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Abstract
This paper presents a software-controlled technique for man-
aging the heterogeneous memory resources of next gener-
ation multicore platforms with fast 3D die-stacked mem-
ory and additional slow off-chip memory. Implemented for
virtualized server systems, the technique detects the ‘hot’
pages critical to program performance in order to then main-
tain them in the scarce fast 3D memory resources. Chal-
lenges overcome for the technique’s implementation include
the need to minimize its runtime overheads, the lack of
hypervisor-level direct visibility into the memory access be-
havior of guest virtual machines, and the need to make
page migration transparent to guests. This paper presents
hypervisor-level mechanisms that (i) build a page access
history of virtual machines, by periodically scanning page-
table access bits and (ii) intercept guest page table operations
to create mirrored page-tables and enable guest-transparent
page migration. The methods are implemented in the Xen
hypervisor and evaluated on a larger scale multicore plat-
form. The resulting ability to characterize the memory be-
havior of representative server workloads demonstrates the
feasibility of software-managed heterogeneous memory re-
sources.

Categories and Subject Descriptors D.4.8 [Performance]:
Measurements

General Terms Performance, Design, Experimentation

Keywords Heteorgeneous memory, Page placement, Virtu-
alized systems

1. Introduction
Die-stacked memories can provide lower access latency and
higher bandwidths at lower power levels, in comparison to
traditional off-chip memories [6]. However, such die-stacked
memories are likely to be constrained in size, i.e., they are
projected to have capacities ranging only to a few hundreds
of megabytes [7]. This suggests a usage model in which they
are combined with off-chip memory to provide higher capac-
ity and low latency capabilities. For enterprise-class or high-
performance machines combining a limited amount of fast
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Figure 1. Heterogeneous memory organization consisting
of a combination of on-chip and off-chip memories.

on-chip memory with additional slower off-chip memory,
will therefore, result in the hybrid or heterogeneous mem-
ory systems shown in Figure 1.

Die-stacked DRAM can be utilized as (i) hardware-
managed cache or (ii) software-managed memory. The for-
mer approach has the advantage of being able to quickly
react to changing memory access patterns, and it provides a
transparent way to incorporate such memory architecture in
ways that support legacy applications. Potential drawbacks
and challenges of this approach are that first, it can result
in high overhead for managing the tags of such large sized
caches, and second, it would require extended coherency
support. An additional issue is the consequent lack of soft-
ware control over memory placement.

Alternative ways to manage stacked DRAM are actively
being investigated in the architecture community, but in this
paper, we explore how an operating system or hypervisor
can use its information about application behavior to man-
age the heterogeneous memory resources of future multicore
platforms. Specifically, we investigate an approach in which
stacked DRAM is explicitly exposed as system-visible mem-
ory, and we then evaluate the feasibility of software-based
memory management for the resulting heterogeneous mem-
ory platforms. In particular, given the increasing use of virtu-
alization in server systems, we investigate several challenges
for managing heterogeneous memory resources. (1) Hard-
ware provides only limited visibility into the memory access



behavior of guest virtual machines (VMs), e.g. x86 provides
only one-bit information such as access bit in the page tables.
Therefore, efficient methods are required to detect which
pages are critical for a guest’s performance based on such
limited information from hardware. (2) Hypervisor should
implement its management scheme transparently to the guest
OSes. This may be challenging since the page tables are
owned by the guest in paravirtualized environment, thus
making it difficult to migrate its pages between memories
transparently without guest involvement. Even with hard-
ware virtualization support, such multiple mappings should
be handled properly. This also involves TLB management
across cores to prevent stale mappings.

This paper presents techniques to address (1) and (2)
above. First, we enhance the hypervisor to build an access-
bit history for each VM, by periodically scanning the access-
bits available in page tables. This ‘a-bit history’ is then
used to detect the guest’s ‘hot’ pages and determine the
guest VM’s page working-set. Since hot page and work-
ing set detection requires periodically scanning page-tables,
which can incur high overhead, we maintain additional data
structures for quickly accessing page table entries. In addi-
tion, scans are done in the virtual time of guest virtual ma-
chines, for accurate accounting. Finally, the hypervisor mir-
rors guest page tables and transparently uses these mirrors,
which allows the hypervisor to manipulate guest page map-
pings by simply changing their mirror page tables, without
requiring guest operating systems to be altered in any way,
i.e., transparently to guests.

