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Abstract

The multivariate multi-response (MVMR) linear regression problem is investigated,

in which design matrices are Gaussian with covariance matrices Σ(1:K) =
(
Σ(1), . . . ,Σ(K)

)
for K linear regressions. The support union of K p-dimensional regression vectors (col-

lected as columns of matrix B∗) is recovered using l1/l2-regularized Lasso. Sufficient

and necessary conditions on sample complexity are characterized as a sharp threshold

to guarantee successful recovery of the support union. This model has been previously

studied via l1/l∞-regularized Lasso in [1] and via l1/l1 + l1/l∞-regularized Lasso in [2],

in which sharp threshold on sample complexity is characterized only for K = 2 and

under special conditions. In this work, using l1/l2-regularized Lasso, sharp thresh-

old on sample complexity is characterized under standard regularization conditions.

Namely, if n > cp1ψ(B∗,Σ(1:K)) log(p− s) where cp1 is a constant, and s is the size of

the support set, then l1/l2-regularized Lasso correctly recovers the support union; and

if n < cp2ψ(B∗,Σ(1:K)) log(p− s) where cp2 is a constant, then l1/l2-regularized Lasso

fails to recover the support union. In particular, the function ψ(B∗,Σ(1:K)) captures

the impact of the sparsity of K regression vectors and the statistical properties of the

design matrices on the threshold on sample complexity. Therefore, such threshold func-

tion also demonstrates the advantages of joint support union recovery using multi-task

Lasso over individual support recovery using single-task Lasso.

1 Introduction

Linear regression is a simple but practically very useful statistical model, in which an n-

sample response vector
−→
Y can be modeled as

−→
Y = X

−→
β +

−→
W
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where X ∈ Rn×p is the design matrix containing n samples of feature vectors,
−→
β =

(β1, . . . , βp) ∈ Rp contains regression coefficients, and
−→
W ∈ Rn is the noise vector. The

goal is to find the regression coefficients
−→
β such that the linear relationship is as accurate

as possible with regard to a certain performance criterion. The problem is more interesting

in high dimensional regime with a sparse regression vector, in which the sample size n can

be much smaller than the dimension p of the regression vector.

In order to estimate the sparse regression vector, it is natural to construct an optimization

problem with an l0-constraint on
−→
β , i.e., the number of nonzero components of

−→
β . However,

such an optimization problem is nonconvex and in general very difficult to solve in an efficient

manner as commented in [3]. More recently, the convex relaxation (referred to as Lasso) has

been studied with an l1-constraint on
−→
β based on the idea in some seminal works ( [4–6]).

More specifically, the regression problem can be formulated as:

min−→
β ∈Rp

1

n
‖
−→
Y −X

−→
β ‖2

l2
+ λn‖

−→
β ‖l1 .

The l1-regularized estimator has been proved in [7] to have similar behavior to Dantzig Selec-

tor, which was proposed in [8]. Various efficient algorithms have been developed to solve the

above convex problem efficiently (see a review monograph [9]), although the objective func-

tion is not differentiable everywhere due to l1-regularization. Moreover, the l1-regularization

is critical to force the minimizer to have sparse components as shown in [4–6].

A vast amount of recent work has studied the high dimensional linear regression problem

via l1-regularized Lasso under various assumptions. For example, the studies [5, 10–14]

investigated the noiseless scenario and showed that recovery of true coefficients could be

guaranteed with certain conditions on design matrices and sparsity. A number of studies

focused on using l1-regularization to achieve sparsity recovery for noisy scenarios. Some work

(e.g., [15–17]) focused on the problem with deterministic design matrices, whereas other work

(e.g., [18,19]) studied the problem with random design matrices. The work [20] investigated

linear regression model via trace norm. [21] and [22] studied linear regression model using a

fusion penalty (known as the total variational penalty).

Generalized from the l1-regularized linear regression problem which aims at selecting vari-

ables individually, group Lasso is applied to regression vector
−→
β in the linear regression

model to select grouped variables (e.g., [23,24]). The work [25] and [26] applied group Lasso

for studying empirical risk minimization problems. The work [27] studied the least square

optimization problem with group Lasso.

This line of research is further generalized to block-regularization for high-dimensional

multi-response (i.e., multi-task) linear regression problem, (see, e.g., [28, 29] and references

therein). For a multi-task regression problem, we have the following model:

Y = XB∗ +W (1)

where Y ∈ Rn×K of which each column corresponds to the output of one task, X ∈ Rn×p
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is the design matrix, the regression matrix B∗ ∈ Rp×K has each column corresponding

to the regression vector for one task, and W ∈ Rn×K has each column corresponding to

the noise vector of one task. For each column
−→
Y (k) of the matrix Y , it is clear that

−→
Y (k) =

X
−→
β ∗(k)+

−→
W (k), where

−→
β ∗(k) and

−→
W (k) are the corresponding columns inB∗ andW . Then each

column is a single-task linear regression problem and can be solved individually. However,

the K individual problems (i.e., tasks) can also be coupled together via a block regularized

Lasso and solved jointly in one problem.

Various types of block regularization have been proposed and studied. In the work [29],

the l1/l2-regularization was adopted to recover the support union of the regression vectors.

More specifically, the following problem was studied

min
B∈Rp×K

1

2n
|||Y −XB|||2F + λn‖B‖l1/l2 , (2)

where ‖ · ‖la/lb is defined in (7) in section 2.1. Sufficient and necessary conditions for correct

recovery of the support union (i.e., the union of the supports of all columns of B∗) have

been characterized. Block regularized Lasso (as well as group Lasso) has also been applied

to study various other models. For example, the l1/lq-regularized Lasso was adopted for

learning structured linear regression model in [30]. The l1/l∞-regularized Lasso was used

to investigate a multi-response regression model in [31]. The l1/l2-regularization was used

for studying empirical risk minimization problems in [32], and to study multi-task feature

problems in [33]. The l1/lq-regularized Lasso was adopted to analyze normal means model

in [34]. Blockwise sparse regression was used to study a general loss function in [35].

In the multi-response linear regression problem given in (1), the design matrix is identical

for all tasks, i.e., X is the same for all column vectors of Y and B∗. However, in many ap-

plications, it is often the case that different output variables may depend on design variables

that are different or distributed differently. Thus, the resulting model includes K linear

regression models with different design matrices and is given by:

−→
Y (k) = X(k)−→β ∗(k) +

−→
W (k) (3)

for k = 1, . . . , K, where
−→
Y (k) ∈ Rn, X(k) ∈ Rn×p,

−→
β ∗(k) ∈ Rp, and

−→
W (k) ∈ Rn. We refer to

the above problem as the multivariate multi-response (MVMR) linear regression model, and

the goal is to recover
−→
β ∗(k) for k = 1, . . . , K jointly. This problem has been studied in [36] via

the l1/l2-regularized Lasso for fixed matrices X(1), . . . , X(K). For random design matrices,

this model has been studied via l1/l∞-regularized Lasso in [1] and via l1/l1+l1/l∞-regularized

Lasso in [2] for incorporating both row sparsity and individual sparsity.

In this paper, we study the MVMR problem for random design matrices via l1/l2-regularized

Lasso. Although this may seem to only likely offer expected results similar to those in [29], [1],

and [2], our exploration turns out to provide more insights which were not captured in pre-

vious studies. We discuss these in depth in Section 1.2. In our model, it is assumed that the

design matrices are Gaussian distributed, and are independent but not identical across tasks.
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For each task k, the row vector of X(k) is Gaussian with mean zero and the covariance matrix

Σ(k) for k = 1, . . . , K. The noise vectors and hence the output vectors are also Gaussian

distributed and independent across tasks. We are interested in joint recovery of the union of

the support sets (i.e., the support union) of regression vectors
−→
β ∗(1), . . . ,

−→
β ∗(K). We collect

these vectors together as a matrix B∗ =
[−→
β ∗(1), . . . ,

−→
β ∗(K)

]
.

We adopt the l1/l2-regularized Lasso problem for recovery of the support union via the

following optimization problem:

min
B∈Rp×K

1

2n

K∑
k=1

∥∥∥−→Y (k) −X(k)−→β (k)
∥∥∥2

2
+ λn ‖B‖l1/l2 (4)

where B =
[−→
β (1), . . . ,

−→
β (K)

]
. In this way, the K linear regression problems are coupled

together via the regularization constraint. We show that this approach is advantageous as

opposed to individual recovery of the support set for each linear regression problem. This is

because the K regression models may share their samples in joint support recovery so that

the total number of samples needed can be significantly reduced compared to performing

each task individually.

1.1 Main Contributions

In the following, we summarize the main contributions of this work. Our results contain

two parts: the achievability and the converse, corresponding respectively to sufficient and

necessary conditions under which the l1/l2-regularized Lasso problem recovers the support

union for the MVMR linear regression problem. Our proof adapts the techniques developed

in [18] and in [29], but involves nontrivial development to deal with the differently distributed

design matrices across tasks. This also leads to interesting generalization of the results in [29]

as we articulate in Section 1.2.

More specifically, we show that under certain conditions that the distributions of the

design matrices satisfy, if n > cp1ψ(B∗,Σ(1:K)) log(p − s), where ψ(·) is defined in (8) in

Section 2.1 and cp1 is a constant, then the l1/l2-regularized Lasso recovers the support union

for the MVMR linear regression problem; and if n < cp2ψ(B∗,Σ(1:K)) log(p − s), where cp2
is a constant, then the l1/l2-regularized Lasso fails to recover the support union. Thus,

ψ(B∗,Σ(1:K)) log(p− s) serves as a sharp threshold on the sample size.

In particular, ψ(B∗,Σ(1:K)) captures the sparsity of B∗ and the statistical properties of the

design matrices, which are important in determining the sufficient and necessary conditions

for successful recovery of the support union. The property of ψ(B∗,Σ(1:K)) also captures

the advantages of the multi-task Lasso over solving each problem individually via the single-

task Lasso. We show that when the K tasks share the same support sets (although the

design matrices can be differently distributed), ψ(B∗,Σ(1:K)) = 1
K

max1≤k≤K ψ(
−→
β ∗k,Σ

(k)).

4



This means that the number of samples needed per task for multi-task Lasso to jointly

recover the support union is reduced by K compared to that of single-task Lasso to recover

each support set individually. On the other hand, if the K tasks have disjoint support sets,

then ψ(B∗,Σ(1:K)) = max1≤k≤K ψ(
−→
β ∗(k),Σ(k)). This implies that the number of samples

needed per task to correctly recover the support union is almost the same as that of single-

task Lasso to recover each support individually. Between these two extreme cases, tasks

can have overlapped support sets with different overlapping levels, and the impact of these

properties on the sample size for recovery of the support union is quantitatively captured by

ψ(B∗,Σ(1:K)).

1.2 Comparison to Previous Results

As we mentioned before, the MVMR model has also been studied in [1] and [2], in which

l1/l∞ and l1/l1 + l1/l∞-regularization were adopted for support union recovery, respectively.

In these studies, sharp threshold on sample complexity is characterized only for K = 2 and

under special conditions on 1
n
X

(k)T
Sk

X
(k)
Sk

. In our work, using l1/l2-regularized Lasso, we are

able to characterize the sharp threshold under standard regularization conditions.

