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Abstract

The multivariate multi-response (MVMR) linear regression problem is investigated,
in which design matrices are Gaussian with covariance matrices yLK) — (Z(l), L uE ))
for K linear regressions. The support union of K p-dimensional regression vectors (col-
lected as columns of matrix B*) is recovered using [y /lo-regularized Lasso. Sufficient
and necessary conditions on sample complexity are characterized as a sharp threshold
to guarantee successful recovery of the support union. This model has been previously
studied via [y /lo-regularized Lasso in [1] and via l; /Iy + 11 /loo-regularized Lasso in [2],
in which sharp threshold on sample complexity is characterized only for K = 2 and
under special conditions. In this work, using [y /ls-regularized Lasso, sharp thresh-
old on sample complexity is characterized under standard regularization conditions.
Namely, if n > c,19(B*, 1)) log(p — s) where ¢, is a constant, and s is the size of
the support set, then Iy /ls-regularized Lasso correctly recovers the support union; and
if n < cpop(B*, X)) log(p — s) where ¢po is a constant, then Iy /lp-regularized Lasso
fails to recover the support union. In particular, the function ¢ (B*, pL:K )) captures
the impact of the sparsity of K regression vectors and the statistical properties of the
design matrices on the threshold on sample complexity. Therefore, such threshold func-
tion also demonstrates the advantages of joint support union recovery using multi-task

Lasso over individual support recovery using single-task Lasso.

1 Introduction

Linear regression is a simple but practically very useful statistical model, in which an n-
sample response vector Y can be modeled as

Y—x3+W
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where X € R™P? is the design matrix containing n samples of feature vectors, ﬁ =
(B1,-..,Bp) € RP contains regression coefficients, and W € R" is the noise vector. The
goal is to find the regression coefficients F such that the linear relationship is as accurate
as possible with regard to a certain performance criterion. The problem is more interesting
in high dimensional regime with a sparse regression vector, in which the sample size n can
be much smaller than the dimension p of the regression vector.

In order to estimate the sparse regression vector, it is natural to construct an optimization
problem with an [y-constraint on [, i.e., the number of nonzero components of 5. However,
such an optimization problem is nonconvex and in general very difficult to solve in an efficient
manner as commented in [3]. More recently, the convex relaxation (referred to as Lasso) has
been studied with an /;-constraint on F based on the idea in some seminal works ( [4-6]).
More specifically, the regression problem can be formulated as:

1
min —||? — Xﬁ”i + >\n||?||ll'
Berr N

The [;-regularized estimator has been proved in [7] to have similar behavior to Dantzig Selec-
tor, which was proposed in [8]. Various efficient algorithms have been developed to solve the
above convex problem efficiently (see a review monograph [9]), although the objective func-
tion is not differentiable everywhere due to [;-regularization. Moreover, the [1-regularization
is critical to force the minimizer to have sparse components as shown in [4-6].

A vast amount of recent work has studied the high dimensional linear regression problem
via [j-regularized Lasso under various assumptions. For example, the studies [5, 10-14]
investigated the noiseless scenario and showed that recovery of true coefficients could be
guaranteed with certain conditions on design matrices and sparsity. A number of studies
focused on using [;-regularization to achieve sparsity recovery for noisy scenarios. Some work
(e.g., [15-17]) focused on the problem with deterministic design matrices, whereas other work
(e.g., [18,19]) studied the problem with random design matrices. The work [20] investigated
linear regression model via trace norm. [21] and [22] studied linear regression model using a
fusion penalty (known as the total variational penalty).

Generalized from the [;-regularized linear regression problem which aims at selecting vari-
ables individually, group Lasso is applied to regression vector in the linear regression
model to select grouped variables (e.g., [23,24]). The work [25] and [26] applied group Lasso
for studying empirical risk minimization problems. The work [27] studied the least square
optimization problem with group Lasso.

This line of research is further generalized to block-regularization for high-dimensional
multi-response (i.e., multi-task) linear regression problem, (see, e.g., [28,29] and references
therein). For a multi-task regression problem, we have the following model:

Y = XB' +W (1)

where Y € R™¥ of which each column corresponds to the output of one task, X € R™*?



is the design matrix, the regression matrix B* € RP*K has each column corresponding
to the regression vector for one task, and W & R™% has each column corresponding to
the noise vector of one task. For each column ?('“) of the matrix Y, it is clear that Y *) =
X ?*(’“H—WW, where ﬁ*(’“) and W(k) are the corresponding columns in B* and W. Then each
column is a single-task linear regression problem and can be solved individually. However,
the K individual problems (i.e., tasks) can also be coupled together via a block regularized
Lasso and solved jointly in one problem.

Various types of block regularization have been proposed and studied. In the work [29],
the [y /ls-regularization was adopted to recover the support union of the regression vectors.
More specifically, the following problem was studied

o1 2
phin oY = X Bl + Anll Bllue; (2)
where || - ||, /1, is defined in (7) in section 2.1. Sufficient and necessary conditions for correct

recovery of the support union (i.e., the union of the supports of all columns of B*) have
been characterized. Block regularized Lasso (as well as group Lasso) has also been applied
to study various other models. For example, the [y /l,-regularized Lasso was adopted for
learning structured linear regression model in [30]. The [/l -regularized Lasso was used
to investigate a multi-response regression model in [31]. The [;/ls-regularization was used
for studying empirical risk minimization problems in [32], and to study multi-task feature
problems in [33]. The [y /l,-regularized Lasso was adopted to analyze normal means model
in [34]. Blockwise sparse regression was used to study a general loss function in [35].

In the multi-response linear regression problem given in (1), the design matrix is identical
for all tasks, i.e., X is the same for all column vectors of Y and B*. However, in many ap-
plications, it is often the case that different output variables may depend on design variables
that are different or distributed differently. Thus, the resulting model includes K linear
regression models with different design matrices and is given by:

Y® = x® Gk 4 j®) (3)

for k =1,..., K, where 7(’“) e R", Xk ¢ R™P, F*(k) € RP, and I?/(k) € R™. We refer to
the above problem as the multivariate multi-response (MVMR) linear regression model, and
the goal is to recover ?*(’“) for k =1,..., K jointly. This problem has been studied in [36] via
the [y /ly-regularized Lasso for fixed matrices X M .., X5 For random design matrices,
this model has been studied via l; /lo-regularized Lasso in [1] and via ly /l; +11 /l.-regularized
Lasso in [2] for incorporating both row sparsity and individual sparsity.

In this paper, we study the MVMR problem for random design matrices via l; /lo-regularized
Lasso. Although this may seem to only likely offer expected results similar to those in [29], [1],
and [2], our exploration turns out to provide more insights which were not captured in pre-
vious studies. We discuss these in depth in Section 1.2. In our model, it is assumed that the
design matrices are Gaussian distributed, and are independent but not identical across tasks.
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For each task k, the row vector of X¥) is Gaussian with mean zero and the covariance matrix
¥®) for k = 1,..., K. The noise vectors and hence the output vectors are also Gaussian
distributed and independent across tasks. We are interested in joint recovery of the union of
the support sets (i.e., the support union) of regression vectors §*1 ... F*¥) We collect

these vectors together as a matrix B* = [F*(l), . ﬁ*(K)].

We adopt the [ /ls-regularized Lasso problem for recovery of the support union via the
following optimization problem:

K
1 2
; el (k) _ vy (k) 4 (k)
min 2n2”7 X E Hz—i—)\nHBHll/l2 (4)

B RPXK
€ k=1

where B = [3(1), . E(K)]. In this way, the K linear regression problems are coupled
together via the regularization constraint. We show that this approach is advantageous as
opposed to individual recovery of the support set for each linear regression problem. This is
because the K regression models may share their samples in joint support recovery so that
the total number of samples needed can be significantly reduced compared to performing
each task individually.

1.1 Main Contributions

In the following, we summarize the main contributions of this work. Our results contain
two parts: the achievability and the converse, corresponding respectively to sufficient and
necessary conditions under which the [; /ly-regularized Lasso problem recovers the support
union for the MVMR linear regression problem. Our proof adapts the techniques developed
in [18] and in [29], but involves nontrivial development to deal with the differently distributed
design matrices across tasks. This also leads to interesting generalization of the results in [29]
as we articulate in Section 1.2.

More specifically, we show that under certain conditions that the distributions of the
design matrices satisfy, if n > c,9(B*, 23 5))log(p — s), where () is defined in (8) in
Section 2.1 and ¢, is a constant, then the [; /lo-regularized Lasso recovers the support union
for the MVMR linear regression problem; and if n < c ot (B*, X1)) log(p — 5), where ¢,y
is a constant, then the [;/ly-regularized Lasso fails to recover the support union. Thus,
Y(B*, X E)) Jog(p — s) serves as a sharp threshold on the sample size.

