vm, r))}
1 if input is an edge (u, w) then Emit(u,w) ;
2 else Emit(v,(vm , r))

Reduce1: Input: key, values
1 foreach val ∈ values do // propa. vm and r to neigh.
2 m ←∞ ; root ← ∅ ;
3 if val is a vertex and val is active then
4 m ← vm ; root ← r ;
5 Emit(key,val) ;
6 if val is a neighbor w and val is active then
7 Emit(w,(min{w,m}, root)) ; // update vm and r

Map2: Input: {(v, (vm, r))}
1 Emit(v,(vm , r)) ;

Reduce2: Input: key, values
1 Update the minimal vertex and root set (vm, r) of key;
2 if nothing was updated then
3 Deactivate(key) ; Outi+1 ← Emit(key,(vm, r)) ;
4 else
5 Activate(key); Signal; Outi+1 ← Emit(key,(vm, r)) ;

Below we propose an algorithm to generate a set of RSGs
from a general RDF graph such that all star, chain, tree and
cycle queries are localized.

The critical step of the algorithm is to select a set of root
vertices. First, all the source vertices, i.e. vertices with in-
degrees as zero, are included in the set of root vertices. Then
all the vertices that are reachable from each root vertex will
form a RSG. For example, in Figure 4, the sub-graph rooted
at source vertex 4 in partition S3 is one of the RSGs of the
RDF graph.

Second, there could be some vertices that not reachable
from any source vertex. For example, in Figure 4, none of
the source vertices (i.e. vertex 2, 3, 4) can reach the directed
cycle 1 → 5 → 8 → 1. To handle such situation, we choose
the vertex with minimal ID in such a cycle as a root, i.e.
vertex 1 in this example. Additional RSGs can be generated
accordingly for the given set of roots produced by this step.
Finally we can get a collection of RSGs that cover all the
vertices in the RDF graph.

The benefits of our RSGs generation algorithm are two-
fold. First, the algorithm can be easily parallelized, for ex-
ample using the MapReduce framework. Second, by using
the RSGs generated by our algorithm as the partition units,
all the four types of common queries can be processed as
local-queries. In the rest of this section, we first present the
details of the algorithm and then prove its ability to localize
complication queries.
Algorithm. The pseudo code of the RSG generation algo-
rithm is illustrated in Algorithm 1. A set of vertices of an
RSG rsgr is denoted as V (rsgr), where r is its root. An ex-
ample is given in Figure 4. It is implemented by a series of
MapReduce jobs, which iteratively propagate information of
each vertex v to its out-neighbors. The information include



the minimum-ID of the vertices that can reach v, i.e. vm in
the psuedo code, and the currently chosen roots of the RSGs
that can cover v, i.e. r in the psuedo code. Specifically, this
algorithm involves the following steps:

Step 1 (line 1-4): generate the information attached to each
vertex v in the form of (v, (vm, r)). Initially vm is v itself
and r contains v if v is a source vertex or otherwise r is an
empty set. Then all vertices are flagged as active.

Step 2 (Map1 and Reduce1): if a vertex is active, gener-
ate the candidate vm and r for all its out-neighbors.

Step 3 (Map2 and Reduce2): for each vertex v, merge all
messages of v. If there is a new minimum-id or root, then
set v active and update v. Otherwise, deactivate v.

Step 4 (line 6-9): iterate Step 2 and Step 3, until there is
no update occurred.

After invoking Algorithm 1, the RSGs rooted at all source
vertices are found. Then for the vertices in the cycles that
are not reachable from any source vertex, we choose the
minimum-id as the input root, then invoke Algorithm 1
again to generate the remaining RSGs.

Theorem 4.1 (Completeness). Given an RDF graph
G = (V,E), if it is decomposed into a set of RSGs by Al-
gorithm 1, then each vertex v and edge (u,w) in G can be
found in at least one RSG.

Proof. We prove this by contradiction. (i) Assume there
exists one vertex v ∈ V , which cannot be found in any RSG.
If v is a source, then v is in an RSG rooted at v. Thereby we
derive a contradiction. If v is not a source and there exists a
source r can reach v, then v is in the RSG rooted at r. If v is
not a source and none of the sources can reach v, then there
must exist a minimal-ID vertex can reach v and v is in the
RSG rooted at that vertex. Again we derive a contradiction.
(ii) Assume there exists one edge (u,w) ∈ E, which cannot
be found in any RSG. By (i) we have that u must at least
be in one RSG. we conclude that (u,w) is also in that RSG
by Definition 4.1. Thus, we derive a contradiction.

Theorem 4.2. Using the RSGs generated by Algorithm 1
as the partition unit, then all star, chain, tree and cycle
queries are local-queries.

Proof. For brevity, we give a brief sketch of the proof.
For each type of queries, there must be a vertex v in this
query that can reach all other vertices. If v is a constant,
then there must be a root vertex r that can reach v. If v is a
variable, for each binding of v, there must be a root vertex r
that can reach that binding. Thus, each match of this query
is a subgraph of one RSG.

