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Abstract

Small jobs, that are typically run for interactive data anal-
yses in datacenters, continue to be plagued by dispropor-
tionately long-running tasks called stragglers. In the pro-
duction clusters at Facebook and Microsoft Bing, even
after applying state-of-the-art straggler mitigation tech-
niques, these latency sensitive jobs have stragglers that
are on average 8 times slower than the median task in that
job. Such stragglers increase the average job duration by
47%. This is because current mitigation techniques all
involve an element of waiting and speculation. We in-
stead propose full cloning of small jobs, avoiding waiting
and speculation altogether. Cloning of small jobs only
marginally increases utilization because workloads show
that while the majority of jobs are small, they only con-
sume a small fraction of the resources. The main chal-
lenge of cloning is, however, that extra clones can cause
contention for intermediate data. We use a technique, de-
lay assignment, which efficiently avoids such contention.
Evaluation of our system, Dolly, using production work-
loads shows that the small jobs speedup by 34% to 46%
after state-of-the-art mitigation techniques have been ap-
plied, using just 5% extra resources for cloning.

1 Introduction

Cloud computing has achieved widespread adoption due
to its ability to automatically parallelize a job into multi-
ple short tasks, and transparently deal with the challenge
of executing these tasks in a distributed setting. One
such fundamental challenge is straggling tasks, which is
faced by all cloud frameworks, such as MapReduce [1],
Dryad [2], and Spark [3]. Stragglers are tasks that run
much slower than other tasks, and since a job finishes
only when its last task finishes, stragglers delay job com-
pletion. Stragglers especially affect small jobs, i.e., jobs
that consist of a few tasks. Such jobs typically get to run
all their tasks at once. Therefore, even if a single task is
slow, i.e., straggle, the whole job is significantly delayed.

Small jobs are pervasive. Conversations with datacen-
ter operators reveal that these small jobs are typically
used when performing interactive and exploratory anal-
yses. Achieving low latencies for such jobs is critical
to enable data analysts to efficiently explore the search
space. To obtain low latencies, analysts already re-
strict their queries to small but carefully chosen datasets,
which results in jobs consisting of only a few short tasks.
The trend of such exploratory analytics is evident in

traces we have analyzed from the Hadoop production
cluster at Facebook, and the Dryad cluster at Microsoft
Bing. Over 80% of the Hadoop jobs and over 60% of the
Dryad jobs are small with fewer than ten tasks'. Achiev-
ing low latencies for these small interactive jobs is of
prime concern to datacenter operators.

The problem of stragglers has received considerable
attention already, with a slew of straggler mitigation
techniques [1, 4, 5] being developed. These techniques
can be broadly divided into two classes: black-listing
and speculative execution. However, our traces show that
even after applying state-of-the-art blacklisting and spec-
ulative execution techniques, the small jobs have strag-
glers that, on average, run eight times slower than that
job’s median task, slowing them by 47% on average.
Thus, stragglers remain a problem for small jobs. We
next explain the limitations of these two approaches.

Blacklisting identifies machines in bad health (e.g.,
due to faulty disks) and avoids scheduling tasks on
them. The Facebook and Bing clusters, in fact, blacklist
roughly 10% of their machines. However, stragglers oc-
cur on the non-blacklisted machines, often due to intrin-
sically complex reasons like IO contentions, interference
by periodic maintenance operations and background ser-
vices, and hardware behaviors [6].

For this reason, speculative execution [1, 4, 5, 7] was
explored to deal with stragglers. Speculative execution
waits to observe the progress of the tasks of a job and
launches duplicates of those tasks that are slower. How-
ever, speculative execution techniques have a fundamen-
tal limitation when dealing with small jobs. Any mean-
ingful comparison requires waiting to collect statistically
significant samples of task performance. Such waiting
limits their agility when dealing with stragglers in small
jobs as they often start all their tasks simultaneously. The
problem is exacerbated when some tasks start straggling
when they are well into their execution. Spawning a
speculative copy at that point might be too late to help.

In this paper, we propose a different approach. Instead
of waiting and trying to predict stragglers, we take spec-
ulative execution to its extreme and propose launching
multiple clones of every task of a job and only use the
result of the clone that finishes first. This technique is
both general and robust as it eschews waiting, speculat-
ing, and finding complex correlations. Such proactive

I The length of a task is mostly invariant across small and large jobs.



cloning will significantly improve the agility of straggler
mitigation when dealing with small interactive jobs.

Cloning comes with two main challenges. The first
challenge is that extra clones might use a prohibitive
amount of extra resources. However, our analysis of pro-
duction traces shows a strong heavy-tail distribution of
job sizes: the smallest 90% of jobs consume as less as 6%
of the resources. The interactive jobs whose latency we
seek to improve all fall in this category of small jobs. We
can, hence, improve them by using few extra resources.

The second challenge is the potential contention that
extra clones create on intermediate data, possibly hurting
job performance. Efficient cloning requires that we clone
each task and use the output from the clone of the task
that finishes first. This, however, can cause contention
for the intermediate data passed between tasks of the dif-
ferent phases (e.g., map, reduce, join) of the job; frame-
works often compose jobs as a graph of phases where
tasks of downstream phases (e.g., reduce) read the out-
put of tasks of upstream phases (e.g., map). If all down-
stream clones read from the upstream clone that finishes
first, they contend for the IO bandwidth. An alternate that
avoids this contention is making each downstream clone
read exclusively from only a single upstream clone. But
this staggers the start times of the downstream clones.

Our solution to the contention problem, delay assign-
ment, is a hybrid solution that aims to get the best of both
the above pure approaches. It is based on the intuition
that most clones, except few stragglers, finish nearly si-
multaneously. Using a cost-benefit analysis that captures
this small variation among the clones, it checks to see
if clones can obtain exclusive copies before assigning
downstream clones to the available copies of upstream
outputs. The cost-benefit analysis is generic to account
for different communication patterns between the phases,
including all-to-all (MapReduce), many-to-one (Dryad),
and one-to-one (Dryad and Spark).