The MVMR model (with differently distributed design matrices across tasks) can be viewed

as generalization of the multi-response model (with an identical design matrix across tasks)

studied in [29]. It is thus interesting to compare our results to the results in [29]. For the

scenario when the tasks share the same regression vector, it is shown in [29] that the major

advantage of jointly solving a multi-task Lasso problem over solving each single-task Lasso

problem individually is reduction of effective noise variance by the factor K. But the sample

size needed per task for recovery of the support union via multi-task Lasso is the same as

that needed for recovery of each support set individually via single-task Lasso. This implies

that multi-task Lasso does not offer benefit in reducing the sample size (in the order sense)

for this case. Our result, on the other hand, shows that the benefit in sample complexity

by using multi-task Lasso for recovery of support union arises when the design matrices

are differently distributed across tasks. For such a case, the sample size needed per task is

reduced by K via multi-task Lasso compared to recovery of each support set individually via

single-task Lasso. Consequently, our result is a nontrivial generalization of the result in [29].

For the scenario when the tasks have disjoint support sets, our result is consistent with the

result in [29], which suggests that there is no advantage of performing multi-task Lasso as

opposed to performing single-task Lasso for each task.

1.3 Relationship to Jointly Learning Multiple Markov Networks

One application of the MVMR linear regression model is to jointly learning multiple Gaussian

Markov network structures. In this context, it solves a multi-task neighbor selection problem.

This is also a natural scenario, in which features and their distributions vary across tasks.
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We consider K Gaussian Markov networks, each with p+ 1 nodes represented by X
(k)
1 , . . .

, X
(k)
p+1 for k = 1, . . . , K. The distribution of the Gaussian vector for graph k is given by

N
(

0,Σ
(k)
p+1

)
, where Σ

(k)
p+1 ∈ R(p+1)×(p+1). Assume for each graph, there are n i.i.d. samples

generated based on the joint distribution of the nodes. The objective is to estimate the

connection relationship of nodes based on the samples. We denote n samples of each variable

X
(k)
j by a column vector

−→
X

(k)
j ∈ Rn for j = 1, . . . , p+ 1 and k = 1, . . . , K. For each graph k

and each node with index a, the sample vector
−→
X

(k)
a can be expressed as:

−→
X (k)

a = X
(k)
−a
−→
β (k) +

−→
W (k)

a (5)

where X
(k)
−a is an n × p matrix that contains all column vectors

−→
X

(k)
j for j 6= a,

−→
β (k) is a

p-dimensional vector consisting of the estimation parameters of X
(k)
a given X

(k)
j with j 6= a,

and
−→
W

(k)
a is the n-dimensional Gaussian vector containing i.i.d. components with zero mean

and variance given by

σ
(k)
W

2
= V ar(X1a)− Cov(X1a, X1,−a)Cov

−1(X1,−a)Cov(X1,−a, X1a).

It has been shown that the nonzero components of the vector
−→
β (k) represent existence of

the edges between the corresponding nodes and node a in graph k. Hence, estimation of the

support set of
−→
β (k) provides an estimation of the graph structure, which is referred to as the

neighbor selection problem in [37].

Therefore, multi-task Lasso for the MVMR linear regression problem provides an useful

approach for joint neighbor selection over K graphs. It is clear that in this case, the design

matrices X
(k)
−a in general have different distributions across k, and hence the MVMR model

is well justified. We note that jointly learning multiple graphs has also been studied in [38]

and [39], which adopted a different objective function of the precision matrix Σ−1. Via the

MVMR linear regression model, we characterize the threshold-based sufficient and necessary

conditions for joint recovery of the graphs.

2 Problem Formulation and Notations

In this paper, we study the MVMR linear regression problem given by (3), which contains K

linear regressions. Here, the design matrices X(1), . . . , X(K) and noise vectors
−→
W (1), . . . ,

−→
W (K)

are Gaussian distributed, and are independent but not identical across k. For each task

k, X(k) has independent and identically distributed (i.i.d.) row vectors with each being

Gaussian with mean zero and covariance matrix Σ(k), and the noise vector
−→
W (k) has i.i.d.

components with each being Gaussian with mean zero and variance σ
(k)
W

2
. We let σmax =

max1≤k≤K σ
(k)
W

2
.

In (3),
−→
β ∗(k) denotes the true regression vector for each task k. We define the support

set for each
−→
β ∗(k) as Sk := {j ∈ {1, . . . , p}|

−→
β
∗(k)
j 6= 0}. The support union over K tasks is
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defined to be S := ∪Kk=1Sk. In this paper, we are interested in estimating the support union

jointly for K tasks.

We adopt the l1/l2-regularized Lasso to recover the support union for the MVMR linear

regression model. More specifically, we solve the multi-task Lasso given in (4) and rewritten

below:

min
B∈Rp×K

1

2n

K∑
k=1

∥∥∥−→Y (k) −X(k)−→β (k)
∥∥∥2

2
+ λn ‖B‖l1/l2 (6)

where B =
[−→
β (1), . . . ,

−→
β (K)

]
. In this way, the K linear regression problems are coupled

together via the regularization constraint. In this paper, we characterize conditions under

which the solution to the above multi-task Lasso problem correctly recover the support union

of the true regression vectors for K tasks.

2.1 Notations

We introduce some notations that we use in this paper. For a matrix A ∈ Rp×K , we define

the la/lb block norm as

‖A‖la/lb :=

 p∑
i=1

(
K∑
j=1

|Aij|b
)a/b

1/a

. (7)

We also define the operator norm for a matrix as

|||A|||a,b := sup
‖x‖b=1

‖Ax‖a.

In particular, we define the spectral norm as |||A|||2 = |||A|||2,2 and the l∞-operator norm as

|||A|||∞ = |||A|||∞,∞ = maxj=1,...,p

∑K
k=1 |Ajk|, which are special cases of the operator norm.

For matrix B =
[−→
β (1), . . . ,

−→
β (K)

]
that appears in (6),

−→
β (k) denotes its kth columns for k =

1, . . . , K. We further let Bi to be the ith row of B. Similarly, for B∗ =
[−→
β ∗(1), . . . ,

−→
β ∗(K)

]
that contains true regression vectors, its kth column is denoted by

−→
β ∗(k) and the ith row is

denoted by B∗i . We next define the normalized row vectors of B∗ as

Z∗i =


B∗i

‖B∗i ‖l2
if B∗i 6= 0

0 otherwise,

and define the matrix Z∗ to contain Z∗i as its ith row for i = 1, . . . , p. To avoid confusion,

we use B̂ to denote the solution to the multi-task Lasso problem (6).
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The support union S(B) for a matrix B ∈ Rp×K is denoted as S(B) = {i ∈ {1, . . . , p}|Bi 6=
0}, which includes indices of the nonzero rows of the matrix B. We use S to represent S(B∗)

(i.e., the true support union) for convenience and use Sc to denote the complement of the set

S. We let s = |S| denote the size of the set S. For any matrix X(k) ∈ Rn×p, the matrix X
(k)
S

contains the columns of matrix X(k) with column indices in the set S, and X
(k)
Sc contains the

columns of matrix X(k) with column indices in the set Sc. Similarly, B∗S and Z∗S respectively

contain rows of B∗ and Z∗ with indices in S.

As each row of matrix X(k) is Gaussian distributed as N (0,Σ(k)), we use Σ
(k)
SS to denote the

covariance matrix for each row of X
(k)
S , and use Σ

(k)
ScS to denote the cross covariance between

rows of X
(k)
Sc and X

(k)
S .

For convenience, we use Σ(1:K) to denote a set of matrices Σ(1), . . . ,Σ(K). We also define

the following functions of matrices Q(1:K) to simplify our notations:

ρu
(
Q(1:K)

)
:= max

j∈Sc
max

1≤k≤K
Q

(k)
jj ,

ρl
(
Q(1:K)

)
:= min

i,j∈Sc,j 6=i
min

1≤k≤K

[
Q

(k)
jj +Q

(k)
ii − 2Q

(k)
ji

]
.

In particular, our results contain the functions ρu

(
Σ

(1:K)
ScSc|S

)
and ρl

(
Σ

(1:K)
ScSc|S

)
, where Σ

(k)
ScSc|S

is the covariance matrix of each row of X
(k)
Sc with X

(k)
S given.

For matrix B∗, we define b∗min = minj∈S
∥∥B∗j∥∥l2 . We define the following function that

captures the sparsity of B∗ and the statistical properties of the design matrices X
(1:K)
S :

ψ(B∗,Σ(1:K)) := max
1≤k≤K

−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk, (8)

where
−→
Z ∗Sk is the kth column of Z∗S. We note that this definition of ψ(·) function is different

from the previous work [29] with the same design matrix for all tasks. Here, due to different

design matrices across the K tasks, ψ(·) depends on K quantities
−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk with

each depending on a column vector
−→
Z ∗Sk.

We denote g(·) = o (f(·)) if limn→∞
g(·)
f(·) → 0, and g(·) = O (f(·)) if limn→∞

g(·)
f(·) → co,

where the constant 0 < co <∞.

3 Main Results

In this section, we provide our main results on using l1/l2-regularized Lasso to recover the

support union for the MVMR linear regression model. Our results contain two parts: one is

the achievability, i.e., sufficient conditions for the l1/l2-regularized Lasso to recover the sup-

port union; and the other is the converse, i.e., conditions under which the l1/l2-regularized
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Lasso fails to recover the support union. We then discuss implications of our results by

considering a few representative scenarios, and compare our results with those for the mul-

tivariate linear regression with an identical design matrix across tasks.

3.1 Achievability and Converse

We first introduce a number of conditions on covariance matrices Σ(k) for k = 1, . . . , K,

which are useful for the statements of our results.

(C1). There exists a real number γ ∈ (0, 1] such that |||A|||∞ ≤ 1 − γ, where Ajs =

max1≤k≤K

∣∣∣∣∣
(

Σ
(k)
ScS

(
Σ

(k)
SS

)−1
)
js

∣∣∣∣∣ for j ∈ Sc and s ∈ S.

(C2). There exist constants 0 < Cmin ≤ Cmax < +∞ such that all eigenvalues of the

matrix Σ
(k)
SS are contained in the interval [Cmin, Cmax] for k = 1, . . . , K.

(C3). There exists a constant Dmax < +∞ such that max1≤k≤K

∣∣∣∣∣∣∣∣∣∣∣∣(Σ
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣
∞
≤ Dmax.

In this paper, we consider the asymptotic regime, in which p → ∞, s → ∞, and

log (p− s) → +∞. In such a regime, we introduce the conditions on the regularization

parameter and the sample size n as follows:

(P1). Regularization parameter λn =
√

f(p) log p
n

, where the function f(p) is chosen such

that f(p)→ +∞ as p→ +∞, and f(p) log p
n

→ 0 as n→∞, i.e., λn → 0 as n→ +∞.

(P2). Define ρ(n, s, λn) as

ρ(n, s, λn) :=

√
8σ2

maxs log s

nCmin
+ λn

(
Dmax +

12s

Cmin
√
n

)
and require ρ(n,s,λn)

b∗min
= o(1).

The following theorem characterizes sufficient conditions for recovery of the support union

via l1/l2-regularized Lasso.

Theorem 1. Consider the MVMR problem in the asymptotic regime, in which p → ∞,

s→∞ and log(p− s)→∞. We assume that the parameters
(
n, p, s, B∗,Σ(1:K)

)
satisfy the

conditions (C1)-(C3), and (P1)-(P2). If for some small constant v > 0,

n > 2(1 + v)ψ
(
B∗,Σ(1:K)

)
log(p− s)

ρu

(
Σ

(1:K)
ScSc|S

)
γ2

, (9)

then the multi-task Lasso problem (6) has a unique solution B̂, the support union S(B̂) is

the same as the true support union S(B∗), and ‖B̂ −B∗‖l∞/l2 = o(b∗min) with the probability
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greater than

1−K exp (−c0 log s)− exp (−c1 log (p− s)) (10)

where c0 and c1 are constants.