In particular, ¢ (B*, (%)) captures the sparsity of B* and the statistical properties of the
design matrices, which are important in determining the sufficient and necessary conditions
for successful recovery of the support union. The property of ¥ (B*, X(35)) also captures
the advantages of the multi-task Lasso over solving each problem individually via the single-
task Lasso. We show that when the K tasks share the same support sets (although the

design matrices can be differently distributed), ¢(B*, %)) = L max;<;<x Q/J(FZ,Z(’“)).



This means that the number of samples needed per task for multi-task Lasso to jointly
recover the support union is reduced by K compared to that of single-task Lasso to recover
each support set individually. On the other hand, if the K tasks have disjoint support sets,
then ¢(B*, L)) = max;<p<x qb(?*(k),Z(k)). This implies that the number of samples
needed per task to correctly recover the support union is almost the same as that of single-
task Lasso to recover each support individually. Between these two extreme cases, tasks
can have overlapped support sets with different overlapping levels, and the impact of these

properties on the sample size for recovery of the support union is quantitatively captured by
1/}<B*7 E(IK)>

1.2 Comparison to Previous Results

As we mentioned before, the MVMR model has also been studied in [1] and [2], in which
l1/loo and Iy /1; + 11 /l-regularization were adopted for support union recovery, respectively.
In these studies, sharp threshold on sample complexity is characterized only for K = 2 and
under special conditions on %X g’Z)TX gz) In our work, using l; /ls-regularized Lasso, we are

able to characterize the sharp threshold under standard regularization conditions.

The MVMR model (with differently distributed design matrices across tasks) can be viewed
as generalization of the multi-response model (with an identical design matrix across tasks)
studied in [29]. It is thus interesting to compare our results to the results in [29]. For the
scenario when the tasks share the same regression vector, it is shown in [29] that the major
advantage of jointly solving a multi-task Lasso problem over solving each single-task Lasso
problem individually is reduction of effective noise variance by the factor K. But the sample
size needed per task for recovery of the support union via multi-task Lasso is the same as
that needed for recovery of each support set individually via single-task Lasso. This implies
that multi-task Lasso does not offer benefit in reducing the sample size (in the order sense)
for this case. Our result, on the other hand, shows that the benefit in sample complexity
by using multi-task Lasso for recovery of support union arises when the design matrices
are differently distributed across tasks. For such a case, the sample size needed per task is
reduced by K via multi-task Lasso compared to recovery of each support set individually via
single-task Lasso. Consequently, our result is a nontrivial generalization of the result in [29].
For the scenario when the tasks have disjoint support sets, our result is consistent with the
result in [29], which suggests that there is no advantage of performing multi-task Lasso as
opposed to performing single-task Lasso for each task.

1.3 Relationship to Jointly Learning Multiple Markov Networks

One application of the MVMR linear regression model is to jointly learning multiple Gaussian
Markov network structures. In this context, it solves a multi-task neighbor selection problem.
This is also a natural scenario, in which features and their distributions vary across tasks.



We consider K Gaussian Markov networks, each with p + 1 nodes represented by X fk), .

, Xp o for k= 1,..., K. The distribution of the Gaussian vector for graph & is given by

N (O, Eer)1>, where Egi)l e Re+Dx(+h) - Agsume for each graph, there are n i.i.d. samples
generated based on the joint distribution of the nodes. The objective is to estimate the
Connection relationship of nodes based on the samples. We denote n samples of each variable
X *) by a column vector 7 eR" for j =1,. ..,p—i— land k=1,..., K. For each graph k

and each node with index a, the sample vector ? can be expressed as:
X® = x®F® 4 P (5)

where X (k) is an n X p matrix that contains all column vectors ?(k for 7é ?(k) is a
p—dlmens1onal vector consisting of the estimation parameters of X, (k) given X ) with j # a,

and W ) is the n-dimensional Gaussian vector containing i.i.d. components with zero mean
and variance given by

01(,];)2 =Var(X1,) — Cov(Xi4, X1,_a)Cov (X1_)Cov(X1 _a, X1a).

It has been shown that the nonzero components of the vector F(k) represent existence of
the edges between the corresponding nodes and node a in graph k. Hence, estimation of the
support set of ) provides an estimation of the graph structure, which is referred to as the
neighbor selection problem in [37].

Therefore, multi-task Lasso for the MVMR linear regression problem provides an useful
approach for joint neighbor selection over K graphs. It is clear that in this case, the design

matrices X*) in general have different distributions across k, and hence the MVMR model

is well justified. We note that jointly learning multiple graphs has also been studied in [3§]
and [39], which adopted a different objective function of the precision matrix ¥~!. Via the
MVMR linear regression model, we characterize the threshold-based sufficient and necessary

conditions for joint recovery of the graphs.

2 Problem Formulation and Notations

In this paper, we study the MVMR linear regression problem given by (3), which contains K
linear regressions. Here, the design matrices X, ... X5 and noise vectors W), ... W)
are Gaussian distributed, and are independent but not identical across k. For each task
k, X® has independent and identically distributed (i.i.d.) row vectors with each being
Gaussian with mean zero and covariance matrix ), and the noise vector W®) has i.i.d.
2
components with each being Gaussian with mean zero and variance a‘(,[’j) . We let 0,00 =
2
maxj)<kg<k O-I(/I]j .
In (3), F*(’“) denotes the true regression vector for each task k. We define the support
set for each f**) as S, := {j € {1,... ,p}|ﬁ ) £ 0}. The support union over K tasks is



defined to be S := UK | Si. In this paper, we are interested in estimating the support union
jointly for K tasks.

We adopt the [ /ls-regularized Lasso to recover the support union for the MVMR linear
regression model. More specifically, we solve the multi-task Lasso given in (4) and rewritten
below:

K
1 2
in — k) _ x (k) g )
min =3 [V - xOFO| 4 x, 1B, (6)

BERPXK
N k=1

where B = [F(l), ceey F(K)]. In this way, the K linear regression problems are coupled

together via the regularization constraint. In this paper, we characterize conditions under
which the solution to the above multi-task Lasso problem correctly recover the support union
of the true regression vectors for K tasks.

2.1 Notations

px K

We introduce some notations that we use in this paper. For a matrix A € RP**, we define

the [,/ block norm as

i=1

p K (Z/b 1/a
1Al == D (Z |Az‘j|b> : (7)
j=1

We also define the operator norm for a matrix as

AN, = sup [[Az[la.

lllls=1
In particular, we define the spectral norm as [[Al[, = [[A[l,, and the l-operator norm as
ANl = Al 00 = maxj=1,..p S |A;1|, which are special cases of the operator norm.

For matrix B = [ﬁ(l), e ,?(K)} that appears in (6), ﬁ(k) denotes its kth columns for k =
1,.... K. We further let B; to be the ith row of B. Similarly, for B* — [?*U), o ?*Uﬂ]

that contains true regression vectors, its kth column is denoted by F*(’“) and the ith row is
denoted by B}. We next define the normalized row vectors of B* as

T i By #£0
Z:< — ’ i 15
0 otherwise,
and define the matrix Z* to contain Z* as its ith row for : = 1,...,p. To avoid confusion,

we use B to denote the solution to the multi-task Lasso problem (6).
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The support union S(B) for a matrix B € RP*X is denoted as S(B) = {i € {1,...,p}|B; #
0}, which includes indices of the nonzero rows of the matrix B. We use S to represent S(B*)
(i.e., the true support union) for convenience and use S° to denote the complement of the set
S. We let s = | S| denote the size of the set S. For any matrix X*) € R™ P the matrix Xék)

contains the columns of matrix X * with column indices in the set S, and X )

contains the
columns of matrix X® with column indices in the set S¢. Similarly, B% and Z% respectively

contain rows of B* and Z* with indices in S.

As each row of matrix X ® is Gaussmn distributed as N(0, 2*)), we use E to denote the

covariance matrix for each row of X% g , and use X SC)S to denote the cross covariance between

rows of X g’i) and X ék).

For convenience, we use 23K to denote a set of matrices XM, ..., 2 We also define
the following functions of matrices Q%) to simplify our notations:

(LK) . —
(@) = e Q3

pr(QUF) = min  min |Q + QY 20

1,J€5¢,j#i 1<k<K

In particular, our results contain the functions p, (E(Sc?q s) and p; <Zg§)‘ S) where Eé)sol s

is the covariance matrix of each row of X% with X é ) given.