4.2 RSGs Partitioning Problem Formulation

In this seciton, we will present how to optimized the al-
location of RSGs to the computing nodes. Firstly, a k-way
RSGs partitioning plan can be defined as follows.

Definition 4.2 (K-way RSGs Partitioning Plan).
Given an RDF graph G and its set of RSGs S, a k-way
RSGs partitioning plan P contains k nonempty and disjoint
subsets of RSGs, P = {S1, ..., Sk}, where

⋃k
i=1 Si = S.

To optimize the RSGs partitioning plan, we should con-
sider the following metrics.
Balance. A well balanced data distribution plays an impor-
tant role for efficient parallel query processing. A substan-
tial skewed data distribution may lead to some undesirably

overloaded partitions, which become the performance bot-
tlenecks for the whole cluster. This is because that the over-
loaded partitions may exceed the memory capacity of a sin-
gle machine. To avoid the substantial overloaded partition,
here, we use the number of RSGs contained in a partition
Si to measure its payload, which is denoted by |Si|.
Data Redundancy. If two RSGs have overlaps and they
are assigned to different partitions, then duplicate triples
will be stored at both partitions. Such data redundancy
would cause excessive redundant computations cost. Hence,
we should control the overlaps of RSGs by assigning the
correlated RSGs to the same partition. In particular, we
have the following observation.

Observation 4.1. If two RSGs share a vertex v, then
they also share the RSG rooted at v.

For example, in Figure 4, rsg2 and rsg3 share the vertex 6,
then they share the RSG rooted at vertex 6, i.e., 6→9→11.

In addition, joins always occur on shared vertices between
the triple patterns specified in an SPARQL query (recall
Section 2.1). Hence, to localize more joins, we have the
following observation.

Observation 4.2. If all the triples that contain shared
vertices between any pair of query triple patterns in a query
are allocated in the same partition, then this query is a local-
query.

Based on the above observations, we know that if a ver-
tex is shared by multiple different RSGs, then by placing
all these RSGs in one partition can localize all the possible
joins on this vertex. It will also reduce the duplicate triples
connected with this vertex. Therefore, to measure the cor-
relation between two RSGs, we use the difference between
their sets of vertices. It is also called the distance between
the two RSGs.

To better understand the distance function, we first give
a simple way of extending the distance between RSGs to a
real-value function. Let V (rsg) be the set of all the vertices
in rsg. V (rsg) can be denoted as a |V |-dimensional binary

vector vrsg=⟨v(1)rsg, v
(2)
rsg, ..., v

(|V |)
rsg ⟩, where |V | is the number

of all the vertices in RDF graph G and v(j)rsg ∈ {0, 1}. If

vj ∈ V is in V (rsg), then the v(j)rsg is 1 or 0 otherwise. Then,
given two RSGs rsg and rsg′, their distance can be defined
as follows:

d(rsg, rsg′) = d(vrsg,vrsg′) =
∑|V |

i=1
(v(i)rsg − v(i)rsg′)

2 (4.1)

Then the intra-correlation (called IC) of a RSGs parti-
tioning plan P is defined as:

IC(P ) =
1
k

k∑

i=1

1
|Si|2

∑
∀(rsg,rsg′)∈Si×Si

d(rsg, rsg′) (4.2)

A plan with a lower IC tend to be more efficient in executing
SPARQL queries, since it collocates more correlated RSGs,
hence localizes more joins and reduce more duplicate triples.

4.2.1 Problem Statement
Given an RDF graph G, our goal is to find the optimal

partitioning plan P = {S1, ..., Sk} for the RSGs partitioning
problem. According to the metrics, the objective function
for this problem is defined as follows:

minimize IC(P ) s.t. |Si| ! ⌈ |R|
k

⌉, 1 ! i ! k (4.3)



Algorithm 2: RSG-based K-means Partitioning

Input: RSGs set {V (rsgr)|r ∈ R}
Output: a partition result P = {S1, ..., Sk}
Map: Input: RSG V (rsgr), centroid set {C1, ...,Ck}

1 N ← ∅ ; C ← {C1, ...,Ck} ;
2 while true do
3 N ← FindNearestCentroid (C,V (rsgr));
4 ∀Ci ∈ N , choose the minimal loaded partition Si ;

5 if Si < ⌈ |R|
k ⌉ then emit(i,V (rsgr)) ;

6 else C ← C −N ;

Reduce: Input: partition Si, {V (rsgr)|rsgr ∈ Si}
1 Ci ← UpdateCentroid ({V (rsgr)|rsgr ∈ Si}) ;

where |R| indicates the number of RSGs in this graph.
We can reduce the balanced graph partition problem, which

is an NP-hard problem, into our problem (the proof is omit-
ted due to the limited space). Hence our problem is also
NP-hard. Our goal is to find a reasonable heuristic-based
approach.