Theorem 1 provides sufficient conditions on the sample size such that the solution to the

l1/l2-regularized Lasso problem correctly recovers the support union of the MVMR linear

regression model. We next provides a theorem about the conditions on the sample size under

which the solution to the l1/l2-regularized Lasso problem fails to recover the support union.

Theorem 2. Consider the MVMR problem in the asymptotic regime, in which p → ∞,

s → ∞ and log(p − s) → ∞. We assume that the parameters
(
n, p, s, B∗,Σ(1:K)

)
satisfy

the conditions (C1)-(C2) and the conditions: s/n = o(1) and 1
λ2ns
→ 0. If for some small

constant v > 0,

n < 2(1− v)ψ(B∗,Σ(1:K)) log (p− s)
ρl

(
Σ

(1:K)
(ScSc|S)

)
(2− γ)2

, (11)

then with the probability greater than

1− exp(−c2s)− c3 exp
(
−c4

n

s

)
(12)

for some positive constants c2, c3 and c4, no solution B̂ to the multi-task Lasso problem (6)

recovers the true support union and achieves ‖B̂ −B∗‖l∞/l2 = o(b∗min).

The proofs of Theorems 1 and 2 are provided in Sections 5 and 6, respectively. Combining

Theorems 1 and 2, it is clear that the quantity ψ(B∗,Σ(1:K)) log(p− s) serves as a threshold

on the sample size n, which is tight in the order sense. As the sample size is above the

threshold, the multi-task Lasso recovers the true support union, and as the sample size

is below the threshold, the multi-task Lasso fails to recover the true support union. The

following proposition provides bounds on the scaling behavior of the function ψ(B∗,Σ(1:K))

in the asymptotic regime.

Proposition 1. Consider the MVMR linear regression model with the regression matrix B∗

and the covariance matrices Σ(1:K) satisfying the condition (C2), the function ψ(B∗,Σ(1:K))

is bounded as
s

KCmin
≤ ψ(B∗,Σ(1:K)) ≤ s

Cmin
.

The proof of the Proposition 1 is provided in Appendix A.

In the next subsection, we explore the properties of the quantity ψ(B∗,Σ(1:K)) in order to

understand the impact of sparsity of B∗ and covariance matrices Σ(1:K) on sample complexity

for recovering the support union.

10



3.2 Implications

The quantity ψ(B∗,Σ(1:K)) captures sparsity of B∗ and statistical properties of design ma-

trices Σ(1:K), and hence plays an important role in determining the conditions on the sample

size for recovery of the support union as shown in Theorems 1 and 2. In this section, we

analyze ψ(B∗,Σ(1:K)) for a number of representative cases in order to understand advantages

of multi-task Lasso which solves multiple linear regression problems jointly over single-task

Lasso which solves each linear regression problem individually.

We denote ψ(
−→
β ∗(k),Σ(k)) as the function corresponding to a single linear regression prob-

lem, where
−→
β ∗(k) represents the kth column of B∗. It is clear that ψ(

−→
β ∗(k),Σ(1:K)) cap-

tures the threshold on the sample size for the single-task Lasso problem. Comparison of

ψ(B∗,Σ(1:K)) and ψ(
−→
β ∗(k),Σ(k)) provides comparison between multi-task Lasso and single-

task Lasso in terms of the number of samples needed for recovery of the support union/set.

We explicitly express ψ(B∗,Σ(1:K)) and ψ(
−→
β ∗(k),Σ(k)) as follows:

ψ(B∗,Σ(1:K)) = max
1≤k≤K

∑
i∈S

∑
j∈S

B∗ikB
∗
jk

‖B∗i ‖l2
∥∥B∗j∥∥l2

((
Σ

(k)
SS

)−1
)
ij

(13)

ψ(
−→
β ∗(k),Σ(k)) =

∑
i∈S

∑
j∈S

−→
β
∗(k)
i

−→
β
∗(k)
j∣∣∣−→β ∗(k)

i

∣∣∣ ∣∣∣−→β ∗(k)
j

∣∣∣
((

Σ
(k)
SS

)−1
)
ij

(14)

where B∗ik denotes the (i, k)th entry of the matrix B∗ and
−→
β
∗(k)
i denotes the ith entry of the

vector
−→
β ∗(k).

We first study the scenario, in which all K tasks have the same regression vectors, and

hence have the same support sets.

Corollary 1. (Identical Regression Vectors) If B∗ has identical column vectors, i.e.,
−→
β ∗(k) =

−→
β ∗ for k = 1, . . . , K, then

ψ(B∗,Σ(1:K)) =
1

K
max

1≤k≤K
ψ(
−→
β ∗,Σ(k)). (15)

Proof. Under the assumption of the corollary, B∗ =
−→
β ∗~1TK , where

−→
β ∗ ∈ Rp. Hence,

−→
Z ∗Sk =

sign(
−→
β ∗S)√
K

, where the vector
−→
β ∗S contains components in the support S.

ψ(B∗,Σ(1:K)) = max
1≤k≤K

−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk

= max
1≤k≤K

sign(
−→
β ∗S)

T

√
K

(
Σ

(k)
SS

)−1 sign(
−→
β ∗S)√
K

=
1

K
max

1≤k≤K
ψ(
−→
β ∗,Σ(k)). (16)

11



Remark 1. Corollary 1 implies that the number of samples per task needed to correctly

recover the support union via multi-task Lasso is reduced by a factor of K compared to

single-task Lasso that recovers each support set individually.

It can be seen that although the K tasks involve design matrices that have different

covariances, as long as dependence of the output variables on the feature variables is the

same for all tasks, the tasks share samples in multi-task Lasso to recover the support union

so that the sample size needed per task is reduced by a factor of K. Hence, there is a

significant advantage of grouping tasks with similar regression vectors together for multi-

task learning.

Corollary 1 can be viewed as a generalization of the result in [29], in which the design

matrices for the tasks are the same. The result in [29] suggests that if the tasks share the

same regression vector, there is no benefit in terms of the number of samples needed for

support recovery using multi-task Lasso compared to single-task Lasso. Our result suggests

that the benefit of multi-task Lasso in fact arises when the design matrices are differently

distributed. For such a case, we show that the sample size needed per design matrix (i.e.,

per task) is reduced by the factor K.

Moreover, compared to recovery of each support set individually via single-task Lasso,

multi-task Lasso also reduces sample size per task by the factor K. However, such an

advantage does not appear if the K tasks have the same design matrix and regression vectors

as in [29].

We next study a more general case when regression vectors are also different across tasks

(but the support sets of tasks are the same) in addition to varying design matrices across

tasks.

Corollary 2. (Varying Regression Vectors with Same Supports) Suppose all entries B∗jk > 0

for j ∈ S and k = 1, . . . , K, and all coefficients are bounded, i.e., B̄k−∆k ≤ B∗jk ≤ B̄k+∆k,

where ∆k > 0 is a small perturbation constant with B̄k > ∆k. Then,

ψ(B∗,Σ(1:K))

max1≤k≤K ψ(
−→
β ∗(k),Σ(k))

≤ 1

K
max

1≤k≤K

(
B̄k + ∆k

)2(
B̄k −∆k

)2 .

Proof. Based on the assumption forB∗, we obtain the following upper bound on ψ(B∗,Σ(1:K))

and lower bound on ψ(
−→
β ∗(k),Σ(k)):

ψ(B∗,Σ(1:K)) ≤ 1

K
max

1≤k≤K

1(
B̄k −∆k

)2

∑
i∈S

∑
j∈S

B∗ikB
∗
jk

((
Σ

(k)
SS

)−1
)
ij

; (17)

ψ(
−→
β ∗(k),Σ(k)) ≥ 1(

B̄k + ∆k

)2

∑
i∈S

∑
j∈S

B∗ikB
∗
jk

((
Σ

(k)
SS

)−1
)
ij

. (18)

12



Combining the above bounds, we obtain

ψ(B∗,Σ(1:K))

max1≤k≤K ψ(
−→
β ∗(k),Σ(k))

≤ 1

K
max

1≤k≤K

(
B̄k + ∆k

)2(
B̄k −∆k

)2 .

Corollary 2 is a strengthened version of Corollary 1 in that Corollary 2 allows both the

regression vectors and design matrices to be different across tasks and still shows that the

number of samples needed is reduced by a factor of K compared to single-task Lasso, as long

as the support sets across tasks are the same.

Corollary 3. (Disjoint Support Sets) Suppose the distribution of all design matrices are the

same, i.e., Σ(k) = Σ for k = 1, . . . , K, and suppose that the support sets Sk of all tasks are

disjoint. Let sk = |Sk|, and hence s =
∑K

k=1 sk. Then,

ψ(B∗,Σ(1:K)) = max
1≤k≤K

ψ(
−→
β ∗(k),Σ(k)),

where Σ(1:K) = (Σ, . . . ,Σ).

Proof. By the assumption of the corollary, we obtain:

ψ(B∗,Σ(1:K)) = max
1≤k≤K

sign
(−→
β
∗(k)
S

)T
Σ−1
SS sign

(−→
β
∗(k)
S

)
= max

1≤k≤K
ψ(
−→
β ∗(k),Σ(k)). (19)

We note that

max
1≤k≤K

ψ(
−→
β ∗(k),Σ(k)) log (p− s) ≤ max

1≤k≤K
ψ(
−→
β ∗(k),Σ(k)) log (p− sk).

Since the number of samples needed per task for multi-task Lasso is proportional to

max1≤k≤K ψ(
−→
β ∗(k),Σ(k)) log (p− s), and the number of samples needed for single-task Lasso

for task k is proportional to ψ(
−→
β ∗(k),Σ(k)) log (p− sk), the above equation implies that the

required number of samples for multi-task Lasso is smaller than (in fact almost the same as)

that for single-task Lasso.

Corollary 3 suggests that if the tasks have disjoint support sets for regression vectors,

the advantage of the multi-task Lasso vanishes. This is reasonable because the tasks do

not benefit from sharing the samples for recovering the supports if their support sets are

disjoint. The essential message of Corollary 3 should not change if the tasks have different

design matrices and/or different regression vectors. The critical assumption in Corollary 3

is the disjoint support sets.

13



Corollaries 1 and 3 provide two extreme cases when the tasks share the same support

sets and have disjoint support sets, respectively. The number of samples needed per task

for recovery of the support union goes from 1/K of to the same as the sample size needed

for single-task Lasso. Between these two extreme cases, tasks may have overlapped support

sets with various overlapping levels. Correspondingly, the number of samples needed for

recovering the support union should depend on the overlapping levels of the support sets

and is captured precisely by the quantity ψ(B∗,Σ(1:K)). We demonstrate such behavior via

our numerically results in the next section.

4 Numerical Results

In this section, we provide numerical simulations to demonstrate our theoretical results on

using block-regularized multi-task Lasso for recovery of the support union for the MVMR

linear regression model. We study how the sample size needed for correct recovery of the

support union depends on sparsity of the regression vectors, on the distributions of the design

matrices, and on the number of tasks.