We have built Dolly, a system that performs cloning to
mitigate the effect of stragglers while operating within a
resource budget. Evaluation on a 150 node cluster using
production workloads from Facebook and Bing shows
that Dolly improves the average completion time of the
small jobs by 34% to 46%, respectively, with LATE [5]
and Mantri [4] as baselines. These improvements come
with a resource budget of merely 5% due to the afore-
mentioned heavy-tail distribution of job-sizes. By pick-
ing the fastest clone of every task, Dolly effectively re-
duces the slowest task from running 8 x slower on aver-
age to 1.06 x, thus, effectively eliminating all stragglers.

2 The Case for Cloning

In this section we quantify: (¢z) magnitude of stragglers
and the potential in eliminating them, and (47) power law
distribution of job sizes that facilitate aggressive cloning.

Facebook | Microsoft Bing
Dates Oct 2010 | May-Dec* 2009
Framework Hadoop Dryad
File System | HDFS [9] Cosmos
Script Hive [10] Scope [11]
Jobs 375K 200K
Cluster Size 3,500 Thousands
Straggler— LATE [5] Mantri [4]
mitigation

* One week in each month

Table 1: Details of Facebook and Bing traces.

Production Traces: Our analysis is based on traces from
Facebook’s production Hadoop [8] cluster and Microsoft
Bing’s production Dryad [2] cluster. These are large
clusters with thousands of machines running jobs whose
performance and output have significant impact on pro-
ductivity and revenue. Therefore, each of the machines
in these clusters is well-provisioned with tens of cores
and sufficient (tens of GBs) memory. The traces cap-
ture the characteristics of over half a million jobs running
across many months. Table 1 lists the relevant details
of the traces. The Facebook cluster employs the LATE
straggler mitigation strategy [5], while the Bing cluster
uses the Mantri straggler mitigation strategy [4].

2.1 Stragglers in Jobs

We first quantify the magnitude and impact of stragglers,
and then show that simple blacklisting of machines in the
cluster is insufficient to mitigate them.

2.1.1 Magnitude of Stragglers and their Impact

A job consists of a graph of phases (e.g., map, reduce,
and join), with each phase executing the same type of
tasks in parallel. We identify stragglers by comparing
the progress rates of tasks within a phase. The progress
rate of a task is defined as the size of its input data di-
vided by its duration. In absence of stragglers, progress
rates of tasks of a phase are expected to be similar as
they perform similar IO and compute operations. We use
the progress rate instead of the task’s duration to remain
agnostic to skews in work assignment among tasks [4].
Techniques have been developed to deal with the prob-
lem of data skews among tasks [12, 13, 14] and our ap-
proach is complementary to those techniques.

Within each phase, we measure the slowdown ratio,
i.e., the ratio of the progress rate of the median task to
the slowest task. The negative impact of stragglers in-
creases as the slowdown ratio increases. We measure the
slowdown ratio after applying the LATE and Mantri mit-
igations; a what-if simulation is used for the mitigation
strategy that the original trace did not originally deploy.

Figure 1a plots the slowdown ratio by binning jobs ac-
cording to their number of tasks, with LATE in effect.
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Figure 1: Slowdown ratio after applying LATE and Mantri.
Small jobs see a higher prevalence of stragglers.

Db Blacklisted Machines (%) Job Improvement (%)
5 min 1 hour 5 min 1 hour

0.3 1% 6% 71% 8.4%

0.5 1.6% 2.8% 4.4% 5.2%

0.7 0.8% 1.2% 2.3% 2.8%

Table 2: Blacklisting by predicting straggler probability.
We show the fraction of machines that got blacklisted and
the improvements in completion times by avoiding them.

Phases in jobs with fewer than ten tasks, have a median
value of this ratio between 6 and 8, i.e., the slowest task
is up to 8 slower than the median task in the job. Also,
small jobs are hit harder by stragglers.> This is simi-
lar even if Mantri [4] was deployed. Figure 1b shows
that the slowest task is still 7x slower than the median
task, with Mantri. However, both LATE and Mantri ef-
fectively mitigate stragglers in large jobs.

Speculation techniques are not as effective in mitigat-
ing stragglers in small jobs as they are with large jobs
because they rely on comparing different tasks of a job to
identify stragglers. Comparisons are effective with more
samples of task performance. This makes them challeng-
ing to do with small jobs because not only do these jobs
have fewer tasks but also start all of them simultaneously.
Impact of Stragglers: We measure the potential in
speeding up jobs in the trace using the following crude
analysis: replace the progress rate of every task of a
phase that is slower than the median task with the me-
dian task’s rate. If this were to happen, the average com-
pletion time of jobs improves by 47% and 29% in the
Facebook and Bing traces, respectively; small jobs (those
with < 10 tasks) improve by 49% and 38%.

2.1.2 Blacklisting is Insufficient

An intuitive solution for mitigating stragglers is to black-
list machines that are likely to cause them and avoid

2Implicit in our explanation is that small interactive jobs consist of
just a few tasks. While we considered alternate definitions based on
input size and durations, in both our traces, we see a high correlation
between jobs running for short durations and the number of tasks they
contain along with the size of their input.

scheduling tasks on them. For this analysis, we classify
a task as a straggler if its progress rate is less than half
of the median progress rate among tasks in its phase. In
our trace, stragglers are not restricted to a small set of
machines but are rather spread out uniformly through the
cluster. This is not surprising because both the clusters
already blacklist machines with faulty disks and other
hardware troubles using periodic diagnostics.

We enhance this blacklisting by monitoring machines
at finer time intervals and employing temporal prediction
techniques to warn about straggler occurrences. We use
an EWMA to predict stragglers—the probability of a ma-
chine causing a straggler in a time window is equally de-
pendent on its straggler probability in the previous win-
dow and its long-term average. Machines with a pre-
dicted straggler probability greater than a threshold (py)
are blacklisted for that time window but considered again
for scheduling in the next time window.