4.3 RSG-based K-means Partitioning

We use the k-means partitioning algorithm to find an ap-
proximate solution.
Distance and Centroid. The k-means partitioning algo-
rithm requires a proper definition of the centroid of a cluster
to represent all vertices belong to this cluster. Here, we use
a vector Ci=⟨c(1)i , c(2)i , ..., c(|V |)

i ⟩ as the centroid of partition
Si. Different from the vector vrsg, each dimensional value
of Ci is a real number in [0, 1]. Then we can calculate the
value of Ci on each dimension as follows:

c(j)i =
1

|Si|
∑

rsg∈Si

v(j)rsg (4.4)

According to the above formula, the centroid not only repre-
sents all vertices belong to this cluster, but it also indicates
the number of RSGs each vertex belongs to in this cluster.

In the k-means partitioning algorithm, we use the objec-
tive function in Eq. 4.2 to measure the distance between
RSGs and the centroid of a partition. Formally, for each
partition Si, the objective function of the partitioning can
be defined as follows:

D =
k∑

i=1

Di =
k∑

i=1

1
|Si|

∑
rsg∈Si

d(vrsg,Ci) (4.5)

Full Algorithm. By combining the elements defined above,
we can now present the RSG-based k-means partitioning
algorithm. The pseudo code is presented in Algorithm 2,
which runs in the following steps:

Step 1: Randomly assign the RSGs into k partitions, where
k is the number of computing nodes in the cluster.

Step 2: For each RSG rsg, we find the nearest and min-
imal loaded partition Si from the set of non-fullly loaded
partitions (i.e., |Si| < ⌈ |R|

k ⌉).
Step 3: For each Si, update the centroid Ci.
Step 4: Repeat Step 2 and Step 3 until it converges.
Step 5: Finally, we use the partitioned sets of roots to get

the final partitioning results, i.e. extending the V (rsgj) to
a real RSG with triples.

Figure 4 gives a partitioning result using this method.
One can see that the query in Figure 1(b) can be executed

"\

WS� WS�

"\

WS� WS�WS�

"[

^"\`

64��� ^WS���WS�`
1RGH ^�`

64��� ^WS���WS���WS�`
1RGH ^����`

(a) Compile-Time

"[

tp2 tp3SQ1

"\
"\

WS� WS�

&RPSXWLQJ�
1RGH��

64��� WS� WS�
64��� 64��� 64��� WS� WS�

"[

WS� WS�64���

"\

&RPSXWLQJ��1RGH��

&RPSXWLQJ��1RGH��

(b) Run-Time

Figure 5: Distributed Query Processing

locally and the duplicate triples produced are less than those
produced by 1-hop based hash partitioning (Figure 1(d)).

5. QUERY PROCESSING

5.1 Query Decomposition

We present a partition-aware query decomposition scheme
to maximize the localization of query operations and to re-
duce the number of local subqueries such that the intermedi-
ate results shipped across computing nodes will be reduced
significantly. A SPARQL query Q can be represented as a
graph that contains variables in the subject, predicate and
object. Thus, we first identify all the source vertices of query
graph Q and use them as the roots to partition Q into a set
of RSGs (subqueries) SQ, each of which is a local-query
(Theorem 4.2). For example, consider the following query:

tp1: (<AssociateProfessor0> ub:teacherOf ?y)
tp2: (?x ub:takesCourse ?y)
tp3: (?x rdf:type ub:GraduateStudent)
tp4: (?y rdf:type ub:GraduateCourse)

This query can be decomposed into two subqueries. The
first is {tp1, tp4} with root “<AssociateProfessor0>” and
the second is {tp2, tp3, tp4} with root “?x”.

In the next step, for each individual subquery in SQ, we
search for the computing nodes that contain its results. To
speed up this process, we construct an index to map each
vertex in the RDF graph to the computing nodes holding the
partitions that contains the vertex. By using this index, the
exact computing nodes that contain the results of a subquery
SQi can be retrieved as follows:

Case 1: if SQi’s root is a constant, then each computing
node that contains this root has complete results of SQi.
We call each of such computing nodes as a matching node
to SQi.

Case 2: if SQi’s root is a variable, then the intersection of
the locations of all the constant in SQi are the nodes holding
the results. Here, if the intersection contains exactly one
node, then we call it the matching node of SQi.

Then, for each pair of subqueries, if they have a shared
matching node, then we can merge these two subqueries into
a new subquery, which is guaranteed to be a local-query.
Finally, this will produce a minimal number of subqueries
based on our partitioning algorithm, and each of such sub-
queries is a local-query.

5.2 Query Optimization and Evaluation

If a query is decomposed into two or more subqueries,
we need to define the global execution workflow to process
the distributed and local joins such that the query will be
processed with minimal communication overhead. The crit-
ical issue is to determine ordering of query operations [16].



Here we adopt a typical two-stage scheme for physical query
plan generation. First, the join order between sub-queries
is calculated by the master based on the global statistics
at compile-time. Then the join ordering within each sub-
query is computed locally by individual computing nodes at
run-time using the statistics maintained at each computing
node.
Compile-Time Optimization. After query decomposi-
tion, we represent each subquery as a bipartite graph whose
vertices can be divided into two disjoint sets T and V ar.
Each vertex in T represents a triple pattern in the subquery
and each vertex in V ar represents a variable appears in the
subquery. If a variable appears in a triple pattern, then
an edge connects their corresponding vertices. Figure 5(a)
shows an example.