We first study the scenario considered in Corollary 1 when the K tasks have the same

regression vectors, i.e., B∗ =
−→
β ∗~1TK . We set

−→
β ∗ = 1√

K
~1S, where S is the common support

set across K tasks. We set the covariance matrix Σ(k) to be different across K tasks as

follows. For k = 1, . . . , K, we set Cov(Xa, Xb) > 0 (where a, b ∈ {1, 2, . . . , p}) if a =

b ± 1, and otherwise Cov(Xa, Xb) = 0. In particular, Cov(Xa, Xb) = 1 + 1/k if a = b ± 1

and a is odd, and Cov(Xa, Xb) = 1 − 0.8/k if a = b ± 1 and a is even. The sparsity of

linear regression vectors is linearly proportional to the dimension p, i.e., s = αp, with the

parameter α controlling the sparsity of the model. We set α = 1/8. We choose the dimension

p = 128, 256, 512. We set the regularization parameter λn = 3.5×
√

log (p− s) log s/n. We

solve the l1/l2-regularized multi-task Lasso problem (6) for recovery of the support union for

K = 2, 4, 6, 8.

Fig. 1 plots the probability of correct recovery of the support union as a function of the

scaled sample size. It can be seen that the sample size for guaranteeing correct recovery

scales in the order of s log(p− s) for all plots. Moreover, as the number of tasks K increases,

the sample size (per task) needed for correct recovery decreases inversely proportionally with

K, which is consistent with Corollary 1. These results demonstrate that when the regression

vectors are the same across tasks, multi-task Lasso has a great advantage compared to

single-task Lasso in terms of reduction in the sample size needed per task.

We are also interested in the influence of non-equal regression values on the sample size

for correct recovery. Our next experiment is taken for the scenario in which all tasks share

the same support sets but have non-equal regression values across tasks. For k = 1, . . . , K,−→
β
∗(k)
j = 1√

K
×
(
1 + k

16

)
for j = 16tpe, and

−→
β
∗(k)
j = 1√

K
×
(
1− k

16

)
for j = 16tpe+8, where tpe is

any nonnegative integer such that j ≤ p. The covariance matrices Σ(k) are set to be identical

14
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Figure 1: Impact of number of tasks on the sample size for scenarios with identical regression
vectors and varying distributions for design matrices across tasks
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Figure 2: Impact of number of tasks on the sample size for scenarios with non-equal regression
values and identical design matrix distribution across tasks
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across all tasks. We set Cov(Xa, Xb) = 1 (where a, b ∈ {1, 2, . . . , p}) if a = b ± 1, and

otherwise Cov(Xa, Xb) = 0. Other parameters are chosen to be the same as the experiment

in Fig. 1. Fig. 2 plots how the probability of correct recovery changes with the sample size

for p = 128, 256, 512. It exhibits the same behavior as Fig. 1, although now the regression

vectors have unequal values across tasks. In particular, it can be seen that the sample size

needed for correct recovery decreases as the number of tasks increased, demonstrating the

advantage of multi-task Lasso.

We next study how the overlapping levels of the support sets across tasks affect the

sample size for correct recovery of the support union. We set K = 2, i.e., two tasks,

and study three overlapping models for the two tasks: (1) same support sets S1 = S2 =

{j ≤ p : 8tpe + 1, where integer tpe ≥ 0}; (2) disjoint support sets S1

⋂
S2 = φ in

which S1 = {j ≤ p : 16tpe + 1, where integer tpe ≥ 0} and S2 = {j ≤ p : 16tpe +

2, where integer tpe ≥ 0}; (3) overlapping support sets in which S1 = {j ≤ p : j = 24tpe + 1

or j = 24tpe + 2 where integer tpe ≥ 0}, and S2 = {j ≤ p : j = 24tpe + 2 or j =

24tpe+3 where integer tpe ≥ 0}. We choose the linear sparsity model with α = 1/8. We set

p = 128, 256, 512, and Σ(k) = Ip for k = 1 and 2. We also set λn = 3.5×
√

log (p− s) log s/n.

Fig. 3 compares the probability of correct recovery as a function of the scaled sample size

for the three overlapping models. It can be seen that the model with the same support set

requires the smallest sample size, and the model with disjoint support sets requires the largest

sample size. The model with overlapping support sets needs the sample size between the two

extreme models. This is reasonable because as the support sets overlap more, tasks share

more information in samples for support recovery and hence need less number of samples for

correct recovery.

The preceding experiment is taken for the case when the design matrices of the two tasks

have the same covariance matrix and the regression vectors are identical on overlapping

entries. It is interesting to investigate how non-equal values in regression vectors and different

covariance matrices across the two tasks affect the sample complexity. We first study the case

when the regression vectors of the two tasks do not have the same values on the overlapping

entries. For the case when the two tasks have the same support sets, we let
−→
β
∗(k)
j = 1√

K
×(

1 + k
16

)
for j = 16tpe, and

−→
β
∗(k)
j = 1√

K
×
(
1− k

16

)
for j = 16tpe + 8, where integer tpe ≥ 0

such that j ≤ p for k = 1, 2. For the overlapping model, S1 and S2 are the same as the

preceding experiment. For k = 1,
−→
β
∗(k)
j = 1 if j = 24tpe + 1, and

−→
β
∗(k)
j = 1√

K
×
(
1 + 1

16

)
if j = 24tpe + 2, where integer tpe ≥ 0 such that j ≤ p. For k = 2,

−→
β
∗(k)
j = 1√

K
×
(
1− 1

16

)
if j = 24tpe + 2, and

−→
β
∗(k)
j = 1 if j = 24tpe + 3, where integer tpe ≥ 0 such that j ≤ p.

For the disjoint case, the regression vectors are the same as the preceding experiment since

no overlapping exists in the disjoint model. Other parameters (Σ(1:K), n, p, s, λ) are kept

the same as the preceding experiment. Fig. 4 plots the probability of correct recovery of

the support union versus the scaled sample size for this experiment. It can be observed

that Fig. 4 exhibits same behavior as Fig. 3 and demonstrates that higher overlapping level
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Figure 3: Impact of overlapping levels of support sets on the sample size with same regression
values for overlapping entries and identical distributions for design matrices across tasks
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Figure 4: Impact of overlapping levels of support sets on the sample size with non-equal
regression values for overlapping entries and identical covariance matrices across tasks
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Figure 5: Impact of overlapping levels of support sets on the sample size with same regression
values for overlapping entries and varying covariance matrices across tasks

across two tasks leads to smaller sample size needed for recovery, although the regression

vectors do not match values for the overlapping entries. We also denote that more careful

comparison of Fig. 4 and Fig. 3 suggests that the model with perturbation on overlapping

entries in regression vectors requires a slightly larger sample size than the model without

perturbation.

We finally study how the varying covariance matrices across the two tasks influence the

result. We set the covariance matrices Σ(k) for k = 1, 2 as follows. We let Cov(Xa, Xb) > 0

(a, b ∈ {1, 2, . . . , p}) if a = b ± 1, and otherwise Cov(Xa, Xb) = 0. More specifically, we

let Cov(Xa, Xb) = 1 + 1/k if a = b ± 1 and a is odd, and Cov(Xa, Xb) = 1 − 0.8/k if

a = b ± 1 and a is even. Other parameters (B∗, n, p, s, λ) are the same as the experiment

in Fig. 3. Fig. 5 compares the probability of correct recovery versus the scaled sample

size for the three overlapping models under the varying covariance matrices but the same

values for overlapping regression entries across the two tasks. The behavior is similar to

that in Fig. 3 and Fig. 4. More careful comparison of Fig. 5 and Fig. 3 suggests that the

varying covariance matrices across the two tasks require larger sample size than the case

with identical covariance matrices.
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5 Proof of Theorem 1

Our proof applies the framework developed in [18] and in [29] based on the idea of primal-

dual witness. However, for the MVMR model, we need to develop novel adaption due to

varying design matrices across tasks. In [29], since the model can be expressed by a matrix

operation on regression matrix, the proof involves many operations for matrices, for which

properties/bounds for matrices can be applied. However, the MVMR model is expressed by

K operations on individual regression vectors. The proof mostly involves first manipulat-

ing/bounding individual regression vectors and then integrating these manipulations/bounds

together for conditions across all tasks. Our adaption needs to make bounds in both steps as

tight as possible in order to develop sharp threshold conditions. We next present our proof

in detail.

The objective function in the multi-task Lasso problem given in (6) is convex, and hence the

following Karush-Kuhn-Tucker (KKT) condition is sufficient and necessary to characterize

an optimal solution:

∇Bf(B) + λnZ = 0 (20)

where f(B) = 1
2n

∑K
k=1

∥∥∥−→Y (k) −X(k)−→β (k)
∥∥∥2

, and Z ∈ ∂‖B‖l1/l2 .

Before introducing the sufficient conditions, we first present the following lemma which

provides an important property about the optimal solution to the above problem.

Lemma 1. Suppose there exists an optimal solution B̂ to the multi-task Lasso problem given

in (6). Suppose Ẑ is in the subdifferential of ‖B‖l1/l2 at B̂, and satisfies the KKT condition in

(20) jointly with B̂. Suppose that Ẑ satisfies
∥∥∥ẐΩ

∥∥∥
l∞/l2

< 1, where ẐΩ denotes the submatrix

that contains rows of Ẑ with indices in the set Ω. Then any optimal solution B̃ to (6) must

satisfy B̃Ω = 0.

The proof of Lemma 1 is similar to that of Lemma 1 in [18]. For completeness of our

paper, we provide the proof of Lemma 1 in Appendix B.

We now construct a pair (B̂, Ẑ) that satisfy the KKT condition in (20). We first let B̂S

be an optimal solution to the following optimization problem:

B̂S = argminBS

[
f(B)|BSc=0 + λn ‖BS‖l1/l2

]
(21)

and let ẐS be the associated element in the subdifferential of ‖BS‖l1/l2 such that (B̂S, ẐS)

satisfy the KKT condition for the optimization problem given in (21). We then let B̂Sc = 0,

and let ẐSc be an element in the subdifferential of ‖BSc‖l1/l2 that satisfies the KKT condition

jointly with B̂Sc = 0 for the following problem

argminBSc

[
f(B)|BS=B̂S

+ λn ‖BSc‖l1/l2
]
. (22)
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Such ẐSc must exist if the KKT condition for the optimization problem (22) implies
∥∥∥ẐSc

∥∥∥
l∞/l2

≤

1. Now it is easy to see that (B̂, Ẑ) obtained above satisfies the KKT condition in (20)

and is hence an optimal solution to the problem (6). Furthermore, following Lemma 1, if∥∥∥ẐSc

∥∥∥
l∞/l2

< 1, then any optimal solution B̃ to (6) satisfies B̃Sc = 0. Therefore, condition∥∥∥ẐSc

∥∥∥
l∞/l2

< 1 guarantees both that there exists an optimal solution with the structure

described as above and that all optimal solutions B̃ satisfies B̃Sc = 0. Furthermore, the

condition
∥∥∥ẐSc

∥∥∥
l∞/l2

< 1 guarantees uniqueness of the optimal solution. The arguments

follow from the proof of Lemma 2 in [18].

We next proceed to characterize the conditions that guarantee
∥∥∥ẐSc

∥∥∥
l∞/l2

< 1. For j ∈ Sc

and k = 1, . . . , K, we have

Ẑjk =− 1

λnn

−→
X

(k)
j

T (
Π

(k)
S − In

)−→
W (k) +

1

n

−→
X

(k)
j

T
X

(k)
S

(
Σ̂

(k)
SS

)−1 −̂→
Z Sk, (23)

where
−→
X

(k)
j denotes the jth column of the matrix X(k), Σ̂

(k)
SS = 1

n
X

(k)
S

T
X

(k)
S , and Π

(k)
S =

X
(k)
S

(
Σ̂

(k)
SS

)−1
X

(k)
S

T

n
. The steps to obtain the above Ẑjk is provided in Appendix C for complete-

ness.