We try time windows of 5 minutes and 1 hour. Table 2
lists the fraction of machines that get blacklisted and the
resulting improvement in job completion times by elim-
inating stragglers on them, in the Facebook trace. The
best case eliminates only 12% of the stragglers and im-
proves the average completion time by only 8.4% (in the
Bing trace, 11% of stragglers are eliminated leading to
an improvement of 6.2%). This is in harsh contrast with
potential improvements of 29% to 47% if all stragglers
were eliminated, as shown in §2.1.1.

The above results do not prove that effective blacklist-
ing is impossible, but shows that none of the blacklisting
techniques that we and, to our best knowledge, others [6]
have tried effectively prevent stragglers, suggesting that
such correlations either do not exist or are hard to find.

2.2 Heavy Tail in Job Sizes

We observed that smaller jobs are most affected by strag-
glers. These jobs were submitted by users for iterative
experimental purposes. For example, researchers tune
the parameters of new mining algorithms by evaluating
it on a small sample of the dataset. For this reason, these
jobs consist of just a few tasks. In fact, in both our traces,
we have noted a correlation between a job’s duration and
the number of tasks it has, i.e., jobs with shorter durations
tend to have fewer tasks. Short and predictable response
times for these jobs is of prime concern to datacenter op-
erators as they significantly impact productivity.

On the one hand, small interactive jobs absolutely
dominate the cluster and have stringent latency demands.
In the Facebook and Bing traces, jobs with < 10 tasks ac-
count for 82% and 61% of all the jobs, respectively. On
the other hand, they are the most affected by stragglers.

Despite this, we can clone all the small jobs using few
extra resources. This is because job sizes have a heavy-
tail distribution. Just a few large jobs consume most of



£ 100 106
% 80 8108 y = (9E+06)x1°

8 10¢

S 60 ~Facebook 5 108

g 40 —Bing éwz

g 20 2 10

o p=4

S 0+ T T T T ! 1=,

- 0 20 40 60 80 100 110 102 10% 10¢ 105 108

Total Cluster Cycles (%) Cluster Cycles

(a) Heavy-tail (b) Power Law

Figure 2: Heavy tail. Figure (a) shows the heavy tail in the
fraction of total resources used. Figure (b) shows that the
distribution of cluster resources consumed by jobs, in the
Facebook trace, follows a power law. Power-law exponents
are 1.9 and 1.8 when fitted with least squares regression in
the Facebook and Bing traces.

the resources in the cluster, while the cluster is domi-
nated by small interactive jobs. As Figure 2a shows, 90%
of the smallest jobs consume only 6% and 11% of the to-
tal cluster resources in the Facebook and Bing clusters,
respectively. Indeed, the distribution of resources con-
sumed by jobs follows a power law (see Figure 2b). In
fact, at any point in time, the small jobs do not use more
than 2% of the overall cluster resources.

The heavy-tail distribution offers potential to speed up
these jobs by using few extra resources. For instance,
cloning each of the smallest 90% of the jobs three times
increases overall utilization by merely 3%. This is well
within reach of today’s underutilized clusters which are
heavily over-provisioned to satisfy their peak demand of
over 99%), that leaves them idle at other times [15, 16].

Google recently released traces from their cluster job
scheduler that schedules a mixed workload of MapRe-
duce batch jobs, interactive queries and long-running ser-
vices [17]. Analysis of these traces again reveal a heavy-
tail distribution of job sizes, with 92% of the jobs ac-
counting for only 2% of the overall resources [18].

3 Cloning of Parallel Jobs

We start this section by describing the high-level idea
of cloning. After that (§3.1) we determine the granu-
larity of cloning, and settle for cloning at the granularity
of tasks, rather than entire jobs, as the former requires
fewer clones. Thereafter (§3.2), we investigate the num-
ber of clones needed if we desire the probability of a job
straggling to be at most €, while staying within a cloning
budget. Finally (§3.3), as we are unlikely to have room
to clone every job in the cluster, we show a very simple
admission control mechanism that decides when to clone
jobs. An important challenge of cloning—handling data
contention between clones—is dealt with in §4.

In contrast to reactive speculation solutions [1, 4,
5], Dolly advocates a proactive approach—straightaway
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Figure 3: Probability of a job straggling for varying num-
ber of clones, and sample jobs of 10, 20 and 50 tasks. Task-
level cloning requires fewer clones than job-level cloning to
achieve the same probability of the job straggling.

launch multiple clones of a job and use the result of the
first clone that finishes. Cloning makes straggler miti-
gation agile as it does not have to wait and observe a
task before acting, and also removes the risk inherent in
speculation—speculating the wrong tasks or missing the
stragglers. Similar to speculation, we assume that pick-
ing the earliest clone does not bias the results, a property
that generally holds for data-intensive computations.

3.1 Granularity of Cloning

We start with a job consisting of a single phase. A crucial
decision affecting efficiency is the granularity of cloning.
A simple option is to clone at the granularity of jobs. For
every job submitted to the cluster, multiple clones of the
entire job are launched. Results are taken from the earli-
est job that finishes. Such job-level cloning is appealing
due to its simplicity and ease of implementation.

A fine-grained alternative is to clone at the granularity
of individual tasks. Thus, multiple clones of each task
are launched. We refer to the different clones of the same
task as a clone group. In every clone group, we then use
the result of the clone that finishes first. Therefore, un-
like job-level cloning, task-level cloning requires internal
changes to the execution engine of the framework.

As a result of the finer granularity, for the same num-
ber of clones, task-level cloning provides better proba-
bilistic guarantees for eliminating stragglers compared to
job-level cloning. Let p be the probability of a task strag-
gling. For a single-phased job with n parallel tasks and ¢
clones, the probability that it straggles is (1 — (1 — p)™)°
with job-level cloning, and 1 — (1 — p©)" with task-level
cloning. Figure 3 compares these probabilities. Task-
level cloning gains more per clone and the probability of
the job straggling drops off faster.

Task-level cloning’s resource efficiency is desirable
because it reduces contention on the input data which is
read from file systems like HDFS [9]. If replication of in-
put data does not match the number of clones, the clones
contend for IO bandwidth in reading the data. Increas-



ing replication, however, is difficult as clusters already
face a dearth of storage space [19, 20]. Hence, due to its
efficiency, we opt for task-level cloning in Dolly.