For matrix B*, we define b}, = minjcg ||BJ* || L We define the following function that
captures the sparsity of B* and the statistical properties of the design matrices X éu():

-1
* : * k *
P(B°,509) = max 74 (58) 73 (5)

where 72/& is the kth column of Z§. We note that this definition of ¢(-) function is different
from the previous work [29] with the same design matrix for all tasks. Here, due to different

~1
design matrices across the K tasks, ¢(:) depends on K quantities ? ( ss) 7’§k with

each depending on a column vector ?gk

We denote g(-) = o(f(+)) if llmn_m% — 0, and g(-) = O(f(+)) if limn_m% — Co,

where the constant 0 < ¢, < 0.

3 Main Results

In this section, we provide our main results on using [; /lo-regularized Lasso to recover the
support union for the MVMR linear regression model. Our results contain two parts: one is
the achievability, i.e., sufficient conditions for the Iy /ls-regularized Lasso to recover the sup-
port union; and the other is the converse, i.e., conditions under which the l; /ls-regularized



Lasso fails to recover the support union. We then discuss implications of our results by
considering a few representative scenarios, and compare our results with those for the mul-
tivariate linear regression with an identical design matrix across tasks.

3.1 Achievability and Converse
We first introduce a number of conditions on covariance matrices ©*) for k = 1,... K,
which are useful for the statements of our results.

(C1). There exists a real number v € (0,1] such that [|Al|, < 1 — 7, where A;; =

k K\ !
(=0 (=))

js

MaxXj << K for j € S¢and s € S.

(C2). There exist constants 0 < Cpn < Chae < +00 such that all eigenvalues of the

matrix Zg@ are contained in the interval [Cn, Cinae| for E=1,... K.

-1
k
(=)

In this paper, we consider the asymptotic regime, in which p — oo, s — o0, and
log (p —s) — 4oo. In such a regime, we introduce the conditions on the regularization
parameter and the sample size n as follows:

S Dmax-

o0

(C3). There exists a constant D,,q, < +00 such that max;<x<x

f(p)logp
n

(P1). Regularization parameter A\, = , where the function f(p) is chosen such

that f(p) — +o00 as p — +o0, and%—)Oasn—M)o,i.e., A — 0 as n — 4o00.

(P2). Define p(n, s, \,) as

802 slogs 12s
Ap) = —= A\ Diaz + 7=

3 p(TL,S,An) —
and require SR = o(1).

The following theorem characterizes sufficient conditions for recovery of the support union
via [y /lo-regularized Lasso.

Theorem 1. Consider the MVMR problem in the asymptotic regime, in which p — oo,
s — oo and log(p — s) — 0o. We assume that the parameters (n,p, s, B*, E(liK)) satisfy the
conditions (C1)-(C3), and (P1)-(P2). If for some small constant v > 0,

(1:K)
2sasa|s>

n > 2(1+v)y (B, 2H9) log(p — S)/)U(T ) (9)

then the multi-task Lasso problem (6) has a unique solution E, the support union S(E) is
the same as the true support union S(B*), and ||B — B*||;_ i, = 0(b},;,) with the probability

min

9



greater than
1 — Kexp(—cglogs) —exp (—cylog (p — s)) (10)

where ¢y and ¢; are constants.

Theorem 1 provides sufficient conditions on the sample size such that the solution to the
l1/lo-regularized Lasso problem correctly recovers the support union of the MVMR linear
regression model. We next provides a theorem about the conditions on the sample size under
which the solution to the Iy /lo-regularized Lasso problem fails to recover the support union.

Theorem 2. Consider the MVMR problem in the asymptotic regime, in which p — oo,
s — o0 and log(p — s) — oo. We assume that the parameters (n,p,s,B*,E(liK)) satisfy
the conditions (C1)-(C2) and the conditions: s/n = o(1) and s — 0. If for some small

constant v > 0,
(1:K)
o (S555hs)

n < 2(1—0)(B*, ") log (p — s) @7

(11)

then with the probability greater than

n

1 — exp(—cas) — cgexp (_C4E> (12)

for some positive constants co, c3 and cy, no solution B to the multi-task Lasso problem (6)
recovers the true support union and achieves || B — B* |11, = 0(b}in)-

The proofs of Theorems 1 and 2 are provided in Sections 5 and 6, respectively. Combining
Theorems 1 and 2, it is clear that the quantity 1 (B*, £3%)) log(p — s) serves as a threshold
on the sample size n, which is tight in the order sense. As the sample size is above the
threshold, the multi-task Lasso recovers the true support union, and as the sample size
is below the threshold, the multi-task Lasso fails to recover the true support union. The
following proposition provides bounds on the scaling behavior of the function o (B*, L))
in the asymptotic regime.

Proposition 1. Consider the MVMR linear regression model with the regression matriz B*
and the covariance matrices Y5 satisfying the condition (C2), the function v(B*, £1)

18 bounded as
s

S

< (B, 21K < .

The proof of the Proposition 1 is provided in Appendix A.

1K) in order to

In the next subsection, we explore the properties of the quantity v (B*, X

(1:K)

understand the impact of sparsity of B* and covariance matrices X on sample complexity

for recovering the support union.
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3.2 Implications

The quantity 1 (B*, E(LK)) captures sparsity of B* and statistical properties of design ma-

trices B1EK)

, and hence plays an important role in determining the conditions on the sample
size for recovery of the support union as shown in Theorems 1 and 2. In this section, we
analyze ¢(B*, 2)) for a number of representative cases in order to understand advantages
of multi-task Lasso which solves multiple linear regression problems jointly over single-task

Lasso which solves each linear regression problem individually.

We denote (F*(k’), »(*)) as the function corresponding to a single linear regression prob-
lem, where ?‘i(k) represents the kth column of B*. It is clear that @/}(F (k) $ (1K) cap-
tures the threshold on the sample size for the single-task Lasso problem. Companson of
Y(B*, XK)) and 1/)(? *) %)) provides comparison between multi-task Lasso and single-
task Lasso in terms of the number of samples needed for recovery of the support union/set.

We explicitly express ¢ (B*, 2(1:)) and ¢(F*(k) Y *®)) as follows:

B;.B: -1
* (lK) _ ik~ jk (k)
V(B2 lg}i}%ZZHB*IIlQHB* ((255) > (13)

€S jeS ij

G- SE I (),

where B}, denotes the (i, k)th entry of the matrix B* and F:(k) denotes the 7th entry of the
vector j*(k).

We first study the scenario, in which all K tasks have the same regression vectors, and
hence have the same support sets.

Corollary 1. (Identical Regression Vectors) If B* has identical column vectors, i.e., F*(k)
?* fork=1,..., K, then
1
Y(B*, 2EE)) = — max 4)( F ik (15)

K 1<k<K

Proof. Under the assumption of the corollary, B* = ﬁ*fﬁ, where ?* € RP. Hence, 72/& =

%\/g) where the vector Fg contains components in the support S.

0B 00) = max 7 (58) " 2y
T

B sz’gn(ﬁ*) () _182'9”(?*)

—mK—ﬁ (ESS) ~K

:i maxwﬁ (& (16)

K 1<k<K
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Remark 1. Corollary 1 implies that the number of samples per task needed to correctly
recover the support union wvia multi-task Lasso is reduced by a factor of K compared to
single-task Lasso that recovers each support set individually.

It can be seen that although the K tasks involve design matrices that have different
covariances, as long as dependence of the output variables on the feature variables is the
same for all tasks, the tasks share samples in multi-task Lasso to recover the support union
so that the sample size needed per task is reduced by a factor of K. Hence, there is a
significant advantage of grouping tasks with similar regression vectors together for multi-
task learning.

Corollary 1 can be viewed as a generalization of the result in [29], in which the design
matrices for the tasks are the same. The result in [29] suggests that if the tasks share the
same regression vector, there is no benefit in terms of the number of samples needed for
support recovery using multi-task Lasso compared to single-task Lasso. Our result suggests
that the benefit of multi-task Lasso in fact arises when the design matrices are differently
distributed. For such a case, we show that the sample size needed per design matrix (i.e.,
per task) is reduced by the factor K.

Moreover, compared to recovery of each support set individually via single-task Lasso,
multi-task Lasso also reduces sample size per task by the factor K. However, such an
advantage does not appear if the K tasks have the same design matrix and regression vectors
as in [29].

We next study a more general case when regression vectors are also different across tasks
(but the support sets of tasks are the same) in addition to varying design matrices across
tasks.