Analysis of VSc: We let Vj =
(
Ẑj1, . . . , ẐjK

)
. We need to characterize the conditions so

that ‖Vj‖l2 < 1 for all j ∈ Sc with high probability. We write Vj into three terms as follows

Vj = E
(
Vj | X(1:K)

S

)
︸ ︷︷ ︸

Tj1

+ E
(
Vj | X(1:K)

S ,
−→
W (1:K)

)
− E

(
Vj | X(1:K)

S

)
︸ ︷︷ ︸

Tj2

+ Vj − E
(
Vj | X(1:K)

S ,
−→
W (1:K)

)
︸ ︷︷ ︸

Tj3

(24)

where X
(1:K)
S =

(
X

(1)
S , . . . , X

(K)
S

)
and

−→
W (1:K) =

(−→
W (1), . . . ,

−→
W (K)

)
. We next evaluate

Tj1, Tj2, and Tj3 one by one.

Evaluation of Tj1: By the definition of ẐS, we have the following conditional independen-

cies:(−→
W (k) ⊥

−→
X

(k)
j

∣∣∣X(1:K)
S

)
,

(
−̂→
Z Sk ⊥

−→
X

(k)
j

∣∣∣X(1:K)
S

)
,

(
−̂→
Z Sk ⊥

−→
X

(k)
j

∣∣∣X(1:K)
S ,

−→
W (1:K)

)
. (25)
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Given the above independence properties, we first derive

E
(
Ẑjk

∣∣∣X(1:K)
S

)
=− 1

λnn
E
(−→
X

(k)
j

T
∣∣∣X(1:K)

S

)(
Π

(k)
S − In

)
E
(−→
W (k)

)
+

1

n
E
(−→
X

(k)
j

T
∣∣∣X(1:K)

S

)
X

(k)
S

(
Σ̂

(k)
SS

)−1

E

(
−̂→
Z Sk

∣∣∣X(1:K)
S

)
=Σ

(k)
jS

(
Σ

(k)
SS

)−1

E

(
−̂→
Z Sk

∣∣∣X(1:K)
S

)
(26)

for j ∈ Sc, where Σ
(k)
jS represents the covariance between a component in

−→
X

(k)
j and a row in

X
(k)
S . We then obtain the following bound on ‖Tj1‖l2 with the proof provided in Appendix

D:

‖Tj1‖l2 ≤
|S|∑
a=1

Aja, (27)

where Aja = maxk

∣∣∣∣∣
(

Σ
(k)
ScS

(
Σ

(k)
SS

)−1
)
ja

∣∣∣∣∣ for j ∈ Sc and a ∈ S. We hence obtain

max
j∈Sc
‖Tj1‖l2 ≤ max

j∈Sc

|S|∑
a=1

Aja = |||A|||∞ ≤ 1− γ.

Evaluation of Tj2: Due to the independency

(
−̂→
Z Sk ⊥

−→
X

(k)
j |X

(1:K)
S ,

−→
W (1:K)

)
, we obtain

E
(
Ẑjk

∣∣∣X(1:K)
S ,

−→
W (1:K)

)
=− 1

λnn
E
(
X

(k)
j

T
∣∣∣X(1:K)

S ,
−→
W (1:K)

)(
Π

(k)
S − In

)−→
W (k)

+
1

n
E
(
X

(k)
j

T
∣∣∣X(1:K)

S ,
−→
W (1:K)

)
X

(k)
S

(
Σ̂

(k)
SS

)−1

E

(
−̂→
Z Sk

∣∣∣X(1:K)
S ,

−→
W (1:K)

)
=Σ

(k)
jS

(
Σ

(k)
SS

)−1 −̂→
Z Sk (28)

where the second equality follows because
−̂→
Z Sk is a function of X

(1:K)
S and

−→
W (1:K). We then

obtain

E
(
Ẑjk

∣∣∣X(1:K)
S ,

−→
W (1:K)

)
− E

(
Ẑjk

∣∣∣X(1:K)
S

)
= Σ

(k)
jS

(
Σ

(k)
SS

)−1
(
−̂→
Z Sk − E

(
−̂→
Z Sk

∣∣∣X(1:K)
S

))
.

(29)

Thus, following from steps similar to those in Appendix D, we obtain

‖Tj2‖l2 ≤
|S|∑
a=1

Aja

∥∥∥ẐS − E(ẐS|X(1:K)
S )

∥∥∥
l∞/l2

, (30)
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and hence

max
j∈Sc
‖Tj2‖l2 ≤max

j∈Sc

|S|∑
a=1

Aja

∥∥∥ẐS − E(ẐS|X(1:K)
S )

∥∥∥
l∞/l2

=|||A|||∞
∥∥∥ẐS − E(ẐS|X(1:K)

S )
∥∥∥
l∞/l2

≤(1− γ)
∥∥∥ẐS − E(ẐS|X(1:K)

S )
∥∥∥
l∞/l2

≤(1− γ)
∥∥∥ẐS − Z∗S∥∥∥

l∞/l2
+ (1− γ)E

[∥∥∥ẐS − Z∗S∥∥∥
l∞/l2

∣∣∣X(1:K)
S

]
. (31)

We next provide the following lemma given in [29], which is useful for our proof.

Lemma 2. [29] Consider the matrix ∆ ∈ RS×K with rows ∆i :=
B̂i−B∗i
‖B∗i ‖2

. If ‖∆‖l∞/l2 < 1
2
,

then

‖ẐS − Z∗S‖l∞/l2 ≤ 4‖∆‖l∞/l2 .

By applying the above lemma, given the condition ‖∆‖l∞/l2 < 1
2

that we will show later,

we obtain

max
j∈Sc
‖Tj2‖l2 ≤ 4(1− γ)

(
‖∆‖l∞/l2 + E

[
‖∆‖l∞/l2

∣∣∣X(1:K)
S

])
We will show later in the analysis of US that ‖∆‖l∞/l2 is of order o(1) with high probability,

and hence the above inequality holds with high probability.

Evaluation of Tj3: We introduce the vector
−→
D (k) such that

Ẑjk =− 1

λnn

−→
X

(k)
j

T (
Π

(k)
S − In

)−→
W (k) +

1

n

−→
X

(k)
j

T
X

(k)
S

(
Σ̂

(k)
SS

)−1 −̂→
Z Sk

=
−→
X

(k)
j

T−→
D (k). (32)

It is clear that for j ∈ Sc,

Cov
(−→
X

(k)
j |X

(1:K)
S ,

−→
W (1:K)

)
=
(

Σ
(k)
ScSc|S

)
jj
In.

Under the condition that X
(1:K)
S and

−→
W (1:K) are given, we have(

Ẑjk|X(1:K)
S ,

−→
W (1:K)

)
− E

[
Ẑjk|X(1:K)

S ,
−→
W (1:K)

]
∼ N (0, σ2

jk) (33)

where

σ2
jk =

1

n

(
Σ

(k)
ScSc|S

)
jj

−̂→
Z
T

Sk

(
Σ̂

(k)
SS

)−1 −̂→
Z Sk −

1

n2λ2
n

(
Σ

(k)
ScSc|S

)
jj

−→
W (k)

T (
Π

(k)
S − In

)−→
W (k). (34)
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Given
(
X

(1:K)
S ,

−→
W (1:K)

)
, Ẑjk is independently distributed across k for k = 1, . . . , K. Hence,

Ẑjk − E
[
Ẑjk|X(1:K)

S ,
−→
W (1:K)

]
d.
= σjkξjk given

(
X

(1:K)
S ,

−→
W (1:K)

)
(35)

where ξjk ∼ N (0, 1) is independently distributed across k for k = 1, . . . , K. Thus,∥∥∥Vj − E
[
Vj

∣∣∣X(1:K)
S ,

−→
W (1:K)

]∥∥∥2

l2

d.
=

K∑
k=1

σ2
jkξ

2
jk given

(
X

(1:K)
S ,

−→
W (1:K)

)
. (36)

We hence obtain

max
j∈Sc
‖Tj3‖2

l2

d.
= max

j∈Sc

K∑
k=1

σ2
jkξ

2
jk

≤ max
j∈Sc

max
1≤k≤K

σ2
jk max

j∈Sc

(
K∑
k=1

ξ2
jk

)
given

(
X

(1:K)
S ,

−→
W (1:K)

)
(37)

We next provide a useful bound for χ2 random variable, which was given in [29].

Lemma 3. [29] Let Z be a central χ2 distributed random variable with the degree d. Then

for all t > d, we have

P (Z ≥ 2t) ≤ exp

(
−t

[
1− 2

√
d

t

])
.

Applying the above lemma, we obtain for all t > K,

P

(
max
j∈Sc

(
K∑
k=1

ξ2
jk

)
> 2t

)
≤ (p− s)P

((
K∑
k=1

ξ2
jk

)
> 2t

)

≤ (p− s) exp

(
−t

[
1− 2

√
K

t

])
(38)

By applying the bound on σ2
jk derived in appendix E together with (38), we further have

max
j∈Sc
‖Tj3‖2

l2
≤ 2tρu

(
Σ

(1:K)
ScSc|S

)(ψ(B∗,Σ(1:K))

n
+ Γ

)
(39)

with the probability larger than

1− 2(K + 1) exp
(
−s

2

)
− 4(K + 1) exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)

−K exp
(
− log s+ 2

√
2 log s

)
− (p− s) exp

(
−t

[
1− 2

√
K

t

])

− exp

(
−5(n− s)

[
1− 2

√
1

5

])
(40)
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for t > K, where

Γ =
16s ‖∆‖l∞/l2

nCmin
(1 + 2 ‖∆‖l∞/l2) +

12

Cmin

( s
n

) 3
2

+
10(n− s)σ(k)

W

2

n2λ2
n

. (41)

For n large enough, Γ converges to zero with an order o
(
s
n

)
. We also note that ψ(B∗,Σ(1:K))

has an order O(s) based on Proposition 1. In (39), we set t = 1+v
1+δ

log (p− s) where v > 0

and δ = v/(3v + 4). We can then show that if

n > 2(1 + v)ψ
(
B∗,Σ(1:K)

)
log(p− s)

ρu

(
Σ

(1:K)
ScSc|S

)
γ2

,

then

max
j∈Sc
‖Tj3‖l2 < γ (42)

with the probability larger than

1− 2(K + 1) exp
(
−s

2

)
− 4(K + 1) exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
−K exp

(
− log s+ 2

√
2 log s

)
− exp

(
−v

2
log (p− s)

)
− exp

(
−5(n− s)

[
1− 2

√
1

5

])
. (43)

It follows from (24) that

‖Vj‖l2 ≤ ‖Vj1‖l2 + ‖Vj2‖l2 + ‖Vj3‖l2 .

Combining the above equation with the evaluation for Tj1, Tj2, Tj3, we conclude that ‖Vj‖l2 <
1.

Analysis of US: We have obtained the sufficient conditions for the existence and uniqueness

of an optimal solution to the problem given in (6), which guarantees B̂Sc = 0. It remains

to characterize conditions such that all rows of B̂S are nonzero and hence S(B̂) recovers the

true support union.

In order to guarantee that every row of B̂S is nonzero, it suffices to guarantee that

‖US‖l∞/l2 ≤
1

2
b∗min

where

US = B̂S −B∗S =
[−→
U

(1)
S . . .