3.2 Budgeted Cloning Algorithm

Pseudocode 1 describes the cloning algorithm that is ex-
ecuted at the scheduler per job. The algorithm takes as
input the cluster-wide probability of a straggler (p) and
the acceptable risk of a job straggling (e). We aim for an
€ of 5% in our experiments. The probability of a strag-
gler, p, is calculated every hour, where the straggler pro-
gresses at less than half the median task in the job. This
coarse approach suffices for our purpose.

Dolly operates within an allotted resource budget. This
budget is a configurable fraction (/3) of the total capacity
of the cluster (C). At no point does Dolly use more than
this cloning budget. Setting a hard limit eases deploy-
ment concerns because operators are typically nervous
about increasing the average utilization by more than a
few percent. Ultilization and capacity are measured in
number of slots (computation units allotted to tasks).

The pseudocode first calculates the desired number of
clones per task (step 2). For a job with n tasks, the num-
ber of clones desired by task-level cloning, ¢, can be de-
rived to be at least log (1 - (1- e)(l/")) /logp. The
number of clones that are eventually spawned is limited
by the resource budget (C'- 3) and a utilization threshold
(7), as in step 3. The job is cloned only if there is room
to clone all its tasks, a policy we explain shortly in §3.3.
Further, cloning is avoided if the cluster utilization after
spawning clones is expected to exceed a ceiling 7. This
ceiling avoids cloning during heavily-loaded periods.

Note that Pseudocode 1 spawns the same number of

clones to all the tasks of a job. Otherwise, tasks with
fewer clones are more likely to lag behind. Also, there
are no conflicts between jobs in updating the shared vari-
ables By and U because the centralized scheduler han-
dles cloning decisions one job at a time.
Multi-phased Jobs: For multi-phased jobs, Dolly uses
Pseudocode 1 to decide the number of clones for tasks
of every phase. However, the number of clones for
tasks of a downstream phase (e.g., reduce) never exceeds
the number of clones launched its upstream phase (e.g.,
map). This avoids contention for intermediate data (we
revisit this in §4). In practice, this limit never applies be-
cause small jobs have equal number of tasks across their
phases. In both our traces, over 91% of the jobs with
< 10 tasks have equal number of tasks in their phases.

3.3 Admission Control

The limited cloning budget, 3, should preferably be uti-
lized to clone the small interactive jobs. Dolly achieves

3The probability of a job straggling can be at most €, ie., 1 —
(1 — p%)™ < e. The equation is derived by solving for c.

1: procedure CLONE(n tasks, p, €)
C': Cluster Capacity, U: Cluster Utilization
(: Budget in fraction, By : Utilized budget in #slots
¢ =Nog (1- (1= ") /10gp]
if(Bu+c-n) < (C-p)and (U + c-n) < 7 then
> Admission Control: Sufficient capacity to
create c clones for each task
4: for each task ¢ do
Create c clones for ¢
By <+ Bu+c¢c-n

Pseudocode 1: Task-level cloning for a single-phased job
with n parallel tasks, on a cluster with probability of strag-
gler as p, and the acceptable risk of straggler as e.

this using a simple policy of admission control.

Whenever the first task of a job is to be executed, the
admission control mechanism computes, as previously
explained, the number of clones ¢ that would be required
to reach the target probability € of that job straggling. If,
at that moment, there is room in the cloning budget for
creating c copies of all the tasks, it admits cloning the
job. If there is not enough budget for ¢ clones of all the
tasks, the job is simply denied cloning and is executed
without Dolly’s straggler mitigation. The policy of ad-
mission control implicitly biases towards cloning small
jobs—the budget will typically be insufficient for cre-
ating the required number of clones for the larger jobs.
Step 3 in Pseudocode 1 implements this policy.

Many other competing policies are possible. For in-
stance, a job could be partially cloned if there is not
enough room for ¢ clones. Furthermore, preemption
could be used to cancel the clones of an existing job to
make way for cloning another job. It turns out that these
competing policies buy little performance compared to
our simple policy. We compare these policies in §5.5.

4 Intermediate Data Access with Dolly

A fundamental challenge of cloning is the potential con-
tention it creates in reading data. Downstream tasks in
a job read intermediate data from upstream tasks accord-
ing to the communication pattern of that phase (all-to-all,
many-to-one, one-to-one). The clones in a downstream
clone group would ideally read their intermediate data
from the upstream clone that finishes first as this helps
them all start together.4 This, however, can create con-
tention at the upstream clone that finishes first. Dealing
with such contentions is the focus of this section.

We first (§4.1) explore two pure strategies at opposite
ends of the spectrum for dealing with intermediate data
contention. At one extreme, we completely avoid con-

“4Intermediate data typically only exists on a single machine, as it is
not replicated to avoid time and resource overheads. Some systems do
replicate intermediate data [4, 21] for fault-tolerance but limit this to
replicating only a small fraction of the data.
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Figure 4: Intermediate data contention. The example job
contains two upstream tasks (Ul and U2) and two down-
stream tasks (D1 and D2), each cloned twice. The clone of
Ul is a straggler (marked with a dotted circle). CAC waits
for the straggling clone while CC picks the earliest clone.

tention by assigning each upstream clone, as it finishes,
to a new downstream task clone. This avoids contention
because it guarantees that every upstream task clone only
transfers data to a single clone per downstream clone
group. At another extreme, the system ignores the ex-
tra contention caused and assumes that the first finished
upstream clone in every clone group can sustain trans-
ferring its intermediate output to all downstream task
clones. As we show (§4.2), the latter better mitigates
stragglers compared to the former strategy. However,
we show (§4.3) that the latter may lead to congestion
whereas the former completely avoids it. Finally (§4.4),
we settle on a hybrid between the two (§4.4), delay as-
signment that far outperforms these two pure strategies.

4.1 Two Opposite Strategies

We illustrate two approaches at the opposite ends of the
spectrum through a simple example. Consider a job with
two phases (see Figure 4) and an all-to-all (e.g., shuffle)
communication pattern between them (§4.4 shows how
this can be generalized to other patterns). Each of the
phases consist of two tasks, and each task has two clones.