Corollary 2. (Varying Regression Vectors with Same Supports) Suppose all entries B, >0
forje Sandk=1,...,K, and all coefficients are bounded, i.e., By, — A, < By < Bi+ Ay,
where A, > 0 is a small perturbation constant with By, > Ay. Then,
Y(B*, £1K) 1 (Br+Ax)°
maxi<ig<k ¢<F*(k), E(k)) ’

Proof. Based on the assumption for B*, we obtain the following upper bound on v ( B*, PIE ))
and lower bound on w(? ®) (k)

¢(B*,E(1:K))S% max (Bk_Ak ———— )Y ByB; <( )) l)ij; (17)

€S jeS

WA W) > ——_3S"S gy (( >>1) (18)

(Bk + Ak) €S jeS

12



Combining the above bounds, we obtain

b(B*, n0E)) 1 (Bi + Ay
Maxi<p<g @ZJ(E*(’“),E('“)) K1 '

]

Corollary 2 is a strengthened version of Corollary 1 in that Corollary 2 allows both the
regression vectors and design matrices to be different across tasks and still shows that the
number of samples needed is reduced by a factor of K compared to single-task Lasso, as long
as the support sets across tasks are the same.

Corollary 3. (Disjoint Support Sets) Suppose the distribution of all design matrices are the
same, i.e., ) =3 for k=1,..., K, and suppose that the support sets Sy of all tasks are
disjoint. Let s, = |Sg|, and hence s = Sr_, sp. Then,

Y(B*, 20H)) = max p( 0, 00,

1<k<K

where YK = (3., %),
Proof. By the assumption of the corollary, we obtain:

T
(B, 2EE)) = max sign (Fg(k)) Y sign (F;(k)> = max w(ﬁ*(k),E(k)). (19)

1<k<K 1<k<K

O]
We note that

max 1&(?*(1‘7 S ) log (p — 5) < max @b(ﬁ*(k S log (p — si).

1<k<K 1<k<K

Since the number of samples needed per task for multi-task Lasso is proportional to
max;<p<x ¥( 4 ** 2*®)) log (p — s), and the number of samples needed for single-task Lasso
for task k is proportional to @/J(? *) %)) log (p — 1), the above equation implies that the
required number of samples for multl—task Lasso is smaller than (in fact almost the same as)
that for single-task Lasso.

Corollary 3 suggests that if the tasks have disjoint support sets for regression vectors,
the advantage of the multi-task Lasso vanishes. This is reasonable because the tasks do
not benefit from sharing the samples for recovering the supports if their support sets are
disjoint. The essential message of Corollary 3 should not change if the tasks have different
design matrices and/or different regression vectors. The critical assumption in Corollary 3
is the disjoint support sets.

13



Corollaries 1 and 3 provide two extreme cases when the tasks share the same support
sets and have disjoint support sets, respectively. The number of samples needed per task
for recovery of the support union goes from 1/K of to the same as the sample size needed
for single-task Lasso. Between these two extreme cases, tasks may have overlapped support
sets with various overlapping levels. Correspondingly, the number of samples needed for
recovering the support union should depend on the overlapping levels of the support sets
and is captured precisely by the quantity ¢(B*, (%)), We demonstrate such behavior via
our numerically results in the next section.

4 Numerical Results

In this section, we provide numerical simulations to demonstrate our theoretical results on
using block-regularized multi-task Lasso for recovery of the support union for the MVMR
linear regression model. We study how the sample size needed for correct recovery of the
support union depends on sparsity of the regression vectors, on the distributions of the design
matrices, and on the number of tasks.

We first study the scenario considered in Corollary 1 when the K tasks have the same
regression vectors, i.e., B* = *T}Q We set 6% = \/—%IS, where S is the common support

set across K tasks. We set the covariance matrix () to be different across K tasks as
follows. For k = 1,..., K, we set Cov(X,, X) > 0 (where a,b € {1,2,...,p}) if a =
b+ 1, and otherwise Cov(X,, X;) = 0. In particular, Cov(X,, X;) =1+ 1/kifa=0b+1
and a is odd, and Cov(X,, X;) = 1 —0.8/k if a = b+ 1 and a is even. The sparsity of
linear regression vectors is linearly proportional to the dimension p, i.e., s = ap, with the
parameter « controlling the sparsity of the model. We set &« = 1/8. We choose the dimension
p = 128,256,512. We set the regularization parameter A, = 3.5 x y/log (p — s) log s/n. We
solve the [y /ly-regularized multi-task Lasso problem (6) for recovery of the support union for
K =2,4,6,8.

Fig. 1 plots the probability of correct recovery of the support union as a function of the
scaled sample size. It can be seen that the sample size for guaranteeing correct recovery
scales in the order of slog(p — s) for all plots. Moreover, as the number of tasks K increases,
the sample size (per task) needed for correct recovery decreases inversely proportionally with
K, which is consistent with Corollary 1. These results demonstrate that when the regression
vectors are the same across tasks, multi-task Lasso has a great advantage compared to
single-task Lasso in terms of reduction in the sample size needed per task.

We are also interested in the influence of non-equal regression values on the sample size
for correct recovery. Our next experiment is taken for the scenario in which all tasks share
the same support sets but have non-equal regression values across tasks. For k =1,... K,

j( ) = \/—% X (1 + 1%) for j = 16t,., and Fj( ) = \/LR X (1 — 1%) for j = 16t,.+8, where t,, is
any nonnegative integer such that j < p. The covariance matrices X*) are set to be identical

14



©o o
o o e

Probability of Correct Recovery

Figure 1: Impact of number of tasks on the sample size for scenarios with identical regression

-

--K=2|
——K=4
—K=6]
—-—-K=8

0 15
n/[2s log(p-s)]

o
©

o
o)

Probability of Correct Recovery
o

o
~

2

Probability of Correct Recovery

o
©

o
o

©
IS

o
N

05 1 15 2 25
n/[2s log(p-s)]

205 1 15

n/[2s log(p-s)]

vectors and varying distributions for design matrices across tasks

Probability of Correct Recovery

Figure 2: Impact of number of tasks on the sample size for scenarios with non-equal regression

0.8¢

[y

©
>

o

Probability of Correct Recovery

o
©

o
o

n/[2s log(p-s)]

715

n/[2s Iog(b—s)]

2

values and identical design matrix distribution across tasks

15



across all tasks. We set Cov(X,, X)) = 1 (where a,b € {1,2,...,p}) if a = b+ 1, and
otherwise Cov(X,, Xp) = 0. Other parameters are chosen to be the same as the experiment
in Fig. 1. Fig. 2 plots how the probability of correct recovery changes with the sample size
for p = 128,256,512. It exhibits the same behavior as Fig. 1, although now the regression
vectors have unequal values across tasks. In particular, it can be seen that the sample size
needed for correct recovery decreases as the number of tasks increased, demonstrating the
advantage of multi-task Lasso.

We next study how the overlapping levels of the support sets across tasks affect the
sample size for correct recovery of the support union. We set K = 2, i.e., two tasks,
and study three overlapping models for the two tasks: (1) same support sets S; = Sy =
{j < p: 8 + 1, where integer t,, > 0}; (2) disjoint support sets S;[]S2 = ¢ in
which S1 = {j < p : 16t,. + 1, where integer t,, > 0} and Sy = {j < p : 16t, +
2, where integer t,. > 0}; (3) overlapping support sets in which S; = {j <p:j=24t,. +1
or j = 24t,. + 2 where integer t,, > 0}, and Sy = {j < p:j = 24t,, +2o0r j =
24t,e +3 where integer t,. > 0}. We choose the linear sparsity model with o = 1/8. We set
p = 128,256,512, and %) = [, for k = 1 and 2. We also set \,, = 3.5 x /log (p — s) log s/n.

Fig. 3 compares the probability of correct recovery as a function of the scaled sample size
for the three overlapping models. It can be seen that the model with the same support set
requires the smallest sample size, and the model with disjoint support sets requires the largest
sample size. The model with overlapping support sets needs the sample size between the two
extreme models. This is reasonable because as the support sets overlap more, tasks share
more information in samples for support recovery and hence need less number of samples for
correct recovery.