In the master, we only generate the order of the joins
between the subqueries and the cardinality of the results of
these subqueries can be estimated by the statistics stored
in the master (Section 5.3). In particular, we use dynamic
programming to build a left-deep tree, in which each leaf
node is a subquery. Assume that a query is decomposed
into n subqueries, a subplan Lk that contains k subqueries
is an ordered sequence of subqueries SQ(1), ..., SQ(k), and
the remaining set of subqueries is denoted by SQrem. Then
the state transition equation can be defined as follows:

Lk+1 = min
SQi∈SQrem

{Lk + Card(Lk ! SQi)} (5.1)

After building the left-deep tree, we will search the tree
bottom-up to remove the redundant triple patterns which
might lead to redundant computations. For example, in
Figure 5(a), the tp4 in SQ(2) will be removed.
Run-Time Optimization and Evaluation. The join or-
dering within each subquery will be generated locally at each
computing node. Specifically, when SQ(i) is performed, the
results of SQ(i) will be transferred to the computing nodes
holding the results of SQ(i+1). In each of these computing
nodes, the results of SQ(i) will be joined with other triple
patterns. The local optimizer in each computing node will
optimize the local joins involved in SQ(i+1) independently.
The join ordering problem has been well studied and is out
of the scope of this paper. In our prototype, we use the
join ordering algorithm proposed in TripleBit. Due to the
optimization at compile-time, the size of transferred inter-
mediate results is minimized. Figure 5(b) shows an example
that SQ(1)’s results are forwarded to node 2 and node 3
which contain the results of SQ(2).

5.3 Cardinality Estimation

Global Statistics. In the prototype, we build the global
statistics to store the number of triples matching each possi-
ble single triple pattern. In SPARQL queries, there are seven
forms of triple patterns, which are (?s, ?p, ?o), (s, ?p, ?o),
(s, p, ?o), (?s, ?p, o), (?s, p, o), (?s, p, ?o) and (s, ?p, o) respec-
tively. For the triple patterns that only have one variable,
such as (s, p, ?o), we store the number of triples matching
each triple pattern. For the triple patterns containing two or
more variables, in addition to the number of triples match-
ing this triple pattern, we also store the number of distinct
bindings for each variable. Take (s, ?p, ?o) as an example.
For each constant s in the RDF data, we will store the num-
ber of triples with s as their subjects as well as the number
of distinct predicates and the number distinct objects within
these triples.

Estimation of Cardinality. The cardinality of a selec-
tion or a join operation is the number of results that sat-
isfy the selection or join condition. Using the aforemen-
tioned global statistics, we can find the cardinality of a
given triple pattern tp, denoted as Card(tp). If two triple
patterns tp1 and tp2 join on shared variable(s), denoted as
J = V ar(tp1)∩V ar(tp2), then the cardinality of the results
of the join between these two triple patterns is estimated in
the following way:

• If J = V ar(tp1) = V ar(tp2), then:

Card(tp1!tp2) = min{Card(tp1), Card(tp2)} (5.2)

• If J = V ar(tp1) and J ! V ar(tp2), then

Card(tp1!tp2)=min{Card(tp1)×
B(J, tp1)
B(J, tp2)

, Card(tp2)}

(5.3)
• If J ! V ar(tp1) and J ! V ar(tp2), then

Card(tp1!tp2) =
Card(tp1)× Card(tp2)

max{B(J, tp1),B(J, tp2)}
(5.4)

where B(J, tp) indicates the number of distinct bindings of
J in the results of tp.

The number of distinct bindings of a variable (or a set
of variables) in all permutation of single triple patterns can
be found in the statistics. However, the number of distinct
bindings of a variable (or a set of variables) J in the results
of a join between tp1 and tp2, can be estimated as follows:

B(J, tp1!tp2)=min{B(V ar(tp1), tp1)×B(J−V ar(tp1), tp2),

B(V ar(tp2), tp2)×B(J−V ar(tp2), tp1), Card(tp1!tp2)}
(5.5)

where J ⊆ V ar(tp1) ∪ V ar(tp2) and B(∅, tp) = 0.

6. EXPERIMENTAL EVALUATION

We compare SemStore with six state-of-the-art RDF en-
gines, including two centralized engines, RDF-3X [16] and
TripleBit [22,23] and four distributed engines, SHARD [18],
Hybrid system [12,15], which is an engine integrating Hadoop
and RDF-3X,Hive and Trinity.RDF [24]. SHARD adopts
an edge-based partitioning. Hive uses vertical partition-
ing [3] and RCFile [11] techniques. For the Hybrid system,
we implement two typical data partitioning algorithms as
proposed in [12], which uses METIS [1] as the graph parti-
tioning tool and applies undirected one-hop block and undi-
rected two-hop block as the partition unit, denoted as un-
one and un-two respectively. We also implement semantic
hash partitioning algorithm in [15], 2-hop forward, denoted
as 2f, which is reported in [15] to perform the best in most
cases. Finally, SemStore is implemented using C++, com-
piled with GCC, using -O2 option to optimize. We refer
to the RSG-based k-means partitioning algorithm as RSG-
KM. We also implement a baseline RSG-based partitioning
algorithm, called RSG-Hash, which assigns each RSG to
the partitions by hashing the root of the RSG.