The first option (Figure 4a), which we call Contention-
Avoidance Cloning (CAC) eschews contention alto-
gether. As soon as an upstream task clone finishes, its
output is sent to exactly one downstream task clone per
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clone group. Thus, the other downstream task clones
have to wait for another upstream task clone to finish
before they can start their computation. We call this
Contention-Avoidance Cloning (CAC). Note that in CAC
an upstream clone will send its intermediate data to the
exact same number of other tasks as if no cloning was
done, avoiding contention due to cloning. The disadvan-
tage with CAC is that when some upstream clones strag-
gle, the corresponding downstream clones that read data
from them automatically lag behind.

The alternate option (Figure 4b), Contention Cloning
(CCQ), alleviates this problem by making all the tasks in a
downstream clone group read the output of the upstream
clone that finishes first. This ensures that no downstream
clone is disadvantaged, however, all of them may slow
down due to contention on disk or network bandwidth.

There are downsides to both CAC and CC. The next
two sub-sections quantify these downsides.

4.2 Probability of Job Straggling: CAC vs. CC

CAC increases the vulnerability of a job to stragglers by
negating the value of some of its clones. We first ana-
lytically derive the probability of a job straggling with
CAC and CC, and then compare them for some repre-
sentative job sizes. We use a job with n upstream and n
downstream tasks, with ¢ clones of each task.
CAC: A job straggles with CAC when either the up-
stream clones straggle and consequently handicap the
downstream clones, or the downstream clones straggle
by themselves. We start with the upstream phase first
before moving to the downstream phase.

The probability that at least d upstream clones of every
clone group will succeed without straggling is given by
the function W; p is the probability of a task straggling.

U(n, ¢,d) = Probability[n upstream tasks of ¢ clones with
> d non-stragglers per clone group]

=0

U(n,c,d) = (i (f)pi(l —p)“’)n (1)



Therefore, the probability of exactly d upstream
clones not straggling is calculated as:

U(n,e,d) —U(n,e,d—1)

Recall that there are n downstream tasks that are cloned
c times each. Therefore, the probability of the whole
job straggling is essentially the probability of a straggler
occurring in the downstream phase, conditional on the
number of upstream clones that are non-stragglers.

Probability[Job straggling with CAC| =
n (2)
— pd)

C

1= [¥(n,c,d) —

d=1

U(n,c,d—1)] (1

CC: CC assigns all downstream clones to the output of
the first upstream task that finishes in every clone group.
As all the downstream clones start at the same time, none
of them are handicapped. For a job to succeed with-
out straggling, it only requires that one of the upstream
clones in each clone group be a non-straggler. Therefore,
the probability of the job straggling is:

Probability[Job straggling with CC] =
1- \I/(TI,, C, 1) (1 - pc)"

CAC vs. CC: We now compare the probability of a job
straggling with CAC and CC for different job sizes. Fig-
ure 5 plots this for jobs with 10 and 20 upstream and
downstream tasks each. With three clones per task, the
probability of the job straggling increases by over 10%
and 30% with CAC compared to CC. Contrast this with
our algorithm in §3.2 which aims for an € of 5%. The
gap between CAC and CC diminishes for higher num-
bers of clones but this is contradictory to our decision to
pick task-level cloning as we wanted to limit the num-
ber of clones. In summary, CAC significantly increases
susceptibility of jobs to stragglers compared to CC.

4.3 1/0 Contention with CC

By assigning all tasks in a downstream clone group to
read the output of the earliest upstream clone, CC causes
contention for IO bandwidth. We quantify the impact due
to this contention using a micro-benchmark rather than
using mathematical analysis to model IO bandwidths,
which for contention is likely to be inaccurate.

With the goal of realistically measuring contention,
our micro-benchmark replicates the all-to-all data shuf-
fle portion of jobs in the Facebook trace. The experiment
is performed on the same 150 node cluster we use for
Dolly’s evaluation (§5). Every downstream task reads its
share of the output from each of the upstream tasks. All
the reads start at exactly the same relative time as in the
original trace and read the same amount of data from ev-
ery upstream task’s output. The reads of all the down-
stream tasks of a job together constitute a transfer [22].
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Figure 6: Slowdown (%) of transfer of intermediate data
between phases (all-to-all) due to contention by CC.

The number of clones per upstream and downstream
task is decided as in §3. In the absence of stragglers,
there would be as many copies of the upstream outputs
as there are downstream clones. However, a fraction of
the upstream clones will be stragglers. When upstream
clones straggle, we assume their copy of the intermedi-
ate data is not available for the transfer. Naturally, this
causes contention among the downstream clones.

Reading contended copies of intermediate data likely
results in a lower throughput than when there are exclu-
sive copies. Of interest to us is the slowdown in the trans-
fer of the downstream phase due to such contentions,
compared to the case where there are as many copies of
the intermediate data as there are downstream clones.

Figure 6 shows the slowdown of transfers in each bin
of jobs. Transfers of jobs in the first two bins slow
down by 32% and 39% at median, third quartile values
are 50%. Transfers of large jobs are less hurt because
tasks of large jobs are often not cloned because of lack
of cloning budget. Overall, we see that contentions cause
significant slowdown of transfers and are worth avoiding.

4.4 Delay Assignment

The analyses in §4.2 and §4.3 conclude that both CAC
and CC have downsides. Contentions with CC are not
small enough to be ignored. Following strict CAC is not
the solution either because it diminishes the benefits of
cloning. A deficiency with both CAC and CC is that they
do not distinguish stragglers from tasks that have normal
(but minor) variations in their progress. CC errs on the
side of assuming that all clones other than the earliest are
stragglers, while CAC assumes all variations are normal.

We develop a hybrid approach, delay assignment, that
first waits to assign the early upstream clones (like CAC),
and thereafter proceeds without waiting for any remain-
ing stragglers (like CC). Every downstream clone waits
for a small window of time (w) to see if it can get an ex-
clusive copy of the intermediate data. The wait time of
w allows for normal variations among upstream clones.
If the downstream clone does not get its exclusive copy
even after waiting for w, it reads with contention from
one of the finished upstream clone’s outputs.