The preceding experiment is taken for the case when the design matrices of the two tasks
have the same covariance matrix and the regression vectors are identical on overlapping
entries. It is interesting to investigate how non-equal values in regression vectors and different
covariance matrices across the two tasks affect the sample complexity. We first study the case
when the regression vectors of the two tasks do not have the same values on the overlapping

entries. For the case when the two tasks have the same support sets, we let ﬁj(k) = \/% X

(1 + %) for j = 16t,., and F;(k) = \/LE X (1 — 1—’““6) for j = 16t,. + 8, where integer t,. > 0
such that 7 < p for £k = 1,2. For the overlapping model, S; and S5 are the same as the
preceding experiment. For k = 1, ﬁj(k) =11if j = 24t,. + 1, and é;(k) = \/—% x (1+ )

if j = 24t,. + 2, where integer t,. > 0 such that j < p. For k = 2, F;(k) = \/LK X (1 — %6)

if j = 24t,. + 2, and F;(k) = 1if j = 24t,. + 3, where integer ¢, > 0 such that 7 < p.
For the disjoint case, the regression vectors are the same as the preceding experiment since
no overlapping exists in the disjoint model. Other parameters (X0) n p s, \) are kept
the same as the preceding experiment. Fig. 4 plots the probability of correct recovery of
the support union versus the scaled sample size for this experiment. It can be observed
that Fig. 4 exhibits same behavior as Fig. 3 and demonstrates that higher overlapping level

16
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across two tasks leads to smaller sample size needed for recovery, although the regression
vectors do not match values for the overlapping entries. We also denote that more careful
comparison of Fig. 4 and Fig. 3 suggests that the model with perturbation on overlapping
entries in regression vectors requires a slightly larger sample size than the model without
perturbation.

We finally study how the varying covariance matrices across the two tasks influence the
result. We set the covariance matrices ¥* for k = 1,2 as follows. We let Cov(X,, X,) > 0
(a,b € {1,2,...,p}) if a = b+ 1, and otherwise Cov(X,, X;) = 0. More specifically, we
let Cov(X,, Xp) = 1+ 1/kif a =b+1 and a is odd, and Cov(X,, X) = 1 — 0.8/k if
a=0b=+x1 and a is even. Other parameters (B*,n,p, s, \) are the same as the experiment
in Fig. 3. Fig. 5 compares the probability of correct recovery versus the scaled sample
size for the three overlapping models under the varying covariance matrices but the same
values for overlapping regression entries across the two tasks. The behavior is similar to
that in Fig. 3 and Fig. 4. More careful comparison of Fig. 5 and Fig. 3 suggests that the
varying covariance matrices across the two tasks require larger sample size than the case
with identical covariance matrices.
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5 Proof of Theorem 1

Our proof applies the framework developed in [18] and in [29] based on the idea of primal-
dual witness. However, for the MVMR model, we need to develop novel adaption due to
varying design matrices across tasks. In [29], since the model can be expressed by a matrix
operation on regression matrix, the proof involves many operations for matrices, for which
properties/bounds for matrices can be applied. However, the MVMR model is expressed by
K operations on individual regression vectors. The proof mostly involves first manipulat-
ing /bounding individual regression vectors and then integrating these manipulations/bounds
together for conditions across all tasks. Our adaption needs to make bounds in both steps as
tight as possible in order to develop sharp threshold conditions. We next present our proof
in detail.

The objective function in the multi-task Lasso problem given in (6) is convex, and hence the
following Karush-Kuhn-Tucker (KKT) condition is sufficient and necessary to characterize
an optimal solution:

Vsf(B)+MZ=0 (20)
2
where f(B) = & S5 [Y® - xOF®| and 7 € 0B, .

Before introducing the sufficient conditions, we first present the following lemma which

provides an important property about the optimal solution to the above problem.

Lemma 1. Suppose there exists an optimal solution B to the multi-task Lasso problem given
in (6). Suppose Z is in the subdifferential of || B|;, 1, at B, and satisfies the KKT condition in

(20) jointly with B. Suppose that 7 satisfies H/Z\QHZ p < 1, where 29 denotes the submatriz
oo /t2

that contains rows of Z with indices in the set Q. Then any optimal solution B to (6) must
satisfy Bq = 0.

The proof of Lemma 1 is similar to that of Lemma 1 in [18]. For completeness of our
paper, we provide the proof of Lemma 1 in Appendix B.

We now construct a pair (B, Z) that satisfy the KKT condition in (20). We first let Bg
be an optimal solution to the following optimization problem:

Bs = argming, f(B)|BSc=O + An HBSHl1/12 (21)

and let Zg be the associated element in the subdifferential of | Bs |y, 1, such that (Bs, Zs)

satisfy the KKT condition for the optimization problem given in (21). We then let Bge = 0,
and let Zg. be an element in the subdifferential of || Be||;, ,, that satisfies the KKT condition

jointly with B\Sc = 0 for the following problem

argming, | f(B)] gy, + M 1Bl - (22)
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Such Z se must exist if the KKT condition for the optimization problem (22) implies HZ se|], p
oo/ b2

1. Now it is casy to see that (B,Z) obtained above satisfies the KKT condition in (20)
and is hence an optimal solution to the problem (6). Furthermore, following Lemma 1, if
ch ) < 1, then any optimal solution B to (6) satisfies ESC = 0. Therefore, condition
loo /2

2

w < 1 guarantees both that there exists an optimal solution with the structure
oo /b2

described as above and that all optimal solutions B satisfies Esc = 0. Furthermore, the

condition HES ) < 1 guarantees uniqueness of the optimal solution. The arguments
loo /12

follow from the proof of Lemma 2 in [18].

< 1. For j € S¢

We next proceed to characterize the conditions that guarantee HZ ge

loo /12
and k=1,..., K, we have
~ 1 T — 1 T ~ -1==
Zi ==X (0P = 1) WO 4 XWX (SR) Za, (23)

~ T
where ?gk) denotes the jth column of the matrix X, Egg = %Xék) Xék), and Hgg) =

*®) (eE)\ LT
X (553) X9
n

ness.

. The steps to obtain the above ij is provided in Appendix C' for complete-

Analysis of Vse: We let V; = (2]-1, e ZjK>. We need to characterize the conditions so
that [|[V;]|,, <1 for all j € S¢ with high probability. We write Vj; into three terms as follows

v =E (v, X{)

J/

T
+B (Vi | X0, W) g (v X ()
+V; =B (V| X0, 00 (24)

. — — —
where Xél'K) = (Xél),...,XéK)> and WEK) = (W(l),...,W(K)>. We next evaluate

T;1, T}, and Tj3 one by one.

Fvaluation of T;;: By the definition of Zg, we have the following conditional independen-
cies:

(W/(k) B Xégk)‘Xg;K)) 7 <75k 1 ng.’“)‘Xél:K)) 7 <?Sk 1 ng.k)‘Xél:K), IT/WO) . (25)
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Given the above independence properties, we first derive

~ . 1 T .
B () - B (X 37) (1 - 1) ()
1 T , ~\ —1 = .
o (R0 |x i) x (38) E(?Sk‘XS'K))
—1 -
—=% (=4) E(?Sk\XS“)) (26)

for j € S¢, where Zg? represents the covariance between a component in ng) and a row in

X ék). We then obtain the following bound on ||}, with the proof provided in Appendix
D:
S|
1Tl < Aja, (27)
a=1

where A, = max;, for 7 € S¢ and a € S. We hence obtain

ja

k K\
(=% (=) )
S|
m [T lhy < mared_ Ao = 4] <17

= K) ==
Fvaluation of Tjp: Due to the independency (7% L ??”XS'K), W(liK)), we obtain

E (Zj X0, V_ﬁ/(l:K))
- A%nE (X |0, W) () — r, ) W
+ %E (Xj(k’)T‘Xél:K), W/(l:K)) Xé’“) (igks)) -1 B (?Sk‘Xé}:K)’ I?/(LK))
-2 (=%) " Zs (28)

= : =
where the second equality follows because 75% is a function of X S'K) and WK We then

obtain
B (Z[x {70, W000) B (2] x010) = 5% (=) - (?Sk —E (?Sk(xgm» .
(29)
Thus, following from steps similar to those in Appendix D, we obtain
S|
Tl < 3 A |25 = BZIXS )L (30)
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and hence

151
I > (1:K)
< . _
S a2,
= = 1:K
=ll4ll |25 ~ EGs|x§™)
<(1—7) HZ\S - E(25|XélzK))Hl p
oo /t2
<(1—~ HZ _ 7 H (1—~ HE _ 7 XW 3y
s S loo/l2 o s loo/lQ S ( )

We next provide the following lemma given in [29], which is useful for our proof.