Unless otherwise stated, our experiments use a default
cluster consisting of 1 master and 16 computing nodes, each
of which has one processor at 2.4GHz and 4GB RAM, and
we run the centralized engines on a powerful single machine
with 4 way 4-core 2.13GHz CPU and 64GB RAM.

We choose two datasets LUBM [8] and UniProt [2] for
the experiments. LUBM is a benchmark generator. In



Table 1: Queries
Star Chain Tree Cycle Complex

LUBM Q2, Q4, Q5 Q8 Q6,Q9 Q1, Q3, Q7 Q10
UniProt Q2 Q5 Q1, Q3, Q4, Q6

Table 2: Data Loading Time

SemStore SHARD
Hybrid Hybrid Hybrid

Hive
(un-one) (un-two) (2f)

LUBM-2000 85 min 542 min 330 min 445 min 79 min 67 min
LUBM-10240 364 min N/A N/A N/A 283 min 256 min

UniProt 952 min N/A N/A N/A 852 min 469 min

the experiments, we generate LUBM datasets with 1000,
2000, 5000 and 10240 universities with the size ranging from
138 million of triples to about 1.4 billion of triples, which
are denoted as LUBM-1000, LUBM-2000, LUBM-5000 and
LUBM-10240 respectively. The UniProt dataset is a real-life
protein dataset that contains nearly 2 billion of triples. Our
experiments feature 16 queries (listed in Appendix), cover-
ing most types of queries mentioned earlier in this paper, as
shown in Table 1.

6.1 Analysis of Data Partitioning Algorithms

Due to the large memory consumption of METIS, we can-
not get it to work on large datasets and we can only perform
the Hybrid (un-one) and Hybrid (un-two) over the LUBM-
2000 dataset.
Data Loading Time. In Table 2, we compare the data
loading time of the different distributed engines, which in-
clude the time to perform the data partitioning algorithms.
Hive has the fastest data loading time. This is because the
vertical partitioning scheme is simple and there is no re-
dundancy. SemStore and Hybrid (2f) need more loading
time than Hive, because these two algorithms are much more
complex than vertical partitioning. SHARD is the slowest
due to the fact that it requires to covert the RDF data to a
special HDFS file format and hence incurs an excessive data
loading cost. Moreover, Hybrid (un-one and un-two) spend
more time than Hybrid (2f) due to the extra cost of graph
partitioning and the large amount of redundant triples that
needs to be stored and processed.
Redundancy. Since 2f, un-one, un-two, RSG-KM and
RSG-Hash generate overlapping partitions, we report the
ratio of total number of triples produced by each partition-
ing algorithm to the original datasets, as shown in Table 3.
Due to the existence of high degree vertices, the numbers
of redundant triples in un-one and un-two are very large.
Moreover, with the hop count increasing from one to two,
the number of duplicate triples grows rapidly. The 2f al-
gorithm reduces the duplicate triples significantly, which is
consistent with what is reported in [15]. Since the over-
laps between RSGs are very large, using hash functions to
allocate RSGs will incur redundant triples. The RSG-KM
achieves a dramatic reduction on the duplicate triples in
comparing to RSG-Hash, because the k-means partitioning
algorithm attempts to assign highly correlated RSGs into
one partition.
Data Distribution. Table 4 shows the standard deviation
of the number of triples allocated to each computing node.
The results show that RSG-KM achieves the most balanced
data distribution across computing nodes. RSG-Hash, 2f
and Hive are not as balanced as RSG-KM, but they are
better than un-one and un-two. Due to the existence of high
degree vertices, the data skewness in un-one and un-two is
high.

Table 3: Redundancy
RSG-KM RSG-Hash un-one un-two 2f

LUBM-2000 1.03x 1.66x 1.22x 3x 1.12x
UniProt 1.29x 3.02x N/A N/A 1.45x

Table 4: Data Distribution (Standard Deviation)
RSG-KM RSG-Hash un-one un-two 2f Hive

LUBM-2000 2.8E5 1.4E6 7.4E6 3.6E7 1.2E6 2.5E6

6.2 Performance Comparisons

Comparison with Centralized Engines (LUBM-2000).
We first compare SemStore with centralized engines, TripleBit
and RDF-3X over LUBM-2000. The results are shown in
Figure 6(a). To better analyze the differences in perfor-
mance, we classify the queries into two categories. Queries
of the first type are Q4, Q5, Q6, Q9 and Q10, which are
highly selective and called low-load queries. Q1, Q2, Q3,
Q7 and Q8 are the second type with low-selectivity and a
large input, called high-load queries.