Crucial to delay assignment’s performance is setting
the wait time of w. We next proceed to discuss the anal-
ysis that picks a balanced value of w.

Setting the delay (w): The objective of the analysis is
to minimize the expected duration of a downstream task,
which is the minimum of the durations of its clones.

We reuse the scenario from Figure 4. After waiting
for w, the downstream clone either gets its own exclusive
copy, or reads the available copy with contention with
the other clone. We denote the durations for reading the
data in these two cases as Tr and T, respectively. In
estimating read durations, we eschew detailed modeling
of systemic and network performance. Further, we make
the simplifying assumption that all downstream clones
can read the upstream output (of size ) with a bandwidth
of B when there is no contention, and a.B in the presence
of contention (o < 1).

Our analysis, then, performs the following three steps.

1. Calculate the clone’s expected duration for reading
each upstream output using 7 and T'g.

2. Use read durations of all clones of a task to estimate
the overall duration of the task.

3. Find the delay w that minimizes the task’s duration.

Step (1): We first calculate T¢, i.e., the case where the
clone waits for w but does not get its exclusive copy,
and contends with the other clone. The downstream
clone that started reading first will complete its read in
(w + (%)), i.e., it reads for w by itself and contends
with the other clone for the remaining time. The other
clone takes (2w + (T;gw)) to read the data.
Alternately, if the clone gets its exclusive copy, then
the clone that began reading first reads without interrup-
tion and completes its read in (%) The other clone,
since it gets its own copy too, takes (%5 + min(%,w))
to read the data.> Now that we have calculated T and
Tg, the expected duration of the task for reading this up-
stream output is simply p.T¢ + (1 — p.) Tr, where p.. is
the probability of the task not getting an exclusive copy.
Note that, regardless of the number of clones, every clone
is assigned an input source latest at the end of w. Unfin-
ished upstream clones at that point are killed.
Step (2): Every clone may have to read the outputs of
multiple upstream clones, depending on the intermedi-
ate data communication pattern. In all-to-all communi-
cation, a task reads data from each upstream task’s out-
put. In one-to-one or many-to-one communications, a
task reads data from just one or few tasks upstream of it.
Therefore, the total time 75 taken by clone 7 of a task is

obtained by considering its read durations from each of

5The wait time of w is an upper limit. The downstream clone can
start as soon as the upstream output arrives.

the relevant upstream tasks, along with the expected time
for computation. The expected duration of the task is the
minimum of all its clones, min; (7).

Step (3): The final step is to find w that minimizes this
expected task duration. We sample values of B and a,
p. and the computation times of tasks from samples of
completed jobs. The value of B depends on the number
of active flows traversing a machine, while the p, is in-
versely proportional to w. Using these, we pick w that
minimizes the duration of a task calculated in step (2).
The value of w is calculated periodically and automati-
cally for different job bins (see §5.2). A subtle point with
our analysis is that it automatically considers the option
where clones read from the available upstream output,
one after the other, without contending.

A concern in the strategy of delaying a task is that it is
not work-conserving and also somewhat contradicts the
observation in §2 that waiting before deciding to specu-
late is harmful. Both concerns are ameliorated by the fact
that we eventually pick a wait duration that minimizes
the completion time. Therefore, our wait is not because
we lack data to make a decision but precisely because the
data dictates that we wait for the duration of w.

5 Evaluation

We evaluate Dolly using a prototype built by modifying
the Hadoop framework [8]. We deploy our prototype on
a 150-node cluster and evaluate it using workloads de-
rived from the Facebook and Bing traces (§2), indicative
of Hadoop and Dryad clusters. In doing so, we preserve
the inter-arrival times of jobs, distribution of job sizes,
and the DAG of the jobs from the original trace. The
jobs in the Dryad cluster consist of multiple phases with
varied communication patterns between them.

5.1 Setup

Prototype Implementation: We modify the job sched-
uler of Hadoop 0.20.2 [8] to implement Dolly. The two
main modifications are launching clones for every task
and assigning map outputs to reduce clones such that
they read the intermediate data without contention.

When a job is submitted, its tasks are queued at the
scheduler. For every queued task, the scheduler spawns
many clones. Clones are indistinguishable and the sched-
uler treats every clone as if it were another task.

The all-to-all transfer of intermediate data is imple-
mented as follows in Hadoop. When map tasks finish,
they notify the scheduler about the details of their out-
puts. The scheduler, in turn, updates a synchronized list
of available map outputs. Reduce tasks start after a frac-
tion of the map tasks finish [23]. On startup, they poll
on the synchronized list of map outputs and fetch their
data as and when they become available. There are two
changes we make here. First, every reduce task differen-



Bin 1 2 3 4 5
Tasks || 1-10 | 11-50 | 51-150 | 151-500 | > 500

Table 3: Job bins, binned by their number of tasks.

tiates between map clones and avoids repetitive copying.
Second, tasks in a reduce clone group notify each other
when they start reading the output of a map clone. This
helps them wait to avoid contention.

Deployment: We deploy our prototype on a private clus-
ter with 150 machines. Each machine has 24GB of mem-
ory, 12 cores, and 2TB of storage. The machines have
1Gbps network links connected in a topology with full
bisection bandwidth. Each experiment is repeated five
times and we present the median numbers.

Baseline: Our baselines for evaluating Dolly are the
state-of-the-art speculation algorithms—LATE [5] and
Mantri [4]. Additionally, with each of these specula-
tion strategies, we also include a blacklisting scheme that
avoids problematic machines (as described in §2.1.2).

In addition to overall improvement in average com-
pletion time of jobs, we bin jobs by their number of tasks
(see Table 3) and report the average improvement in each
bin. The following is a summary of our results.

* Average completion time of small jobs improves by
34% to 46% compared to LATE and Mantri, using
fewer than 5% extra resources (§5.2 and §5.4).