Lemma 2. [29] Consider the matriz A € R with rows A; Ele:Bl A, <
then l

1
9
1Zs = Z§ 1t < 4 All1no st

By applying the above lemma, given the condition ||Al|,_,, < 3 that we will show later,

X))

We will show later in the analysis of Ug that ||Al|; /i, is of order o(1) with high probability,
and hence the above inequality holds with high probability.

we obtain

el Tl < 401 = ) (1Al + B [ A e | X

Fvaluation of Tj3: We introduce the vector B(k) such that
~ 1 T 1 1S
= T (0P R (5) s
T
X0 P, (32
It is clear that for j € S°,

. /1.
Cow (ngm Xgl.K)7w(1.K)> _ (zé@sals)ﬂ I,

(1:K)

%
Under the condition that X’ and W) are given, we have

(ij|Xé1.K)7W(1.K)> g [ij|Xé1.K)7w(1.K)} ~ N(0,0%) (33)

1 N At — T —
2 _ (k) 2 (k) 2 (%) Wk (k) Wk
T jk n (Zscsqs)jj Sk (Zss> Sk 22 (ESCSCS)jj © <Hs - In) ®, (34)



K = ~
Given <Xél'K), W(LK)>, Zjr, is independently distributed across k for k = 1,..., K. Hence,

~ ~ . —=2q. . —>1.
Zi— B [ Zu|X{H0,WOR] L o6 given  (X(9, W00) (35)

where & ~ N (0, 1) is independently distributed across k for k =1,..., K. Thus,

[Vj (1K) 37 (lK)} Z%k e given <X(1K) W(IK)>. (36)
We hence obtain
K
2
Hé%fgﬂ yall? —m%?f 5
=1
K —
5 - (LK) (LK
< T I, O R (Zf) siven (X3 W) 6

We next provide a useful bound for x? random variable, which was given in [29].

Lemma 3. [29] Let Z be a central x* distributed random variable with the degree d. Then

for all t > d, we have
P(Z > 2t) <exp (—t [1 - 2\/?]) .

Applying the above lemma, we obtain for all t > K,

(o (5) ) o))
gp_s)exp(_t[l_z@]) -

By applying the bound on ofk derived in appendix F together with (38), we further have

: w B*, E(I:K)
max Tl < 210, (265 ) (Y 4 (39)

with the probability larger than

1—-2(K+1)exp (—;) —4(K +1)exp (—g (i— 2)2)
—Kexp( log8+2\/m> p—3S exp( t[1—2\/§]>
— exp (—5(n —3) [1 — 2\/%] ) (40)
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for t > K, where

165 [|A Hlm/z2 12 /s\3 10(n — s)al(,{j)2
B nszn <1 * 2 ||AHIOO/Z2) Cmin <_) + n2>\% ' (41)

For n large enough, I" converges to zero with an order o (%) We also note that ¢(B*, 2(1:K))
40 Jog (p — s) where v > 0

has an order O(s) based on Proposition 1. In (39), we set ¢t =

145

and 0 = v/(3v +4). We can then show that if

(1:K)

Pu (ESCSC s)
n>2(1+v)yY (B*, E(LK)) log(p — s) 5 | ,

fy

then
max || Tjsls, <y (42)

with the probability larger than

1 —2(K +1)exp <_§> —4(K + 1) exp (—g (411 - %>2>
— Kexp (—logs - 2@) — exp <—g log (p — 3))

— exp (—5(n —5) [1 - 2\/%] ) . (43)

It follows from (24) that
IVill, < 1Virlly, + 1Vi2lly, + [1Visll,, -

Combining the above equation with the evaluation for T}y, Tjs, T}3, we conclude that [|V[|, <
L.

Analysis of Us: We have obtained the sufficient conditions for the existence and uniqueness
of an optimal solution to the problem given in (6), which guarantees B\gc = 0. It remains
to characterize conditions such that all rows of Bg are nonzero and hence S (B ) recovers the
true support union.

In order to guarantee that every row of §g is nonzero, it suffices to guarantee that

||USHloo/l2 = Qb:‘nm

where

Vo= Bo— By = [0 T
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Each column U (Sk) is given by
® —(k) «(k) (k) -1/1 BT —

It suffices to guarantee that

[TE1,. = sxtian

for k=1,..., K. In order to bound Hﬁ(s Hz , we define

and hence

We then obtain the following bound

k 1 Sk _%: ) Sk -1
|79, |z CGR) 77 +n |(GR) 7 (45)
We next evaluate the bounds on the two terms 7}, and T}, respectively.
FEvaluation of T),: We first derive the following bound
1=
E“”) Vi <
‘ ( SS Sk > I?ezgxz ss ij
~ o\ 1 o 1
H\ ol -
1 ) !
< Dmaw + \/_ (ESS> - <ESS’)
2
(b) 12
S Dmam + —S (46)

with probability larger than 1—2 exp (——) —3exp ( (i — %) i) . In the above derivation,

step (a) follows from the assumption of the theorem and [|A|, < v/s||A]l, for A € R**™,
and step (b) applies the bound given in (95) in Appendix F. Therefore,

12
TIQQ S >\n (Dmam + C—S\/ﬁ) (47>
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with probability larger than 1 — 2 exp (—%) — 3exp (—% (i — §)2 )

Fvaluation of T),: We first have

(k)= (k)T L B}
=\ , N 1 N |
E (W 4 ‘Xél‘K)) = E( (zgg) P x W R eT X F) <2§2) 2 Xél’K)>
n
=i (48)
= (k)

which implies that given X S:K)

2 .
tributed as N (0, J&k) > Hence, given X él'K), we have

ﬁ
, W has i.i.d. components with each being Gaussian dis-

=®
k) "2 W 25 1
k 2
8 [ ] RS e (49)
loo

with probability larger than 1—exp (—% (i — ﬁ)i), where 0,4, = maxi<p<i a‘(,l[j), and ¢; is

the standard Gaussian random variable. The second inequality in the preceding derivation
follows because [|All|,, < Vsl|A|l, for A € R**™ and from the bound (93) provided in
Appendix F. By applying Lemma 3 with d = 1, we have

P (% I?eagxsz > %) < s-exp (—t [1 — 2\/%]) : (50)

By setting t = 2log s in the above bound, we then obtain

[ 2 |2t 8sl
Tkl < O-maa; S Og maa: (51)
mzn /n/ min

with the probability larger than

1 —exp (—g (i—\/gf) — exp <—10gs+2m>. (52)

+

Combining the bounds on T}, and 7},, we obtain

| 12
Hﬁ(k H JSS Og( ) O mazx +>\n (Dmaa:+ S )

nCmm szn\/ﬁ
= p(n, s, \n) (53)

with the probability larger than

1 — 2exp (—g) — dexp (—g (i — ﬁ)i) —exp (—logs n 2@) . (54)
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Thus, the assumption w = o(1) guarantees that Hﬁ(Sk)Hz < Sebhy, for sufficiently

large n.

Furthermore, we derive the following bound

B —B*H
1B, i,

. * - *
minjes || Bjll,  bhun

1Al <

K
max;es > |Ujl 2 maX;es |Ujil
b = b;

min k=1 min

K ﬁ £)
-y H p(; $2) _ o) (55)

k=1 mm min

with the probability larger than

2
1 — 2K exp (—g) — 4K exp (—g <i — f) > — Kexp (— log s + 2\/2logs) . (56)
Jr

n

Summarizing the analysis of Vg and Ug, we conclude that the multi-task Lasso problem
given in (6) has a unique solution B, whose support union recovers the true support union
S(B*) with high probability under the assumption of the theorem.

6 Proof of Theorem 2

Our proof adapts and further develops the proof techniques established in [29] due to varying
design matrices across tasks.

7 ge > 1 holds or

loo/l2

Following from the proof in Section 5, it can be shown that if either

= o(b%,,,) does not hold, no solution B to the multi-task Lasso problem given

-

loo/l2

in (6) recovers the correct support union and satisfies HB — B*

(b:’L’LTL

). Hence, if
loofls

H§ - B P = o(b},;,) does not hold, it is already the case that the multi-task Lasso does
loo /2

not provide the desired solution. Then the following proof is to identify sufficient conditions

such that [[Vse||,,, > 1 when HE — B* = o(b},;,,) holds, where V; = <2j1, . .,ZjK)

for j € S°.

loo/l2

We use the decomposition in (24), which is rewritten below:

Vi=Th+ T+ T
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However, we are now interested in lower bounding [[Vse||, _,,. We first bound this quantity
as follows:

HVSCHlOO/lQ Z HTSC?’HIOO/IQ - HTSClﬂlm/lg - HTSCZHIOO/IQ :

By the assumption of the theorem, ||Tse1||, _,, <1—7. We next consider Tse2. Due to (31),
we have

[ Tse2

loo /12 <(1-9) HZS — 73

#1225 - %

Xgm} . (57)

loo/l2 loo/l2

By the assumption that HB\ — B*
[ Tseal];_ 4, = o(1) holds.