Page access tracking, hot page detection, and mirroring
are fully implemented in the Xen open-source hypervisor,
thereby enabling experimental evaluation of overheads in re-
alistic server platforms. To emulate such platforms’ future
memory heterogeneity, we use a multi-socket Intel West-
mere platform in which one of its memory controllers is
throttled, resulting in the presence of both ‘fast’ (regular
DRAM, emulating future 3D stacked DRAM) and ‘slow’
(throttled DRAM, emulating future off-chip DRAM) mem-
ory in the system. Experimental results obtained on this
machine and memory configuration characterize the mem-
ory behavior of standard server workloads, in terms of their
working set sizes and the performance impact of memory
heterogeneity. The page migration mechanism is evaluated
with micro-benchmarks, to show the feasibility of software
management for future heterogeneous memory systems.

In summary, this paper’s technical contributions include:

• A hypervisor-level mechanism to detect guest memory
access patterns using access bit information.

• Transparency support for managing heterogeneous mem-
ory for virtual machines, implemented by the hypervisor.

• An evaluation of the sensitivity of several server work-
loads to the performance of heterogeneous memory sub-
systems.

In the remainder of this paper, we first describe the mech-
anisms used for tracking guest activity and policies for
stacked memory allocation in Section 2. Section 3 describes
our evaluation methodology, with experimental results pre-
sented in Section 4. Finally, related work and conclusions
are described in Section 5 and 6 respectively.

2. Heterogeneous Memory Management
To leverage die-stacked low latency DRAM to reduce an ap-
plication’s overall memory access latencies, it is important
to detect and then manage its ‘hot’ pages. This requires effi-
cient methods for memory access tracking, described next.

2.1 Memory Access Tracking
Current multicore platforms provide limited support for de-
tecting applications’ memory access patterns. Specifically,
each entry in the page table is associated with an access bit.
This bit is set by the hardware when the corresponding page
is accessed. Software is provided control to reset this bit.
This single-bit information is used in our work to determine
a VM’s memory access pattern, leveraging our earlier work
on cache management [4]. Specifically, we periodically scan
and collect the access bits in guest page tables, to form a
bitmap termed as ‘A-bit history’ (access-bit history). If a
32-bit word and a 100ms time interval is used, one word
amounts to roughly 3.2 seconds of virtual time. Therefore, a
dense A-bit history (i.e., many 1’s) would indicate the pres-
ence of hot pages. Several optimizations are used to mini-
mize overheads, discussed later in this section.
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Figure 2. Tracking virtual time: TIMER event (10ms tick)
is not shown.

To capture an accurate A-bit history, a process’s virtual
time rather than wall-clock time is used. This avoids unnec-
essary page table scans and a more accurate detection of hot
pages. The hypervisor is extended to track processes’ virtual
time across various events, and each time the 100ms bound-
ary is crossed, its page table is scanned for A-bit collec-
tion. Figure 2 depicts two VMs — VM0 and VM1 – where
each VM has processes Proc1,2,3 and ProcA,B, respectively.



Three events, TIMER, NEW CR3 and SCHEDULE, occur
along its execution timeline. They correspond to the 10ms
timer tick, the CR3 switch (process switch), and the VCPU
switch, respectively. At these points, the actual time spent in
execution is calculated and accumulated for each process. In
this fashion, each process’ virtual time is tracked, thus en-
abling the accurate detection of hot pages (this is because
virtual time is the actual time spent running on each core).

An implementation in the Xen open-source hypervisor
obtains and maintains A-bit histories for arbitrary guest
VMs. Since Xen employs frame tables for memory man-
agement – large tables in which each entry corresponds to
some physical page – we extend this data structure to embed
our A-bit history and other information, as shown in Fig-
ure 3. The A-bit history is used to hold each frame’s access
bit history. Next/Prev pointers help form linked lists of pages
for efficient access.

In addition, an Rmap structure is used to store reverse
mapping information to make it easy to unmap and map
some given page. Each physical page (mfn) has one Rmap list,
which is list of Rmap set. Rmap set is a fixed size array
containing pointers to page table (PT) and page table in-
dex (PTI). Therefore by iterating Rmap list and Rmap set,
all mappings to the given page can be found and changed.
Without this Rmap structure it would be too expensive to
find mappings to a given physical page, which is needed to
change mappings for page migration.
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Figure 3. Extended frame table with a-bit history and re-
verse maps

Further, for guest transparency, the hypervisor mirrors
each guest’s page table which is installed in the hardware
base register (CR3). This is very similar to shadow page ta-
ble, and this allows us to change virtual-to-physical map-
pings without changing guest OS. By this, page migrations
are transparent to the guest OS.

2.2 Memory Allocation Policy
Stacked DRAM memory management is concerned with
both intra-VM and inter-VM memory allocation policies.