−→
U

(K)
S

]
.
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Each column
−→
U

(k)
S is given by

−→
U

(k)
S :=

−̂→
β

(k)

S −
−→
β
∗(k)
S =

(
Σ̂

(k)
SS

)−1
(

1

n
X

(k)T
S

−→
W (k) − λn

−̂→
Z Sk

)
. (44)

It suffices to guarantee that ∥∥∥−→U (k)
S

∥∥∥
l∞
≤ 1

2K
b∗min,

for k = 1, . . . , K. In order to bound
∥∥∥−→U (k)

S

∥∥∥
l∞

, we define

−̃→
W

(k)

=
1√
n

(
Σ̂

(k)
SS

)− 1
2
X

(k)T
S

−→
W (k),

and hence
−→
U

(k)
S =

1√
n

(
Σ̂

(k)
SS

)− 1
2 −̃→
W

(k)

− λn
(

Σ̂
(k)
SS

)−1 −̂→
Z Sk.

We then obtain the following bound∥∥∥−→U (k)
S

∥∥∥
l∞
≤

∥∥∥∥∥ 1√
n

(
Σ̂

(k)
SS

)− 1
2 −̃→
W

(k)
∥∥∥∥∥
l∞︸ ︷︷ ︸

T ′k1

+λn

∥∥∥∥(Σ̂
(k)
SS

)−1 −̂→
Z Sk

∥∥∥∥
l∞︸ ︷︷ ︸

T ′k2

. (45)

We next evaluate the bounds on the two terms T ′k2 and T ′k1, respectively.

Evaluation of T ′k2: We first derive the following bound∥∥∥∥(Σ̂
(k)
SS

)−1 −̂→
Z Sk

∥∥∥∥
l∞

≤ max
i∈S

∑
j∈S

∣∣∣∣∣
((

Σ̂
(k)
SS

)−1
)
ij

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣∣∣∣∣∣∣(Σ

(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣
∞

+

∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1

−
(

Σ
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣
∞

(a)

≤ Dmax +
√
s

∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1

−
(

Σ
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

(b)

≤ Dmax +
12s

Cmin
√
n

(46)

with probability larger than 1−2 exp
(
− s

2

)
−3 exp

(
−n

2

(
1
4
−
√

s
n

)2

+

)
. In the above derivation,

step (a) follows from the assumption of the theorem and |||A|||∞ ≤
√
s|||A|||2 for A ∈ Rs×n,

and step (b) applies the bound given in (95) in Appendix F. Therefore,

T ′k2 ≤ λn

(
Dmax +

12s

Cmin
√
n

)
(47)
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with probability larger than 1− 2 exp
(
− s

2

)
− 3 exp

(
−n

2

(
1
4
−
√

s
n

)2

+

)
.

Evaluation of T ′k1: We first have

E

(
−̃→
W

(k)−̃→
W

(k)T ∣∣∣X(1:K)
S

)
= E

((
Σ̂

(k)
SS

)− 1
2 1

n
X

(k)T
S

−→
W (k)−→W (k)TX

(k)
S

(
Σ̂

(k)
SS

)− 1
2
∣∣∣X(1:K)

S

)
= σ

(k)
W

2
IS (48)

which implies that given X
(1:K)
S ,

−̃→
W

(k)

has i.i.d. components with each being Gaussian dis-

tributed as N
(

0, σ
(k)
w

2
)

. Hence, given X
(1:K)
S , we have

T ′k1 ≤
∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂

(k)
SS

)− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣
∞

∥∥∥∥∥∥∥
−̃→
W

(k)

√
n

∥∥∥∥∥∥∥
l∞

≤ σmax

√
2s

Cmin
max
j∈S

√
1

n
ξ2
j (49)

with probability larger than 1−exp
(
−n

2

(
1
4
−
√

s
n

)2

+

)
, where σmax = max1≤k≤K σ

(k)
W , and ξj is

the standard Gaussian random variable. The second inequality in the preceding derivation

follows because |||A|||∞ ≤
√
s|||A|||2 for A ∈ Rs×n, and from the bound (93) provided in

Appendix F. By applying Lemma 3 with d = 1, we have

P

(
1

n
max
j∈S

ξ2
j ≥

2t

n

)
≤ s · exp

(
−t

[
1− 2

√
1

t

])
. (50)

By setting t = 2 log s in the above bound, we then obtain

T ′k1 ≤ σmax

√
2s

Cmin
·
√

2t

n
≤

√
8s log (s)σ2

max

nCmin
(51)

with the probability larger than

1− exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
− exp

(
− log s+ 2

√
2 log s

)
. (52)

Combining the bounds on T ′k1 and T ′k2, we obtain

∥∥∥−→U (k)
S

∥∥∥
l∞
≤

√
8s log (s)σ2

max

nCmin
+ λn

(
Dmax +

12s

Cmin
√
n

)
= ρ(n, s, λn) (53)

with the probability larger than

1− 2 exp
(
−s

2

)
− 4 exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
− exp

(
− log s+ 2

√
2 log s

)
. (54)
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Thus, the assumption ρ(n,s,λn)
b∗min

= o(1) guarantees that
∥∥∥−→U (k)

S

∥∥∥
l∞
≤ 1

2K
b∗min for sufficiently

large n.

Furthermore, we derive the following bound

‖∆‖l∞/l2 ≤

∥∥∥B̂S −B∗S
∥∥∥
l∞/l2

minj∈S
∥∥B∗j∥∥2

=
‖US‖l∞/l2
b∗min

≤ maxj∈S
∑K

k=1 |Ujk|
b∗min

≤
K∑
k=1

maxj∈S |Ujk|
b∗min

=
K∑
k=1

∥∥∥−→U (k)
S

∥∥∥
l∞

b∗min
≤ Kρ(n, s, λn)

b∗min
= o(1) (55)

with the probability larger than

1− 2K exp
(
−s

2

)
− 4K exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
−K exp

(
− log s+ 2

√
2 log s

)
. (56)

Summarizing the analysis of VSc and US, we conclude that the multi-task Lasso problem

given in (6) has a unique solution B̂, whose support union recovers the true support union

S(B∗) with high probability under the assumption of the theorem.

6 Proof of Theorem 2

Our proof adapts and further develops the proof techniques established in [29] due to varying

design matrices across tasks.

Following from the proof in Section 5, it can be shown that if either
∥∥∥ẐSc

∥∥∥
l∞/l2

> 1 holds or∥∥∥B̂ −B∗∥∥∥
l∞/l2

= o(b∗min) does not hold, no solution B̃ to the multi-task Lasso problem given

in (6) recovers the correct support union and satisfies
∥∥∥B̃ −B∗∥∥∥

l∞/l2
= o(b∗min). Hence, if∥∥∥B̂ −B∗∥∥∥

l∞/l2
= o(b∗min) does not hold, it is already the case that the multi-task Lasso does

not provide the desired solution. Then the following proof is to identify sufficient conditions

such that ‖VSc‖l∞/l2 > 1 when
∥∥∥B̂ −B∗∥∥∥

l∞/l2
= o(b∗min) holds, where Vj =

(
Ẑj1, . . . , ẐjK

)
for j ∈ Sc.

We use the decomposition in (24), which is rewritten below:

Vj = Tj1 + Tj2 + Tj3.
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However, we are now interested in lower bounding ‖VSc‖l∞/l2 . We first bound this quantity

as follows:

‖VSc‖l∞/l2 ≥ ‖TSc3‖l∞/l2 − ‖TSc1‖l∞/l2 − ‖TSc2‖l∞/l2 .

By the assumption of the theorem, ‖TSc1‖l∞/l2 ≤ 1− γ. We next consider TSc2. Due to (31),

we have

‖TSc2‖l∞/l2 ≤ (1− γ)
∥∥∥ẐS − Z∗S∥∥∥

l∞/l2
+ (1− γ)E

[∥∥∥ẐS − Z∗S∥∥∥
l∞/l2

∣∣∣X(1:K)
S

]
. (57)

By the assumption that
∥∥∥B̂ −B∗∥∥∥

l∞/l2
= o(b∗min) holds, following the proof in Section 5,

‖TSc2‖l∞/l2 = o(1) holds.

It then suffices to guarantee that ‖TSc3‖l∞/l2 > 2− γ. We recall from (37) that

max
j∈Sc
‖Tj3‖l2

d.
= max

j∈Sc

√√√√ K∑
k=1

σ2
jkξ

2
jk given

(
X

(1:K)
S ,

−→
W (1:K)

)
, (58)

where ξjk ∼ N (0, 1) are independently distributed across k.

We let Vmax := ‖TSc3‖l∞/l2 , and the remaining part of the proof is to derive a lower bound

on Vmax, which takes several steps. The first step is to show that Vmax is concentrated around

its expectation when
(
X

(1:K)
S ,

−→
W (1:K)

)
are given.

Lemma 4. For any δ > 0,

P
[
|Vmax − EVmax| ≥ δ

∣∣∣X(1:K)
S ,

−→
W (1:K)

]
≤ 4 exp

− δ2

2ρu

(
Σ

(1:K)
ScSc|S

)
max1≤k≤KMk

. (59)

Proof. We first construct the following function g : R(p−s)×K → R

g(ξ) := max
j∈Sc


√√√√ K∑

k=1

σ2
jkξ

2
jk


where ξjk is the entry of the matrix ξ with the index pair {j, k}.

To explore the continuity property of the constructed function g, we let u = (ujk, j ∈
Sc, k = 1, . . . , K) and v = (vjk, j ∈ Sc, k = 1, . . . , K) be two matrices. We derive the
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following bound given
(
X

(1:K)
S ,

−→
W (1:K)

)
.

|g(u)− g(v)| =

∣∣∣∣∣∣max
j∈Sc


√√√√ K∑

k=1

σ2
jku

2
jk

−max
n∈Sc


√√√√ K∑

k=1

σ2
nkv

2
nk

∣∣∣∣∣∣
≤ max

j∈Sc

∣∣∣∣∣∣
√√√√ K∑

k=1

σ2
jku

2
jk −

√√√√ K∑
k=1

σ2
jkv

2
jk

∣∣∣∣∣∣
(a)

≤
(

max
j∈Sc

max
1≤k≤K

σjk

)(
max
j∈Sc
‖uj − vj‖2

)
≤
√
ρu

(
Σ

(1:K)
ScSc|S

)
max

1≤k≤K
Mk ‖u− v‖F , (60)

where (a) follows by taking square on both sides and comparing various cross terms.

Therefore, the function g is Lipschitz continuous with constant L =

√
ρu

(
Σ

(1:K)
ScSc|S

)
max1≤k≤KMk.

The proof completes by applying Gaussian concentration inequality given below for a stan-

dard Gaussian vector X and the Lipschitz function g with the constant L:

P [|g(X)− Eg(X)| ≥ δ] ≤ 4 exp(−δ2/(2L2)).

The second step is to find a lower bound on E[Vmax].

Lemma 5. For any fixed δ′ and sufficiently large (p− s), the following inequality holds:

E
[
Vmax

∣∣∣X(1:K)
S ,

−→
W (1:K)

]
≥ max

1≤k≤K

√
Mk

√
(1− δ′)ρl

(
Σ

(1:K)
ScSc|S

)
log (p− s)/2.