= o(b:

loo/lg mn

) holds, following the proof in Section 5,

It then suffices to guarantee that ||Tsesl|, ,, > 2 — 7. We recall from (37) that

d.
max (| T, = max

K
. —=2(1.

g 0583, given (Xél'K),W(l'K)>, (58)

k=1

where & ~ N (0, 1) are independently distributed across k.

We let Vipas := || Tsesl,_ s, and the remaining part of the proof is to derive a lower bound
on V4, which takes several steps. The first step is to show that V., is concentrated around

. —
its expectation when (XSK), W(I:K)> are given.

Lemma 4. For any § > 0,

52
2pu <ch§c)‘g) maxi<k<x My

. —>/1.
P [yvmm BV > 6’X§1'K), W“K)} <dexp | — (59)

Proof. We first construct the following function g : R?=)*K 4 R

where &, is the entry of the matrix ¢ with the index pair {j, k}.

To explore the continuity property of the constructed function g, we let u = (u;i,Jj €
Sk =1,....,K) and v = (vjr,j € 5%k = 1,...,K) be two matrices. We derive the
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K
E 2 .2
Unkvnk
k=1

(a)
< .
< (rjrggx 12}%(0%) (5%%§y\uj vJHQ)

\/pu (26805 max My = v (60)

1<k<K

where (a) follows by taking square on both sides and comparing various cross terms.

Sesels
The proof completes by applying Gaussian concentration inequality given below for a stan-
dard Gaussian vector X and the Lipschitz function g with the constant L:

Therefore, the function g is Lipschitz continuous with constant L = \/ Pu (E(l 0 ) maxi<p<x M.

Plg(X) — Eg(X)| > 6] < 4dexp(—07/(2L7)).

The second step is to find a lower bound on E[V},,4.].

Lemma 5. For any fived &' and sufficiently large (p — s), the following inequality holds:

X(lK) W(lK} > max /M, \/1—5’ )P ScSc|s> log (p — s)/2.

1<k<K

E [Vm

. —
Proof. The proof is under the assumption that (X él'K), W(l:K)> are given. Define nj, =

(Zgisc‘s)j]fjk and therefore, 1), ~ N( (ngc)sqs>33> We then have

K K
Zgjz'k@zk = Z Mi( SCSC|S)]J ]2]6 Z Mk?ﬁ'k >\ My |nji- (61)
k=1 k=1
where k* = argmax; <« v/ M. Without loss of generality, let k* = 1.
K =21
E (Vs X0, 0] > /3 (el (62
Jjese
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The proof completes by applying the lower bound of E (max;ege |7;1]). It can be shown
that

E [(ni1 —n1)°] = oo (ZSQS)E (€1 —&1)?]
Using the result in [40], we have
1 (1:K)
E <gré%x njl\) Z S/~ (Escsc|5)E (r]ré‘%x fjl\)

Furthermore, the standard Gaussian random vector has the following bound by the result
in [41]:

E <grggx Ifjl\) > /2(1 =) log (p — s)

if (p — s) is large enough, where ¢’ is a small positive number.
In Appendix F, we obtain the following lower bound

B* E(l:K)
max M, > YERET) p
1<k<K n
with the probability larger than

1— 2exp (-%) —4exp< ;’ G - ﬁ)j) _exp (—5(n—s) [1 —2\@]). (63)

Since I' converges to 0 with an order o (%), maxi<p<x My > MB+(LK))(1 — 0") holds for
any small constant 8’ > 0 and large enough n. We then have

. « (1K)

slc:sa)|s> log (p —s)/2
P e

()
>2—v+0 (64)
with high probability, where (a) follows from the assumption of the theorem on the sample
size n, and (b) follows by choosing v > 1 — ~=2U=00)

A+(0/ 2=

By applying lemma 4 and max;<p<x M) < w(l + 0”), i.e., equation (89) in Ap-
pendix E, we obtain

N 52
P [IVW—EVW|NXS'K%W““ <dexp | — i

2u <2‘(Sflc§:)‘s> 2/}<B>k7 2(1;]{))(1 + 5//)
<o 70" Comin (65)
X
- P (1:K) "
2pu (Egeges ) s(1+0")
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which implies V., > 2 — 7 with high probability.
Therefore, ||Vge

Loofls > 1 holds with probability larger than
2
1 520mzn
1—2exp (—f)—élexp L (R —4exp | — n
2 2 \4 nj. 204 (E(liK) )8(1 _'_5//)

Sese|s
— exp (—S(n —3) [1 — 2\/%] >7

which concludes the proof.

7 Conclusions

In this paper, we have investigated the Gaussian MVMR linear regression model. We have
characterized sufficient and necessary conditions under which the [y /l5-regularized multi-task
Lasso guarantees successful recovery of the support union of K linear regression vectors. The
two conditions are characterized by a threshold and hence are tight in the order sense. Our
numerical results have demonstrated the advantage of joint recovery of the support union
compared to using single-task Lasso to recover the support set of each task individually.
Further studying the MVMR model under other block-constrains is an interesting topic in
the future. Applications of the approach here to structure learning problems based on real
data sets such as social network data are also interesting.

Appendix

A Bounds on (B* 21:K))
We first derive an upper bound on 3 (B*, L1:K)) as follows:

-1
(B30 = max 73 (s8) 75

1<k<K

K -1
<> ZE(s8) Zu
k=1

-1
k
(5)

2

.
<N 1Z%l2

k=1

S

IN

o (66)
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We then derive a lower bound on ¢(B*, £(3%)) as follows:

-1
(B30 = max 73 (s8) 75,

1<k<K
1 \ K\ e
=K Z ?Sjl; (EE%)*> 7%
k=1
K 77 (s) 7
> 317wl .
> Skl 2
K e 121,
s
67
Therefore, 1 (B*, X(15)) is of the order of O(s).
B Proof of Lemma 1
Suppose B is another optimal solution to the problem given in (6), then we have
f(B)"i_/\nHBHll/h = f(B>+)‘n||BHl1/lzv (68>
where f(B) = & S0, H?(k) F(k H It is clear that
|B||11/12 ZZBT7 (69)

where 2j is the jth row of Z and Ej is the jth row of B. We substitute (69) into (68) and
obtain

p
f(B) + )‘HZZJBJT = f(B) + )‘n”BHh/lz‘

j=1

We then subtract A, > 7, Z\JEjT from both sides of the above equation, and move f(B) to
the left-hand-side (LHS) to obtain

p p
F(B)+ MY Zi(B] = B)) = f(B) = Ml|Bllupi, = A Y Z; B} (70)
i=1 i=1

We further substitute the KKT condition Vg f(B) + AZ = 0 into (70), and obtain

3

F(B)+Y Vg, [(B)BI — BY) = f(B) = Ml Blluji, — M Y Z;BY (71)
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Due to the convexity of f(B), the LHS of the above equation is less than or equal to 0.

Hence, we have
P
1Bl s < Z

Since > %, ‘ ill, > >" | Z;B], we obtain
2

3 7,8

p ‘
J=1

Based on the assumption of the lemma, ) 2j < 1if 5 € Q. Therefore, = 0 for
12 2
Jj e
C Derivation of Zsc
We write the function f(B) as
1 i Yo _(x® (b)) ﬁ(k i
f(B)=— M- (Xg), X))
2n — ﬁse
K
1 WZE* | o k)3 K0 ||
= S [XEFE W - xPFE - xPFE (72
k=1

and take partial derivative over components of B to obtain

9f(B) L2 (v F®* | 7 k)3 k)2 (k
s ® (Xé)ﬁ(s) +W(k)_Xé>g<S>_XéC>ggC>)7

where Yj denotes the jth column of the matrix X. Hence, Es satisfies

1 wr R .
o xW (xgwﬁg@ +W® — XxWF ) A Z =0

n

for k=1,..., K ,where 7 Sk denotes the kth column of Z with row indices in the set S, and
Zs € 6||BS||11/12 Furthermore, Zg. satisfies

o~

1 T S )
L (@ﬂwﬁ+ww_xpﬁs>+M7%:o
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~ T
o As we introduce the notations Eg;) = %X ék) X ék)
111>

~ T
and ngc)s = %X g’? X ék), the above two equations become

forkzl,...,K,Wherech EE)HESC

o~

~i [=® * 1 oT—
53 (FS - ) - ﬁXék) WO = -\, Z s, (73)