For low-load queries (Q4, Q5, Q6 and Q9), the perfor-
mances of SemStore and TripleBit are better than RDF-3X.
This is because these queries are local-queries for SemStore.
And the intermediate results are significantly reduced by
the selective triple pattern scanning. An interesting data
point is Q10, which has to be decomposed into two sub-
queries in SemStore. The more subqueries incur more net-
work communication cost. However, benefiting from query
decomposition and optimization strategies, intermediate re-
sults shipped across network are reduced dramatically. Thus
Q10 in SemStore takes an acceptable query response time
which is less than 0.2 second.

On the contrary, high-load queries with low selectivity and
big input and output sizes are executed more efficiently and
effectively by SemStore. This can be attributed to the high
degree of parallelism of SemStore. Even though the cluster
running SemStore and the single server running the central-
ized engines have the same total amount of main memory,
SemStore can better take use of the more number of CPUs
and the higher I/O bandwidth in the cluster.
Comparison with Distributed Systems (LUBM-2000).
Then, we compare SemStore with the existing distributed
RDF data engines: Hybrid (un-one), Hybrid (un-two), Hy-
brid (2f), Hive and SHARD. Figure 6(b) shows the experi-
mental results. The first observation is that SemStore out-
performs other systems dramatically, even more than an or-
der of magnitude on some benchmark queries. This is be-
cause, except Q4, all queries are local-queries for SemStore,
such that each of them can be processed in parallel without
cross-node interactions.

For the Hybrid system, queries are decomposed into mul-
tiple subqueries and each subquery is processed in parallel
by the individual RDF-3X engines on the computing node.
Then the results of each subquery are joined by the Hadoop
system to generate the final results. Benefit from perfor-
mance of RDF-3X and the partitioning algorithm, the Hy-
brid system with different partitioning methods can outper-
form Hive and SHARD. Hive has a better performance than
SHARD due to the query optimization and the RCFile [11]
techniques. Without query optimization, SHARD produces
a large amount of intermediate results, which lead to a sig-
nificant impact on query performance.

Furthermore, the three different partitioning algorithms
in the Hybrid system also have significantly different perfor-
mance. First of all, different data partitioning algorithms
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Figure 6: Performance Comparisons (Time in sec)

Table 5: Performance on LUBM-10240 (Time in ms)
SemStore Trinity.RDF Hybrid(2f) Hive TripleBit RDF-3X

Q1 5,672 12,648 396,145 4.1E6 29,387 1.9E6
Q2 5,826 6,018 17,841 3.7E6 43,854 63,978
Q3 1,979 8,735 7,871 4.6E6 17,486 15,205
Q4 1 5 389 5.1E6 1 40
Q5 1 4 391 1.2E6 1 3
Q6 1.9 9 451 2.4E6 2 191
Q7 7,485 31,214 14,356 4.5E6 153,613 231,572

Geo. Mean 139 450 4,753 3.3E6 491 3,711

imply different query decomposition plans for each query,
which would lead to significantly different cost for the dis-
tributed joins running on the MapReduce framework. Par-
ticularly, Q1, Q3, Q6, Q7, Q9 and Q10 need to be decom-
posed in Hybrid (un-one). Q9 needs to be decomposed in
Hybrid (un-two) and Q9 and Q10 need to be decomposed in
Hybrid (2f). The second factor is the skewness of data dis-
tribution and the number redundant triples. For high-load
queries, such as Q1 and Q8, although they do not need to be
decomposed in Hybrid (un-two), their performance in Hy-
brid (un-two) is the worst among all the partitioning meth-
ods in the Hybrid system. This is because un-two method
causes skewed data distribution and a large amount of re-
dundant (see Table 3 and Table 4), and the processing time
depends on the computing node with the largest amount of
triples, which is the bottleneck in the cluster.

All in all, the data partitioning algorithm has a rather de-
cisive effect on the performance of distributed RDF engines.
Performance on Larger Datasets. We experiment on
two large dataset, UniProt and LUBM-10240, to analyze
the performance of SemStore over large-scale datasets. We
exclude SHARD in this section due to its generally low per-
formance. For the UniProt dataset, Q1, Q2, Q3 and Q6
are low-load queries, and Q4, Q5 are high-load queries. The
results are presented in Figure 6(c). One can make a conclu-
sion similar to our previous experiments. Hybrid (2f) per-
forms especially worse for Q3 and Q6 simply because they
have to be decomposed in Hybrid (2f) and the distributed
joins of the large intermediate results are pretty costly.

Table 5 summaries the experimental results over LUBM-
10240 dataset. Trinity.RDF [24] is the current state-of-the-
art of distributed RDF engine. However, Trinity.RDF is not
openly available. To compare with Trinity.RDF, we use the
the same dataset and benchmark queries over a similar clus-
ter setup (5 computing nodes with 24GB RAM connected
by 1GBit network bandwidth in our cluster as opposed to
5 computing nodes with 96GB RAM connected by 40GBit
network bandwidth in [24]). And the query run times of
Trinity.RDF in Table 5 are those reported in [24]. One can
see that, SemStore outperforms other systems for all the
queries. This is because that each of these queries can be
executed locally in SemStore. Moreover, due to the well-
balanced partitioning scheme, there is no bottleneck in the
cluster.