2.2.1 Intra-VM Allocation
Our intra-VM page placement policy aims to utilize a limited
allocation of fast stacked DRAM for a VM. Pages with the

highest hit rate are moved to stacked DRAM. For hot read-
only pages, two copies are maintained: a home copy and a
satellite copy. The home copy resides in off-chip DRAM,
while the satellite copy resides in stacked DRAM. When
such read-only pages need to be migrated back to off-chip
memory, the satellite copy for these pages is simply dis-
carded, and the home copy is used for accesses thereafter.
This saves a page copy for moving data back to off-chip
memory. For read-write pages, only a single copy is main-
tained, and a copy is performed each time when a page is
moved back and forth between memories.

2.2.2 Inter-VM Allocation
In a manner similar to allocating constrained physical mem-
ory resources across VMs using memory ballooning, the
inter-VM allocation policy aims to distribute stacked mem-
ory across application based upon there activity. We consider
two policies in this work.

Share-based allocation: this policy uses pre-defined shares,
e.g., set by the administrator or a cloud allocator, to divide
stacked DRAM capacity among VMs. Memory is distributed
as a weighted sum of these shares as shown in Equation 1.

mem(vmi) = memtotal ∗
share(vmi)∑n
i=1 share(vmi)

(1)

WSS-based allocation: this policy uses the working set
size (WSS) information for each VM to control memory
allocation. The allocation are performed by using WSS as
the share value in Equation 1.

We are adding these policies to our implementation as
part of ongoing work.

3. Experimental Evaluation
3.1 Heterogeneous Memory Emulation
Earlier work on stacked DRAM in the architecture commu-
nity has relied on architectural simulators. In order to con-
duct heterogeneous memory research on actual systems with
realistic server workloads, we take the alternative approach
of emulating heterogeneous memory on a multi-socket plat-
form.
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Figure 4. Bandwidth and latency comparison for different
memory configurations
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Figure 5. WSS curve for SPEC CPU2006 applications (x-axis = time (s), y-axis = WSS (MB)).
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Figure 6. Histograms of pages and corresponding access counts

Our experimental platform consists of a dual-socket 12
core Westmere X5650 server with 12GB DDR3 memory.
Cores from the first socket are used for running programs
that can access memory from both sockets, i.e., cores from
the second socket are kept idle. This NUMA configuration
provides an approximate 1.5x difference in memory latency
between the two nodes. In order to emulate more heteroge-
neous configurations, however, we use memory controller
throttling on the remote node to slow it down further.

Memory throttling is enabled by writing to the PCI regis-
ters (Integrated Memory Controller Channel Thermal Con-
trol). By applying different amount of throttling, varied
memory configurations can be emulated for emerging mem-
ory technologies [10, 14]. Figure 4 shows a comparison of
normalized bandwidth and latency for three memory con-
figurations for the memory-intensive stream benchmark [9].
The M0 memory configuration corresponds to no throttling,
while M1 implies small throttling, and M2 implies higher
throttling. As expected, we see progressively lower band-
width and higher latency with M1 (2.5x) and M2 (5x) con-
figurations. M0 is used as the base configuration for evalua-
tion.

3.2 Workloads
We evaluate the impact of heterogeneity on server workloads
by using a diverse set of server-centric workloads summa-
rized in Table 1. These workloads include CPU-intensive
SPEC CPU2006 benchmarks, multi-threaded PARSEC bench-
marks, and several MapReduce data processing benchmarks
and with data analytics kernels. The MapReduce bench-
marks use the shared-memory Phoenix implementation of
MapReduce [12], where input datasets are cached in mem-
ory.

Workloads Description
SPECCPU Single-threaded CPU-intensive benchmarks
PARSEC Multi-threaded application kernels
Phoenix Shared-memory MapReduce kernels

Table 1. Workload summary

4. Results
The experimental data shown in Figure 5 depicts working-
set size (WSS) graphs as a function of time for several SPEC
CPU2006 workloads. As seen in the figure, several CPU-
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Figure 7. Comparison of performance impact of memory slow down with different memory configurations

bound applications have very small WSS, e.g., 0.8MB for
namd. In comparison, memory-intensive workloads like mcf
and lbm have much larger working-sets of size 200MB and
400MB respectively. Further, WSS dynamically changes
over time for these applications, thereby showing the need
for dynamic memory management. Working-set size only
represents the amount of memory pages that are accessed
by an application concurrently. It, however, does not show
how various pages in its allocated memory are used by the
application during its execution. Two applications may have
the same WSS, but diverse memory footprints. An applica-
tion may use the same set of pages throughout its execution,
while another may keep changing its active memory region.

To illustrate further, Figure 6 presents the access count
histogram for various SPEC CPU2006 workloads. Specifi-
cally, the X-axis is the number of 1’s in the access bit his-
tory, while the Y-axis is the number of pages (max Y val-
ues are set to 300 and 1000 for better visibility, respectively)
Here, we can see some clear distinction between hot pages
and cold pages, although some are in the gray area between
the two. Basically, the hot page detection mechanism cap-
tures such hot pages on the right side (x > 22) in Figure 6.
For simplicity, we have chosen a threshold value of 22 based
on these observations. The behavior shown is robust for dif-
ferent threshold values. These results highlight the fact that
only a fraction of the total memory region is actively used by
the application which is critical for its performance. These
pages should be retained in fast memory, while the remain-
ing pages can be allocated from slow memory.