Proof. The proof is under the assumption that
(
X

(1:K)
S ,

−→
W (1:K)

)
are given. Define ηjk =√

(Σ
(k)
ScSc|S)jjξjk and therefore, ηjk ∼ N

(
0, (Σ

(k)
ScSc|S)jj

)
. We then have√√√√ K∑

k=1

σ2
jkξ

2
jk =

√√√√ K∑
k=1

Mk(Σ
(k)
ScSc|S)jjξ2

jk =

√√√√ K∑
k=1

Mkη2
jk ≥

√
Mk∗|ηjk∗| (61)

where k∗ = argmax1≤k≤K
√
Mk. Without loss of generality, let k∗ = 1.

E
[
Vmax

∣∣∣X(1:K)
S ,

−→
W (1:K)

]
≥
√
Mk∗ · E

(
max
j∈Sc
|ηj1|

)
(62)
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The proof completes by applying the lower bound of E (maxj∈Sc |ηj1|). It can be shown

that

E
[
(ηi1 − ηj1)2

]
≥ ρl

(
Σ

(1:K)
ScSc|S

)
E
[
(ξi1 − ξj1)2

]
.

Using the result in [40], we have

E

(
max
j∈Sc
|ηj1|

)
≥ 1

2

√
ρl

(
Σ

(1:K)
ScSc|S

)
E

(
max
j∈Sc
|ξj1|

)
Furthermore, the standard Gaussian random vector has the following bound by the result

in [41]:

E

(
max
j∈Sc
|ξj1|

)
≥
√

2(1− δ′) log (p− s)

if (p− s) is large enough, where δ′ is a small positive number.

In Appendix E, we obtain the following lower bound

max
1≤k≤K

Mk ≥
ψ(B∗,Σ(1:K))

n
− Γ

with the probability larger than

1− 2 exp
(
−s

2

)
− 4 exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
− exp

(
−5(n− s)

[
1− 2

√
1

5

])
. (63)

Since Γ converges to 0 with an order o
(
s
n

)
, max1≤k≤KMk ≥ ψ(B∗,Σ(1:K))

n
(1 − δ′′) holds for

any small constant δ′′ > 0 and large enough n. We then have

E
[
Vmax

∣∣∣X(1:K)
S ,

−→
W (1:K)

]
≥
√
ψ(B∗,Σ(1:K))

n
(1− δ′′)

√
(1− δ′)ρl

(
Σ

(1:K)
ScSc|S

)
log (p− s)/2

(a)

≥ (2− γ)

√
(1− δ′)(1− δ′′)

4(1− v)

(b)
> 2− γ + δ (64)

with high probability, where (a) follows from the assumption of the theorem on the sample

size n, and (b) follows by choosing v > 1− (1−δ′)(1−δ′′)
4[1+(δ/(2−γ))]2

.

By applying lemma 4 and max1≤k≤KMk ≤ ψ(B∗,Σ(1:K))
n

(1 + δ′′), i.e., equation (89) in Ap-

pendix E, we obtain

P
[
|Vmax − EVmax| ≥ δ

∣∣∣X(1:K)
S ,

−→
W (1:K)

]
≤ 4 exp

− nδ2

2ρu

(
Σ

(1:K)
ScSc|S

)
ψ(B∗,Σ(1:K))(1 + δ′′)


≤ 4 exp

− nδ2Cmin

2ρu

(
Σ

(1:K)
ScSc|S

)
s(1 + δ′′)

 (65)
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which implies Vmax > 2− γ with high probability.

Therefore, ‖VSc‖l∞/l2 > 1 holds with probability larger than

1− 2 exp
(
−s

2

)
− 4 exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
− 4 exp

− nδ2Cmin

2ρu

(
Σ

(1:K)
ScSc|S

)
s(1 + δ′′)


− exp

(
−5(n− s)

[
1− 2

√
1

5

])
,

which concludes the proof.

7 Conclusions

In this paper, we have investigated the Gaussian MVMR linear regression model. We have

characterized sufficient and necessary conditions under which the l1/l2-regularized multi-task

Lasso guarantees successful recovery of the support union of K linear regression vectors. The

two conditions are characterized by a threshold and hence are tight in the order sense. Our

numerical results have demonstrated the advantage of joint recovery of the support union

compared to using single-task Lasso to recover the support set of each task individually.

Further studying the MVMR model under other block-constrains is an interesting topic in

the future. Applications of the approach here to structure learning problems based on real

data sets such as social network data are also interesting.

Appendix

A Bounds on ψ(B∗,Σ(1:K))

We first derive an upper bound on ψ(B∗,Σ(1:K)) as follows:

ψ(B∗,Σ(1:K)) = max
1≤k≤K

−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk

≤
K∑
k=1

−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk

≤
K∑
k=1

‖
−→
Z ∗Sk‖2

l2

∣∣∣∣∣∣∣∣∣∣∣∣(Σ
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

≤ s

Cmin
. (66)
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We then derive a lower bound on ψ(B∗,Σ(1:K)) as follows:

ψ(B∗,Σ(1:K)) = max
1≤k≤K

−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk

≥ 1

K

K∑
k=1

−→
Z ∗TSk

(
Σ

(k)
SS

)−1−→
Z ∗Sk

≥ 1

K

K∑
k=1

‖
−→
Z ∗Sk‖2

l2
·min−→x

−→x T
(

Σ
(k)
SS

)−1−→x

‖−→x ‖2
l2

≥ s

KCmax
(67)

Therefore, ψ(B∗,Σ(1:K)) is of the order of O(s).

B Proof of Lemma 1

Suppose B̃ is another optimal solution to the problem given in (6), then we have

f(B̂) + λn‖B̂‖l1/l2 = f(B̃) + λn‖B̃‖l1/l2 , (68)

where f(B) = 1
2n

∑K
k=1

∥∥∥−→Y (k) −X(k)−→β (k)
∥∥∥2

2
. It is clear that

‖B̂‖l1/l2 =

p∑
j=1

ẐjB̂
T
j , (69)

where Ẑj is the jth row of Ẑ and B̂j is the jth row of B̂. We substitute (69) into (68) and

obtain

f(B̂) + λn

p∑
j=1

ẐjB̂
T
j = f(B̃) + λn‖B̃‖l1/l2 .

We then subtract λn
∑p

j=1 ẐjB̃
T
j from both sides of the above equation, and move f(B̃) to

the left-hand-side (LHS) to obtain

f(B̂) + λn

p∑
j=1

Ẑj(B̂
T
j − B̃T

j )− f(B̃) = λn‖B̃‖l1/l2 − λn
p∑
j=1

ẐjB̃
T
j . (70)

We further substitute the KKT condition ∇Bf(B̂) + λnẐ = 0 into (70), and obtain

f(B̂) +

p∑
j=1

∇Bj
f(B̂)(B̃T

j − B̂T
j )− f(B̃) = λn‖B̃‖l1/l2 − λn

p∑
j=1

ẐjB̃
T
j (71)
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Due to the convexity of f(B), the LHS of the above equation is less than or equal to 0.

Hence, we have

‖B̃‖l1/l2 ≤
p∑
j=1

ẐjB̃
T
j .

Since
∑p

j=1

∥∥∥B̃j

∥∥∥
l2
≥
∑p

j=1 ẐjB̃
T
j , we obtain

p∑
j=1

∥∥∥B̃j

∥∥∥
l2

=

p∑
j=1

ẐjB̃
T
j .

Based on the assumption of the lemma,
∥∥∥Ẑj∥∥∥

l2
< 1 if j ∈ Ω. Therefore,

∥∥∥B̃j

∥∥∥
l2

= 0 for

j ∈ Ω.

C Derivation of ẐSc

We write the function f(B) as

f(B) =
1

2n

K∑
k=1

∥∥∥∥∥−→Y (k) − (X
(k)
S , X

(k)
Sc )

( −→
β

(k)
S−→

β
(k)
Sc

)∥∥∥∥∥
2

=
1

2n

K∑
k=1

∥∥∥X(k)
S

−→
β

(k)
S

∗
+
−→
W (k) −X(k)

S

−→
β

(k)
S −X

(k)
Sc

−→
β

(k)
Sc

∥∥∥2

(72)

and take partial derivative over components of B to obtain

∂f(B)

∂Bjk

=− 1

n

−→
X

(k)
j

T (
X

(k)
S

−→
β

(k)
S

∗
+
−→
W (k) −X(k)

S

−→
β

(k)
S −X

(k)
Sc

−→
β

(k)
Sc

)
,

where
−→
X j denotes the jth column of the matrix X. Hence, B̂S satisfies

− 1

n
X

(k)
S

T

(
X

(k)
S

−→
β

(k)
S

∗
+
−→
W (k) −X(k)

S

−̂→
β

(k)

S

)
+ λn

−̂→
Z Sk = 0

for k = 1, . . . , K ,where
−̂→
Z Sk denotes the kth column of Ẑ with row indices in the set S, and

ẐS ∈ ∂‖B̂S‖l1/l2 . Furthermore, ẐSc satisfies

− 1

n
X

(k)
Sc

T

(
X

(k)
S

−→
β

(k)
S

∗
+
−→
W (k) −X(k)

S

−̂→
β

(k)

S

)
+ λn

−̂→
Z Sck = 0
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for k = 1, . . . , K, where ẐSc ∈ ∂
∥∥∥B̂Sc

∥∥∥
l1/l2

. As we introduce the notations Σ̂
(k)
SS = 1

n
X

(k)
S

T
X

(k)
S

and Σ̂
(k)
ScS = 1

n
X

(k)
Sc

T
X

(k)
S , the above two equations become

Σ̂
(k)
SS

(
−̂→
β

(k)

S −
−→
β

(k)
S

∗
)
− 1

n
X

(k)
S

T−→
W (k) = −λn

−̂→
Z Sk, (73)

Σ̂
(k)
ScS

(
−̂→
β

(k)

S −
−→
β

(k)
S

∗
)
− 1

n
X

(k)
Sc

T−→
W (k) = −λn

−̂→
Z Sck, (74)

for k = 1, . . . , K. We now solve
−̂→
β

(k)

S −
−→
β

(k)
S

∗
from (73), substitute it into (74), reorganize

the terms, and obtain

−̂→
Z Sck =− 1

λnn
X

(k)
Sc

T
(

Π
(k)
S − In

)−→
W (k) +

1

n
X

(k)
Sc

T
X

(k)
S

T
(

Σ̂
(k)
SS

)−1 −̂→
Z Sk, (75)

where Π
(k)
S =

X
(k)
S

(
Σ̂

(k)
SS

)−1
X

(k)
S

T

n
.