6.3 Scalability

Varying Size of Cluster. This section reports the compar-
ison of three engines with varying size of computing cluster.
In particular, we run queries on the LUBM-2000 dataset on
clusters with 1, 5, 10 and 16 computing nodes respectively.
For brevity, we only use six queries, which cover all types
of queries. The results are displayed in Figure 7(a), 7(b)
and 7(c). We normalize the query execution time of each
query to single-node execution time, and include a linear
speedup line (1, 0.2, 0.1 and 0.06 for 1, 5, 10 and 16 com-
puting nodes) for comparison. Hybrid (un-one) and Hybrid
(un-two) have similar experimental results. Hive achieves a
poor performance. Thus, we only show the Hybrid (un-two)
and Hybrid (2f) in this comparison.

For SemStore in Figure 7(a), high-load queries (Q1, Q8
and Q7) achieve super linear speedup as the number of com-
puting nodes increases. This is because, on one hand, each
query can be performed locally without communication cost.
On the other hand, due to the well-balanced partitioning
scheme, there is no bottleneck computing node. In Q5 and
Q9, due to the high selectivity of each query, even in a single-
machine these queries can be executed efficiently (within 2
ms). Thus, the execution times from 1 to 16 computing
nodes are roughly the same. Q10 is a low-load query which
needs to be decomposed in SemStore. Since the interme-
diate results shipped across computing nodes are reduced
significantly by the query decomposer and optimizer, the
performance of multi-nodes is little lower than that of the
single-machine.

For Hybrid (un-two), Q1, Q7, Q5, Q8 and Q10 have few
benefit when going from 1 to 16 computing nodes. This is
because the data distribution of Hybrid(un-two) is extraor-
dinarily skewed, as discussed in Section 6.1. The overloaded
partitions become the bottleneck of query processing. For
Q9, this query needs to be decomposed when processing,
which leads to large amount of intermediate results trans-
ferring. Therefore, the performance of multi-nodes is much
lower than the performance of the single-machine which do
not need to partition the dataset.

For Hybrid (2f), since 2f algorithm reduces the duplicate
triples significantly and achieves a more balanced data dis-
tribution in comparing to un-two, the high-load queries (i.e.
Q1, Q7 and Q8) achieve linear speedup. Q9 and Q10 are
low-load queries for 2f, however, they need to be decom-
posed. Thus, the performance of multi-nodes is also much
lower than that of the single-machine.
Varying Data Sizes. Figure 7(d) shows the query exe-
cution time of SemStore over four LUBM datasets. As the
number of triples increases, the execution time of each query
also increases. We observe that the increase of execution
time is sublinear or nearly linear, which means SemStore
achieves a good scalability. In particular, Q5, Q9 and Q10
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Figure 7: Scalability

are low-load queries and hence with growth of data size, their
processing time do not increase much. Q1, Q8 and Q7 are
high-load queries. Hence, benefiting from the well-balanced
data distribution, low data redundancy and minimal query
decomposition, the processing time increases almost linearly.

7. CONCLUSION

In this paper, we present SemStore, a semantic-preserving
distributed RDF triple store for scalable SPARQL query
processing. We design a partitioning algorithm for RDF
data using RSG, a coarse-grained structure, as the parti-
tion unit. Furthermore, we proposed a k-means partitioning
algorithm to place highly correlated RSGs in the same par-
tition. A query decomposition algorithm and a query opti-
mization strategy are proposed to minimize the communica-
tion cost for query execution. The experimental study shows
that SemStore outperforms the state-of-the-art systems by
orders of magnitude in terms of query response time.

8. ACKNOWLEDGMENTS

The research is supported by the NSFC under grant No.
61133008 and National High Technology Research and De-
velopment Program of China (863 Program) under grant
No.2012AA011003. Ling Liu acknowledges the partial sup-
port by the National Science Foundation under grants IIS-
0905493, CNS-1115375, IIP-1230740, and a grant from Intel
ISTC on Cloud Computing.

9. REFERENCES
[1] METIS. http://www.cs.umn.edu/~metis/.
[2] UniProt. http://www.uniprot.org/.
[3] D. Abadi, A. Marcus, et al. Scalable semantic web data

management using vertical partitioning. In VLDB, 2007.
[4] D. Abadi, A. Marcus, et al. SW-Store: a vertically

partitioned DBMS for semantic web data management. The
VLDB Journal, 18(2):385–406, 2009.

[5] M. Atre, V. Chaoji, et al. Matrix bit loaded: a scalable
lightweight join query processor for RDF data. In WWW,
2010.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

[7] M. A. Gallego, J. D. Fernández, et al. An empirical study
of real-world SPARQL queries. In USEWOD, 2011.

[8] Y. Guo, Z. Pan, et al. LUBM: a benchmark for OWL
knowledge base systems. Web Semantics, 3(2):158–182,
2005.

[9] S. Harris, N. Lamb, et al. 4store: The design and
implementation of a clustered RDF store. In SSWS, 2009.

[10] A. Harth, J. Umbrich, et al. YARS2: A federated
repository for querying graph structured data from the
web. In ISWC, 2007.