Our next results evaluate the performance impact of
memory slowdown for all of the workloads in Table 1. These
applications are executed with different memory configura-
tions, by varying the amount of throttling applied to the
memory controller. Figure 7 shows the performance loss (%)
for the applications for two memory configurations (M1 and
M2) as compared to no throttling (M0) as described in Sec-
tion 3.1. As we see in the figure, several applications suffer
from high performance loss due to memory slowdown, while
many others see small impact. Particularly, the mcf, milc,

GemsFDTD, and lbm workloads from SPEC CPU2006; the
facesim, canneal, and streamcluster benchmarks from PAR-
SEC, and the pca kernel from the Phoenix suite observe se-
vere degradation. As expected, the performance degradation
becomes smaller with faster M1 memory configurations.
The highest impact is observed for the mcf workloads to
be 1431% (15x) and 537% (6x) for the two configurations.
Thus, by managing the active memory pages for these appli-
cations in the stacked DRAM, substantial performance gains
can be achieved. These experiments were also performed
with different CPU frequencies, to analyze the correlation
between processor speed and memory slowdown on the per-
formance. We observe similar trends for these applications,
but with a smaller magnitude due to a slower CPU.
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Figure 8. Micro-benchmark results: Memory access latency
with and without hot-page migration

We evaluate our page migration mechanisms using a
micro-benchmark memlat, which allocates a large region
of memory and randomly accesses it. The benchmark runs
for 30 seconds and reports average access latency for each
second. Figure 8 shows the experimental results for two sce-
narios: when memory is statically allocated from slow mem-
ory and when migrations are enabled to dynamically move
hot-pages to fast memory. When migration is disabled, the
access latency remains high throughout the execution, with
an average value of 891 cycles. On the other hand, when hot-
page migration is enabled, latency starts to decrease until it



reaches a value of 367 cycles and then remains fixed. Pages
are initially gradually moved to fast memory, thus the mem-
lat partially accesses pages from fast and slow memory. At
t=21s, when all of the memory has been moved to fast mem-
ory, the latency reaches a stable value. These results show
the feasibility and effectiveness of our software-controlled
approach for managing heterogeneous memory resources.

5. Related Work
Concerning memory management in virtualized systems, the
VMware ESX server uses a sampling approach to detect
working set sizes and manage allocation of system memory
among virtual machines using shares [13]. Similarly, Geiger
explores mechanisms to monitor the virtual MMU and stor-
age hardware of a VM to provide meaningful information
about the usage of buffer cache and virtual memory sub-
systems [3], while Hypervisor-exclusive cache uses a ghost
buffer based approach to predict page miss rates for virtual
machines [8]. In comparison, our work uses page-table ac-
cess bits to detect not only working set size of virtual ma-
chines, but also provides ‘hotness’ information of each page
to guide page placement.

Several architectural solutions have also been proposed
for tracking memory access patterns and page placement
strategies for hybrid memory systems containing traditional
DRAM and other memory technologies such as non-volatile
memories [1, 11]. Similarly, hardware approaches for man-
aging DRAM caches have also been investigated [2, 10].
Further, efforts have been made to investigate page replace-
ment policies in the context of disaggregated memory plat-
forms, allowing a large pool of memory to be shared by mul-
tiple servers [5]. In comparison, our work focuses on system
software control on memory management for more efficient
utilization of the stacked DRAM. Techniques using sophis-
ticated LRU heuristics for balancing memory across several
virtual machines have also been proposed [15]. This work is
complementary to our work as similar policies can be used
with our approach to guide memory allocation.

6. Conclusions & Future work
This paper presents systems software mechanisms for man-
aging heterogeneous memory resources that consist of a
combination of fast 3D die-stacked DRAM and off-chip
DRAM. We believe that such stacked DRAM should be
managed by software rather than by hardware (hardware
managed cache) for flexible management. To this end, we
propose and evaluate mechanisms for tracking the memory
behavior of virtual machines and managing memory map-
pings, in a guest-transparent manner. We conduct basic re-
search and evaluation on an emulated heterogeneous mem-
ory platform. Preliminary results show the effect of memory
heterogeneity on various workloads and our ability to track
guest memory access patterns and improve performance by
managing how stacked DRAM is used by applications.

As part of future work, we are devising further optimiza-
tions of our implementation of the page migration mech-
anism, and we will next experimentally evaluate different
policies for memory allocation.
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