Hence, for j ∈ Sc,

Ẑjk =− 1

λnn

−→
X

(k)
j

T (
Π

(k)
S − In

)−→
W (k) +

1

n

−→
X

(k)
j

T
X

(k)
S

(
Σ̂

(k)
SS

)−1 −̂→
Z Sk. (76)
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D Bound on ‖Tj1‖l2

We let A(k) = Σ
(k)
ScS

(
Σ

(k)
SS

)−1

and
−→
C Sk = E(

−̂→
Z Sk|X(1:K)

S ), and derive

‖Tj1‖l2 =

√√√√ K∑
k=1

E2
(
Ẑjk|XS

)

=

√√√√ K∑
k=1

(
Σ

(k)
jS

(
Σ

(k)
SS

)−1

E

(
−̂→
Z Sk|X(1:K)

S

))2

=

√√√√ K∑
k=1

(
A

(k)
jS

−→
C Sk

)2

=

√√√√ K∑
k=1

|S|∑
a=1

A
(k)
ja Cak

|S|∑
a′=1

A
(k)
ja′Ca′k

≤

√√√√ |S|∑
a=1

|S|∑
a′=1

K∑
k=1

∣∣∣A(k)
ja

∣∣∣ ∣∣∣A(k)
ja′

∣∣∣ |CakCa′k|
≤

√√√√ |S|∑
a=1

|S|∑
a′=1

max
k

∣∣∣A(k)
ja

∣∣∣max
k

∣∣∣A(k)
ja′

∣∣∣ K∑
k=1

|CakCa′k|

≤

√√√√√ |S|∑
a=1

|S|∑
a′=1

max
k

∣∣∣A(k)
ja

∣∣∣max
k

∣∣∣A(k)
ja′

∣∣∣
√√√√ K∑

k=1

C2
ak

√√√√ K∑
k=1

C2
a′k

≤

√√√√ |S|∑
a=1

|S|∑
a′=1

max
k

∣∣∣A(k)
ja

∣∣∣max
k

∣∣∣A(k)
ja′

∣∣∣
=

|S|∑
a=1

max
k

∣∣∣A(k)
ja

∣∣∣ =

|S|∑
a=1

Aja (77)

where Aja = maxk

∣∣∣A(k)
ja

∣∣∣ = maxk

∣∣∣∣∣
(

Σ
(k)
ScS

(
Σ

(k)
SS

)−1
)
ja

∣∣∣∣∣.
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E Bound on σ2
jk

We let σ2
jk =

(
Σ

(k)
ScSc|S

)
jj
Mk, where

Mk =
1

n

−̂→
Z
T

Sk

(
Σ̂

(k)
SS

)−1 −̂→
Z Sk −

1

n2λ2
n

−→
W (k)

T (
Π

(k)
S − In

)−→
W (k). (78)

We derive bounds on the term maxj∈Sc max1≤k≤K σ
2
jk. We first define

M∗
k :=

1

n

−→
Z ∗Sk

T (
Σ̂

(k)
SS

)−1−→
Z ∗Sk −

1

n2λ2
n

−→
W (k)

T (
Π

(k)
S − In

)−→
W (k). (79)

We also define

M̄∗ =
1

n

−→
Z ∗Sk

T (
Σ

(k)
SS

)−1−→
Z ∗Sk +

(n− s)σ(k)
W

2

n2λ2
n

.

We then have

|Mk − M̄∗| ≤ |Mk −M∗
k |+ |M∗

k − M̄∗|.

To find upper and lower bounds on Mk, we start with

M̄∗ − |Mk −M∗
k | − |M∗

k − M̄∗| ≤Mk ≤ M̄∗ + |Mk −M∗
k |+ |M∗

k − M̄∗|. (80)

We first bound

|M∗
k −Mk|

=
1

n

∣∣∣∣−→Z ∗SkT (Σ̂
(k)
SS

)−1−→
Z ∗Sk −

−̂→
Z
T

Sk

(
Σ̂

(k)
SS

)−1 −̂→
Z Sk

∣∣∣∣
=

1

n

∣∣∣−→Z ∗SkT (Σ̂
(k)
SS

)−1

(
−→
Z ∗Sk −

−̂→
Z Sk) + (

−→
Z ∗Sk

T
−
−̂→
Z
T

Sk)
(

Σ̂
(k)
SS

)−1

(
−→
Z ∗Sk + (

−̂→
Z Sk −

−→
Z ∗Sk))

∣∣∣
≤ 1

n

∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

‖
−→
Z ∗Sk −

−̂→
Z Sk‖l2(‖

−→
Z ∗Sk‖l2 + ‖

−→
Z ∗Sk + (

−̂→
Z Sk −

−→
Z ∗Sk)‖l2)

≤ 1

n

∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

‖
−→
Z ∗Sk −

−̂→
Z Sk‖l2(2‖

−→
Z ∗Sk‖l2 + ‖

−̂→
Z Sk −

−→
Z ∗Sk‖l2). (81)

In the above equations,

‖
−→
Z ∗Sk‖l2 ≤

√
s.

Following (93) in Appendix F, we have∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

≤ 2

Cmin

with probability larger than 1− exp
(
−n

2

(
1
4
−
√

s
n

)2

+

)
.
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We also derive:

max
1≤k≤K

‖
−→
Z ∗Sk −

−̂→
Z Sk‖l2 = max

1≤k≤K

√√√√ s∑
j=1

(Z∗jk − Ẑjk)2

=

√√√√ max
1≤k≤K

s∑
j=1

(Z∗jk − Ẑjk)2 ≤

√√√√ K∑
k=1

s∑
j=1

(Z∗jk − Ẑjk)2

=

√√√√ s∑
j=1

K∑
k=1

(Z∗jk − Ẑjk)2 ≤

√√√√smax
j∈S

K∑
k=1

(Z∗jk − Ẑjk)2

=
√
smax
j∈S

√√√√ K∑
k=1

(Z∗jk − Ẑjk)2 =
√
s‖Z∗S − ẐS‖l∞/l2 (82)

Hence, following from Lemma 2, we have if ‖∆‖l∞/l2 < 1
2
, then

max
1≤k≤K

‖
−→
Z ∗Sk −

−̂→
Z Sk‖l2 ≤ 4

√
s‖∆‖l∞/l2 .

Based on the above bound, we have

|M∗
k −Mk| ≤

2

nCmin

(
4
√
s ‖∆‖l∞/l2

)(
2
√
s+ 4

√
s ‖∆‖l∞/l2

)
=

16s ‖∆‖l∞/l2
nCmin

(1 + 2 ‖∆|l∞/l2) (83)

with probability larger than

1− 2K exp
(
−s

2

)
− (4K + 1) exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
−K exp

(
− log s+ 2

√
2 log s

)
.

(84)

We next derive a bound on |M∗
k − M̄∗| as follows.

|M∗
k − M̄∗|

≤ 1

n

∣∣∣∣−→Z ∗TSk ((Σ̂
(k)
SS

)−1

−
(

Σ
(k)
SS

)−1
)
−→
Z ∗Sk

∣∣∣∣+
1

n2λ2
n

∣∣∣−→W (k)T (In − Π(k)
s )
−→
W (k) − (n− s)σ(k)

W

2
∣∣∣

≤ 1

n

∥∥∥−→Z ∗TSk∥∥∥2

l2

∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1

−
(

Σ
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

+
1

n2λ2
n

∣∣∣−→W (k)T (In − Π(k)
s )
−→
W (k) − (n− s)σ(k)

W

2
∣∣∣ .

In the above equation, ∥∥∥−→Z ∗TSk∥∥∥2

l2
≤ s.
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Following (95) in Appendix F , we have∣∣∣∣∣∣∣∣∣∣∣∣(Σ̂
(k)
SS

)−1

−
(

Σ
(k)
SS

)−1
∣∣∣∣∣∣∣∣∣∣∣∣

2

≤ 12

Cmin

√
s

n

with probability larger than 1− 2 exp
(
− s

2

)
− 3 exp

(
−n

2

(
1
4
−
√

s
n

)2

+

)
.

We next bound the term
∣∣∣−→W (k)T (In − Π

(k)
S )
−→
W (k) − (n− s)σ(k)

W

2
∣∣∣. Since Π

(k)
S is a projection

matrix, eigenvalues of In−Π
(k)
S can only be 1 or 0. Thus, Tr(In−Π

(k)
S ) = (n−s) implies that

if we decompose In−Π
(k)
S into UTΛU with UTU = I, then Λ has (n− s) of “1” and s of “0”.

Moreover, U
−→
W (k) is a Gaussian vector with zero mean, and E

(
U
−→
W (k)−→W (k)TUT

)
= σ

(k)
W

2
In.

Therefore, we conclude that

U
−→
W (k) d.

=
−→
W (k)

−→
W (k)TUTΛU

−→
W (k) d.

=
−→
W (k)TΛ

−→
W (k) d.

= Hσ
(k)
W

2

where H ∼ χ2
(n−s). We now consider the term∣∣∣−→W (k)T (In − Π

(k)
S )
−→
W (k) − (n− s)σ(k)

W

2
∣∣∣

=
∣∣∣−→W (k)TUTΛU

−→
W (k) − (n− s)σ(k)

W

2
∣∣∣

=
∣∣∣−→W (k)TΛ
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W (k) − (n− s)σ(k)

W

2
∣∣∣

=
∣∣∣Hσ(k)

W

2
− (n− s)σ(k)

W

2
∣∣∣ . (85)

We derive the probability of the following event:

P
(∣∣∣Hσ(k)

W

2
− (n− s)σ(k)

W

2
∣∣∣ ≤ 9(n− s)σ(k)

W

2
)

= P ({H < 10(n− s)} ∩ {H > −8(n− s)})
= P (H < 10(n− s)) . (86)

Following from Lemma 3, we have

P (H ≥ 10(n− s)) ≤ exp

(
−5(n− s)

[
1− 2

√
1

5

])
.

It then follows that∣∣∣−→W (k)T (In − Π
(k)
S )
−→
W (k) − (n− s)σ(k)

W

2
∣∣∣ ≤ 9(n− s)σ(k)

W

2

with probability larger than

1− exp

(
−5(n− s)

[
1− 2

√
1

5

])
.
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To summarize,

|M∗
k − M̄∗| ≤ 12

Cmin

( s
n

) 3
2

+
9(n− s)σ(k)

W

2

n2λ2
n

with probability larger than

1− 2 exp
(
−s

2

)
− 3 exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
− exp

(
−5(n− s)

[
1− 2

√
1

5

])
.

Therefore,

|Mk − M̄∗| ≤ |Mk −M∗
k |+ |M∗

k − M̄∗|

≤
16s ‖∆‖l∞/l2

nCmin
(1 + 2 ‖∆‖l∞/l2) +

12

Cmin

( s
n

) 3
2

+
9(n− s)σW 2

n2λ2
n

(87)

with high probability.

To simplify the result, we define the following quantity

Γ :=
16s ‖∆‖l∞/l2

nCmin
(1 + 2 ‖∆|l∞/l2) +

12

Cmin

( s
n

) 3
2

+
10(n− s)σW 2

n2λ2
n

(88)

and our bounds on Mk can be expressed as

1

n

−→
Z ∗Sk

T (
Σ

(k)
SS

)−1−→
Z ∗Sk − Γ ≤Mk ≤

1

n

−→
Z ∗Sk

T (
Σ

(k)
SS

)−1−→
Z ∗Sk + Γ.

Using the definition of ψ(B∗,Σ(1:K)), we have

ψ(B∗,Σ(1:K))

n
− Γ ≤ max

1≤k≤K
Mk ≤

ψ(B∗,Σ(1:K))

n
+ Γ (89)

with probability larger than

1− 2(K + 1) exp
(
−s

2

)
− 4(K + 1) exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)

− exp

(
−5(n− s)

[
1− 2

√
1

5

])
−K exp

(
− log s+ 2

√
2 log s

)
. (90)

F Bounds on Spectral Norms

In this section, we provide some useful bounds on spectral norms. Detailed proof can be

found in [29].

Let U ∈ Rn×s be a random matrix with i.i.d. entries, and each entry has a Gaussian

distribution with zero mean and unit variance.
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The bound for
∣∣∣∣∣∣ 1
n
UTU

∣∣∣∣∣∣
2
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)
.
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n
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4
−
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s
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+

)
(91)

Let X = U
√

Σ where Σ ∈ Rs×s is positive definite. Then X ∈ Rn×s has i.i.d. rows, and

each row Xi is a Gaussian vector with the distribution N (0,Σ). Suppose the eigenvalues of

Σ are in the interval [Cmin, Cmax], where Cmin and Cmax are both positive. We next provide

the bounds on several spectral norms.

The bound for
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)−1
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The bound for
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