* Delay assignment outperforms CAC and CC by 2x.
Its benefit increases for jobs with higher number of
phases and all-to-all intermediate data flow (§5.3).

e Admission control of jobs is a good approximation
for preemption in favoring small jobs (§5.5).

5.2 Does Dolly mitigate stragglers?

We first present the improvement in completion time us-
ing Dolly. Unless specified otherwise, the cloning budget
B3 is 5% and utilization threshold 7 is 80%.

Dolly improves the average completion time of jobs by
42% compared to LATE and 40% compared to Mantri,
in the Facebook workload. The corresponding improve-
ments are 27% and 23% in the Bing workload. Fig-
ure 7 plots the improvement in different job bins. Small
jobs (bin-1) benefit the most, improving by 46% and
37% compared to LATE and 44% and 34% compared
to Mantri, in the Facebook and Bing workloads. This
is because of the power-law in job sizes and the policy
of admission control. Figures 8a and 8b show the aver-
age duration of jobs in the smallest two bins with LATE
and Mantri, and its reduction due to Dolly’s cloning, for
the Facebook workload. Figure 8c shows the distribution
of gains for jobs in bin-1. We see that jobs improve by
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Figure 7: Dolly’s improvement for the Facebook and Bing
workloads, with LATE and Mantri as baselines.

nearly 50% and 60% at the 75" and 90" percentiles, re-
spectively. Note that even at the 10" percentile, there is
a non-zero improvement, demonstrating the seriousness
and prevalence of the problem of stragglers in small jobs.

Figure 9 presents supporting evidence for the improve-
ments. The ratio of medium to minimum progress rates
of tasks, which is over 5 with LATE and Mantri in our de-
ployment, drops to as low as 1.06 with Dolly. Even at the
95 percentile, this ratio is only 1.17, thereby indicating
that Dolly effectively mitigates nearly all stragglers.

The ratio not being exactly 1 shows that some strag-
glers still remain. One reason for this is that while
our policy of admission control is a good approximation
(§3.3), it does not explicitly prioritize small jobs. Hence
a few large jobs possibly deny the budget to some small
jobs. Analyzing the consumption of the cloning budget
shows that this is indeed the case. Jobs in bin-1 and bin-2
together consume 83% of the cloning budget. However,
even jobs in bin-5 get a small share (2%) of the budget.

5.3 Delay Assignment

Setting w: Crucial to the above improvements is delay
assignment’s dynamic calculation of the wait duration of
w. The value of w, picked using the analysis in §4.4, is
updated every hour. It varied between 2.5s and 4.7s for
jobs in bin-1, and 3.1s and 5.2s for jobs in bin-2. The
value of w varies based on job sizes because the number
of tasks in a job influences B, a and p.. Figure 10 plots
the variation with time. The sensitivity of w to the period-
icity of updating its value is low—using values between
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the small jobs before and after Dolly. Figure (c) expands on
the distribution of the gains for jobs with < 10 tasks.
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Figure 9: Ratio of median to minimum progress rates of
tasks within a phase. Bins are as per Table 3.

30 minutes to 3 hours causes little change in its value.
CC and CAC: We now compare delay assignment to the
two static assignment schemes, Contention Cloning (CC)
and Contention Avoidance Cloning (CAC) in Figure 11,
for the Bing workload. With LATE as the baseline, CAC
and CC improve the small jobs by 17% and 26%, in con-
trast to delay assignment’s 37% improvement (or up to
2.1x better). With Mantri as the baseline, delay assign-
ment is again up to 2.1x better. In the Facebook work-
load, delay assignment is at least 1.7 x better.

The main reason behind delay assignment’s better per-
formance is its accurate estimation of the effect of con-
tention and the likelihood of stragglers. It uses sampling
from prior runs to estimate both. Bandwidth estimation
is 93% accurate without contention and 97% accurate
with contention. Also, the probability of an upstream
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Figure 10: Variation in w when updated every hour.
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Figure 11: Intermediate data contention. Delay Assign-
ment is 2.1 x better than CAC and CC (Bing workload).

clone straggling is estimated to an accuracy of 95%.
Between the two, CC is a closer competitor to delay
assignment than CAC, for small jobs. This is because
they transfer only moderate amounts of data. However,
contentions hurt large jobs as they transfer sizable inter-
mediate data. As a result, CC’s gains drop below CAC.
Number of Phases: Dryad jobs may have multiple
phases (maximum of 6 in our Bing traces), and tasks of
different phases have the same number of clones. More
phases increases the chances of there being fewer exclu-
sive copies of task outputs, which in turn worsens the
effect of both waiting as well as contention. Figure 12
measures the consequent drop in performance. CAC’s
gains drop quickly while CC’s performance drops at a
moderate rate. Importantly, delay assignment’s perfor-
mance only has a gradual and relatively small drop. Even
when the job has six phases, improvement is at 31%, a
direct result of its deft cost-benefit analysis (§4.4).
Communication Pattern: Delay assignment is generic
to handle any communication pattern between phases.
Figure 13 differentiates the gains in completion times of
the phases based on their communication pattern. Re-
sults show that delay assignment is significantly more
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Figure 12: Dolly’s gains as the number of phases in jobs in
bin-1 varies in the Bing workload, with LATE as baseline.
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Figure 14: Sensitivity to cloning budget (3). Small jobs see
a negligible drop in performance even with a 3% budget.

valuable for all-to-all communication patterns than the
many-to-one and one-to-one patterns. The higher the de-
pendency among communicating tasks, the greater the
value of delay assignment’s cost-benefit analysis.
Overall, we believe the above analysis shows the ap-
plicability and robust performance of Dolly’s mecha-
nisms to different frameworks with varied features.