—~

~ =(k) x 1 T—
S0, (Fs 7w ) Ly e T =

= (k) N
for Kk =1,..., K. We now solve 35 — ?gk) from (73), substitute it into (74), reorganize
the terms, and obtain

o~

= 1 T — 1 T T /) L
Zoop=— —x® (nd - 1,) AR e e (56 Z . (75)

(k) (2 LT
i x¥ (S X
where H(S) =5 ( Ssn) G

Hence, for j € S¢,

~ 1 T — 1 T s\ 1
Zip =— —?(,k) (H(Sk) — In> w4+ —?(-k) Xék) (Eg’g’) ?Sk- (76)

A n ’
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D Bound on [T},

(k)

We let A®) = Zg?s (ZSS

)1 and 8% = E(

?Sk |Xé1:K)) , and derive

1T, = E? (Z‘HXS)

\

k)
s

(= (=)
(A% s,) i

N\
N\

T

1

—~~

Z

-1 LK ?
E( Sk|Xé' )>)

K |9

N

S|

SN AWC S Al C.,

k=1 a=1 a’'=1
LA (k)| | 4k
< [0S a0 4] i
\ a=1 o/=1 k=1
el (k) (k) =
<) 2 2 A | 2 1CuuCond
a=1 a’'=1 k=1
IS| 18] K K
< Z max A;IZ) max Ag? ZC’fk ZC’g,k
a=1 a'=1 ¥ " k=1 k=1
Sl (k) (k)
S| S|
=) max Ayz) =>» A (77)
a=1 a=1
~1
where A, = max;, ‘AyZ) = maxy (Equc)s (Egks)’> ) s
ja
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E Bound on U?k

We let a?k = (Ek(skc)sq S) M., where

157 N1 1 =T —
My=-Z5 (S8) Zow— WO (0~ 1,) WO, (78)

We derive bounds on the term max;ese maxi<g<f 07, We first define
1 () 1=,
My = 75% ( ss) ?Skz

We also define

— )\2 W () - 1,) . (79)

2
* 1 £ L k -1 * (n_s)a(k)
12 (s8) 2y, o

n2\2
We then have
| My, — M™| < |My — M| + |M; — M*|.

To find upper and lower bounds on M}, we start with

— |My — M}| — | M} — M*| < My < M* + | My, — M| + |M; — M*|. (80)

We first bound

| M;: — M|
1 T /~ -1 —T - 1=
- 1]74" (39) " Zh- 7w () 7
1 T 7 =T N 1 —
257 K ( fgk) (Z - ?Sk (Z% - Zg) (gng)) (?gk+(75k_?gk))‘
1 -1 —
<-1(8) H7% ZalulZ5ul + 125+ Zs— Z50ll)
1 —1
< HED) N 175 - Zsu@1Zsnlls + 1Z 56— 2l (51)

In the above equations,
1Z 5l < V5.

Following (93) in Appendix F, we have

=

with probability larger than 1 — exp (—% (- %)2 )

2

<

2 szn
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We also derive:

S
i 175~ Dl = s || S5 2

S

K s
= \ max » (25— Zj)? < S (Zo = Zir)

=1 k=1 j=1
K
= E E (2%, — ]k )2 < |smax » (Z5 — Z;)?
J jES J
j=1 k=1 k=1

K
= /s max Z Z% — ]k )2 =s||Z5 — Z5 |00 /1 (82)
k=1

jES

Hence, following from Lemma 2, we have if [|Al|,_,, < 1, then

max [ 25— Zsull < 4v/51 A

1<k<K

Based on the above bound, we have

M = M) <~ (45 180, ) (205 +4V5 18, )
16s || A

= nC. . (1+2 HA’loo/lg) (83)
with probability larger than
s n (1 s\’
1 —2K exp <—§) — (4K 4+ 1) exp <_§ (Z — —) ) — Kexp (—logs + 2\/210gs) .
n
+
(84)

We next derive a bound on | M} — M*| as follows.

My — M|
! < SWARE B) " * — k)2
Sﬁ ‘7511; <(E§§) - (2%52) ) ?Sk 2)\2 ’m/(k ] . H(k))W( ) (n B S)a‘(,v) ‘
1 ~ -1 -1 1 N )
=n H?ﬁ (E%) B (Eg) e WOT(1, - I WH — (0 — )0 ‘ :
2 n
In the above equation,
2
23| <s
l2




Following (95) in Appendix F', we have

() - (=)

with probability larger than 1 — 2 exp (—%) — 3exp (—% (i — %)i)

12
<

S
2 Cmm n

2

We next bound the term ‘W (I, — H )W(k (n S)aé"i) ‘ Since Hfgk) is a projection

matrix, eigenvalues of I, — H(Sk) can only be 1 or 0. Thus, Tr(1, — Hgk)) = (n—s) implies that

if we decompose I, — 1% into UTAU with UTU = I, then A has (n— s) of “1” and s of “0”.
— T

Moreover, UW ) is a Gaussian vector with zero mean, and E (UW(’“)W(’“)TUT> I(,‘Ii) I,.

Therefore, we conclude that

U Ly
WOTYT AW 8 & FOT A0 &y ®

where H ~ X%n—s)' We now consider the term

WET(L, — T T® — (1 — 5)0)°

— [WOTUTAUIT® — (5 s)a§§>2’

— [W®T A ® —(n— S)O"(/‘]j)Q
= |Ho®® — (0 — 5)0®?]. (85)
We derive the probability of the following event:
P (’HO"(/];)2 —(n— ‘ <9(n )055)2)
=P({H <10(n — s)} N{H > —-8(n—ys)})
=P(H <10(n—s)). (86)

Following from Lemma 3, we have

P(H > 10(n —s)) < exp (—S(n —s) [1 —2 5])

It then follows that

s = 2 2
w®T(r, — H )W —(n s)a‘(,];) ‘ <9(n — s)agj)

-en(-so-0 -2/
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To summarize,
) 2
P 12 /s\2 9(n— s)a‘(,];)
My = M| < (ﬁ) * n2A\2

min

with probability larger than

1 — 2exp (—%) _ 3exp (—g (i . ﬁ)i) —exp (—5(77,— ) [1 . 2\@])

Therefore,

| My — M*| < [ My, — M| + [ M — M|

16s |All,__ /1, 12 /s\:  9(n—s)ow?
< — a2l o (0) e )
with high probability.
To simplify the result, we define the following quantity
16s | All,_ s, 12 /s\3 10(n — s)ow?
D= = (12 Al _) + () — (88)
and our bounds on M) can be expressed as
L=, T (o) ! 2 L=, T (am) ! 2
E?Sk (Zf%)*) 75% —T'< M, < E?Sk (EE%)*> ?Sk +T.
Using the definition of ¢(B*, Z()) we have
B* E(I:K) B* E(I:K)
n 1<k<K n
with probability larger than
s n (1 5\’
1—2(K +1 <——)—4K | L (L
(1 + esp (~3) —a(k + >exp< (3 n))
1
— exp <—5(n —3) [1 — 2\/% > — Kexp <—logs + 2\/210gs> . (90)

F Bounds on Spectral Norms

In this section, we provide some useful bounds on spectral norms. Detailed proof can be
found in [29].

Let U € R"* be a random matrix with i.i.d. entries, and each entry has a Gaussian
distribution with zero mean and unit variance.
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The bound for |H%UTUH|2:

P(ferell,<3) s = (3G-v3).)

The bound for |H%UTU — ISXS|H2:

P ( 2 6\/5) < 2exp <—§) + 2exp (—g G - %)j) (91)

Let X = UVY where ¥ € RS is positive definite. Then X € R™° has i.i.d. rows, and
each row X; is a Gaussian vector with the distribution A (0, ). Suppose the eigenvalues of

¥ are in the interval [Chin, Cnaz], where Ci and Cgy are both positive. We next provide
the bounds on several spectral norms.

()],
r(lemy
=97,
()

‘XTX_E

n

1
~vUtu

n

1
“UTU — Iy,
n

The bound for

< 2) > 1 — exp (—g G - 2)3 : (92)

The bound for

The bound for
XTX
dUs
n

The bound for

< 2 )s1- (Lo Y (93)
S Cun )= P T2V )
2
g

2
s s n (1 s
<60t ]2 ) >1—2exp (=2) —2exp [ —2 (== /2) ). (4
2—60 \/2) eXp( 2) eXp( 2(4 n)+> (94)
-1
(XTX> oyt
XTx\ ' 1 12 /s s n (1 s\
oy < ]l >1_ _2) BN I
P(H‘( n ) > 2_C’mm\/;>_1 Zexp( 2) SGXP( 2(4 n>+ ’
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