[11] Y. He, R. Lee, et al. RCFile: A fast and space-efficient data
placement structure in MapReduce-based warehouse
systems. In ICDE, 2011.

[12] J. Huang, D. Abadi, and K. Ren. Scalable SPARQL
querying of large RDF graphs. In VLDB, 2011.

[13] M. Husain, J. McGlothlin, et al. Heuristics based query
processing for large RDF graphs using cloud computing.
IEEE TKDE, 23(9):1312–1327, 2011.

[14] Z. Kaoudi, K. Kyzirakos, and M. Koubarakis. SPARQL
query optimization on top of DHTs. In ISWC, 2010.

[15] K. Lee and L. Liu. Scaling queries over big rdf graphs with
semantic hash partitioning. In VLDB, 2014.

[16] T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. The VLDB Journal,
19(1):91–113, 2010.

[17] J. Rao, C. Zhang, et al. Automating physical database
design in a parallel database. In SIGMOD, 2002.

[18] K. Rohloff and R. E. Schantz. Clause-iteration with
mapreduce to scalably query datagraphs in the SHARD
graph-store. In DIDC, 2011.

[19] L. Wang, Y. Xiao, B. Shao, and H. Wang. How to partition
a billion-node graph. In ICDE, 2014.

[20] S. Yang, X. Yan, et al. Towards effective partition
management for large graphs. In SIGMOD, 2012.

[21] T. Yang, J. Chen, et al. Efficient SPARQL query evaluation
via automatic data partitioning. In DASFAA, 2013.

[22] P. Yuan, P. Liu, et al. Triplebit: a fast and compact system
for large scale rdf data. In VLDB, 2013.

[23] P. Yuan, C. Xie, et al. Dynamic and fast processing of
queries on large-scale RDF data. KAIS, 2014.

[24] K. Zeng, J. Yang, et al. A distributed graph engine for web
scale rdf data. In VLDB, 2013.

[25] L. Zou, J. Mo, et al. gstore: answering SPARQL queries via
subgraph matching. In VLDB, 2011.

Appendix: Benchmark Queries
LUBM:
Q1-Q7: Same as Q1-Q7 in [5] respectively.
Q8: SELECT ?x WHERE { ?x rdf:type ub:UndergraduateStudent . }
Q9: SELECT ?x ?w WHERE { ?x ub:advisor ?y. ?y ub:worksFor ?z. ?x
rdf:type ub:GraduateStudent. ?z ub:subOrganizationOf ?w. ?w ub:name
?u. ?z rdf:type ub:Department.?w rdf:type ub:University.
<http://www.Department12.University0.edu/FullProfessor0/Publication0>
ub:publicationAuthor ?x. }
Q10: SELECT ?x ?y WHERE { ?x rdf:type ub:GraduateStudent.
<http://www.Department0.University0.edu/AssociateProfessor0>
ub:teacherOf ?y. ?y rdf:type ub:GraduateCourse. ?x ub:takesCourse ?y. }
UniProt:
Q1: SELECT ?p2 ?i ?p1 WHERE { ?p1 rdf:type uni:Protein. ?p1 uni:enzyme
<http://purl.uniprot.org/enzyme/2.7.7.->. ?i uni:participant ?p1. ?i rdf:type
uni:Interaction. ?i uni:participant ?p2. ?p2 rdf:type uni:Protein. ?p2
uni:enzyme <http://purl.uniprot.org/enzyme/3.1.3.16>. }
Q2: SELECT ?a ?vo WHERE { ?a uni:encodedBy ?vo. ?a schema:seeAlso
<http://purl.uniprot.org/refseq/NP 346136.1>. ?a schema:seeAlso
<http://purl.uniprot.org/tigr/SP 1698>. ?a schema:seeAlso
<http://purl.uniprot.org/pfam/PF00842>.
?a schema:seeAlso <http://purl.uniprot.org/prints/PR00992>. }
Q3: SELECT ?a ?vo WHERE { ?a uni:annotation ?vo. ?a schema:seeAlso
<http://purl.uniprot.org/interpro/IPR000842>.
?a schema:seeAlso <http://purl.uniprot.org/geneid/945772>. ?a uni:citation
<http://purl.uniprot.org/citations/9298646>. }
Q4: SELECT ?p ?a WHERE { ?p uni:annotation ?a. ?p rdf:type uni:Protein.
?a uni:range ?r.
?a rdf:type <http://purl.uniprot.org/core/Transmembrane Annotation>. }
Q5: SELECT ?p ?a WHERE { ?p uni:annotation ?a. ?p rdf:type uni:Protein.
?p uni:organism taxon:9606. ?a rdfs:comment ?t.
?a rdf:type <http://purl.uniprot.org/core/Disease Annotation>. }
Q6: SELECT ?a ?vo WHERE { ?a uni:modified ?vo. ?a uni:reviewed
”false”. ?a uni:mnemonic ”CDL1 HUMAN”. ?a rdf:type uni:Protein. ?a
uni:obsolete ”true”. }