5.4 Cloning Budget

The improvements in the previous sections are based on
a cloning budget 8 of 5%. In this section, we analyze
the sensitivity of Dolly’s performance to 8. We aim to
understand whether the gains hold for lower budgets and
how much further gains are obtained at higher budgets.
In the Facebook workload, overall improvement re-
mains at 38% compared to LATE even with a cloning
budget of only 3% (Figure 14a). Small jobs, in fact, see
a negligible drop in gains. This is due to the policy of
admission control to favor small jobs. Large jobs take
a non-negligible performance hit though. In fact, in the
Bing workload, even the small jobs see a drop of 7%
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Figure 16: Admission Control. The policy of admission
control well approximates the policy of preemption and out-
performs pure-FCFS in utilizing the cloning budget.

when the budget is reduced from 5% to 3%. This is be-
cause job sizes in Bing are less heavy-tailed. However,
the gains still stand at a significant 28% (Figure 14b).

Increasing the budget to 10% does not help much.
Most of the gains are obtained by eliminating stragglers
in the smaller jobs, which do not require a big budget.

In fact, sweeping the space of 3 (Figure 15) reveals
that Dolly requires a cloning budget of at least 2% and 3%
for the Facebook and Bing workloads, below which per-
formance drops drastically. Gains in the Facebook work-
load plateau beyond 5%. In the Bing workload, gains for
jobs in bin-1 plateau at 5% but the overall gains cease to
grow only at 12%. While this validates our setting of
as 5%, clusters can set their budgets based on their uti-
lizations and the jobs they seek to improve with cloning.



5.5 Admission Control

A competing policy to admission control (§3.3) is to pre-
empt clones of larger jobs for the small jobs. Preemption
is expected to outperform admission control as it explic-
itly prioritizes the small jobs; we aim to quantify the gap.
Figure 16 presents the results with LATE as the base-
line and cloning budgets of 5% and 3%. The gains with
preemption is 43% and 29% in the Facebook and Bing
workloads, compared to 42% and 27% with the policy
of admission control. This small difference is obtained
by preempting 8% and 9% of the tasks in the two work-
loads. Lowering the cloning budget to 3% further shrinks
this difference, even as more tasks are preempted. With
a cloning budget of 3%, the improvements are nearly
equal, even as 17% of the tasks are preempted, effec-
tively wasting cluster resources. Admission control well
approximates preemption due to the heavy tailed distri-
bution. Note the near-identical gains for small jobs.
Doing neither preemption or admission control in al-
locating the cloning budget (“pure-FCFS”) reduces the
gains by nearly 14%, implying this often results in larger
jobs denying the cloning budget to the smaller jobs.

6 Related Work

Replicating tasks in distributed systems have a long his-
tory [24, 25, 26], and have been studied extensively [27,
28, 29] in prior work. These studies conclude that model-
ing running tasks and using it for predicting and compar-
ing performance of other tasks is the hardest component,
errors in which often cause degradation in performance.
We concur with a similar observation in our traces.

The problem of stragglers was identified in the orig-
inal MapReduce paper [1]. Since then solutions have
been proposed to fix it using speculative executions [2,
4, 5]. Despite these techniques, stragglers remain a prob-
lem in small jobs. Dolly addresses their fundamental
limitation—wait to observe before acting—with a proac-
tive approach of cloning jobs. It does so using few extra
resources by relying on the power-law of job sizes.

Based on extensive research on detecting faults in ma-
chines (e.g., [30, 31, 32, 33, 34]), datacenters period-
ically check for faulty machines and avoid scheduling
jobs on them. However, stragglers continue to occur on
the non-blacklisted machines. Further improvements to
blacklisting requires a root cause analysis of stragglers
in small jobs. However, this is intrinsically hard due to
the complexity of the hardware and software modules, a
problem recently acknowledged in Google’s clusters [6].

In fact, Google’s clusters aim to make jobs “pre-
dictable out of unpredictable parts” [6]. They overcome
vagaries in performance by scheduling backup copies
for every job. Such backup requests are also used in
Amazon’s Dynamo [35]. This notion is similar to Dolly.
However, these systems aim to overcome variations in
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scheduling delays on the machines, not runtime strag-
glers. Therefore, they cancel the backup copies once one
of the copies starts. In contrast, Dolly has to be resilient
to runtime variabilities which requires functioning within
utilization limits and efficiently handle intermediate data.
Finally, our delay assignment model is similar to the
idea of delay scheduling [36] that delays scheduling tasks
for locality. We borrow this idea in Dolly, but crucially,
pick the value of the delay based on a cost-benefit analy-
sis weighing contention versus waiting for slower tasks.

7 Conclusions and Future Work

Analysis of production traces from Facebook and Mi-
crosoft Bing show that straggler tasks continue to af-
fect small interactive jobs by 47% even after applying
state-of-the-art mitigation techniques [4, 5]. This is be-
cause these techniques wait before launching speculative
copies. Such waiting bounds their agility for small jobs
that run all their tasks at once.

In this paper we developed a system, Dolly, that
launches multiple clones of jobs, completely removing
waiting from straggler mitigation. Cloning of small jobs
can be achieved with few extra resources because of the
heavy-tail distribution of job sizes; the majority of the
jobs are small and can be cloned with little overhead. The
main challenge of cloning was making the intermediate
data transfer efficient, i.e., avoiding multiple tasks down-
stream in the job from contending for the same upstream
output. We developed delay assignment to efficiently
avoid such contention using a cost-benefit model. Evalu-
ation using production workloads showed that Dolly sped
up small jobs by 34% to 46% on average, after applying
LATE and Mantri, using only 5% extra resources.

Going forward, we plan to evaluate Dolly’s compat-
ibility with caching systems proposed for computation
frameworks. These systems rely on achieving memory
locality—scheduling a task on the machine that caches
its input—along with cache replacement schemes tar-
geted for parallel jobs [37]. Analyzing (and dealing with)
the impact of multiple clones for every task on both these
aspects is a topic for investigation.

We also plan to extent Dolly to deal with clusters that
deploy multiple computation frameworks. Trends indi-
cate a proliferation of frameworks, based on different
computational needs and programming paradigms (e.g.,
[3, 7]). Such specialized frameworks may, perhaps, lead
to homogeneity of job sizes within them. Challenges
in extending Dolly to such multi-framework clusters in-
cludes dealing with any weakening of the heavy-tail dis-
tribution, a crucial factor behind Dolly’s low overheads.
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