Sustainable Computing: Informatics and Systems 3 (2013) 194-206

Contents lists available at SciVerse ScienceDirect

c§ustalnaé)le

Sustainable Computing: Informatics and Systems

journal homepage: www.elsevier.com/locate/suscom

Core groups: System abstractions for extending the dynamic range of client
devices using heterogeneous cores

Vishal Gupta®*, Paul Brett?, David KoufatyP?, Dheeraj Reddy®, Scott HahnP, Karsten Schwan?,
Ganapati SrinivasaP

2 College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
b Intel Corporation, Hillshoro, OR 97124, USA

ARTICLE INFO ABSTRACT

Article history:
Received 4 September 2012
Accepted 29 January 2013

Mobile devices and applications exhibit highly diverse behavior in their usage and power/performance
requirements. In order to accommodate such diversity, this paper presents ‘HeteroMates’ system that uses
heterogeneous processors to extend the dynamic power/performance range of client devices, i.e., offer
both high performance and reduced power consumption. It proposes core group abstraction that groups a
small number of heterogeneous cores to form a single execution unit. Group heterogeneity is exposed as
multiple heterogeneity (H) states, an interface similar to the P-state interface already used for frequency
scaling. Further, the core group abstraction is extended to a multicore group to allow multiple cores within
a group to be active concurrently. Also demonstrated is the importance of ‘uncore’ power in total SoC
power consumption and the need for uncore-aware operation and uncore power scalability when seeking
to extend a platform’s dynamic power/performance range using heterogeneity. Experimental evaluations
use real-world client applications and a unique experimental testbed comprised of heterogeneous cores
and a shared uncore component. Results show that HeteroMates can provide significant performance
improvements while also lowering energy consumption for a diverse set of applications when compared

Keywords:

Heterogeneous multicores
Client devices

Dynamic range

Uncore power

to homogeneous processor configurations.

Published by Elsevier Inc.

1. Introduction

Mobile devices have emerged as a dominant computing plat-
form for end users, resulting in an unprecedented increase in the
range of performance demands imposed on them by their many
rich applications, and at the same time, battery life and energy effi-
ciency remain critical concerns. Yet modern processors are typically
designed to meet only one, not both, of these two conflicting goals of
performance vs. efficiency. In response, chip vendors have adopted
heterogeneous multicore processors (HMPs) as their platforms of
choice, which consist of cores with different performance/power
characteristics. Examples include Variable SMP from NVIDIA [1]
and Big.LITTLE processing from ARM [2]. HMPs make it possible
for different applications within a diverse mix of workloads to be
run on the ‘most appropriate’ cores [3-6]. For example, applica-
tions not time critical to the user can be run on low-power small
cores, while applications with their outputs visible to the user can
be allocated to high-performance big cores.

* Corresponding author at: 266 Ferst Drive, Atlanta, GA 30313, USA.
Tel.: +1 404 385 1353; fax: +1 404 385 2295.
E-mail address: vishal@cc.gatech.edu (V. Gupta).

2210-5379/$ - see front matter. Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.suscom.2013.01.010

In addition to performance and energy-efficiency goals, the
processors used in mobile platforms also need to operate under
stringent power constraints, in part due to the devices’ limited
cooling options. At the same time, growing transistor counts under
such limited budgets, coupled with poor per-transistor power scal-
ing, are not only creating a utilization wall that limits the fraction
of a chip that can run at full speed at one time, a trend also
known as dark silicon [7], but they also create new opportunities
for realizing application performance goals under stringent power
constraints.

This paper presents the HeteroMates solution that utilize
such ‘excess’ silicon by intentionally over-provisioning the CPU
using heterogeneous cores in order to provide a wider dynamic
power-performance range for client devices, to meet both their high-
performance and low-power demands. Within a heterogeneous
mix, it opportunistically uses the right set of cores for execution to
meet the diverse requirements of mobile applications. Due to over-
provisioning, only a subset of the cores are activated for concurrent
use that fit within the power budget, while the rest are forced into
inactive mode to save power. The presence of heterogeneity allows
the system to make optimal use of constrained power resources,
by matching heterogeneous CPU resources to current application
needs.

dx.doi.org/10.1016/j.suscom.2013.01.010
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
mailto:vishal@cc.gatech.edu
dx.doi.org/10.1016/j.suscom.2013.01.010

V. Gupta et al. / Sustainable Computing: Informatics and Systems 3 (2013) 194-206 195

HeteroMates forms execution units using the core group abstrac-
tion, where each group consists of a small number of (e.g., 2-4)
heterogeneous cores. Cores within a core group are exposed to
the system as multiple heterogeneity (H) states, similar to the P-
states used for voltage and frequency scaling. An H-state controller
module performs H-state transitions based upon workload behav-
ior and user-defined policies. Depending on the selected H-state,
the workload is transparently migrated to the appropriate core by
a core switcher. The work also highlight the growing importance of
uncore power in total SoC power consumption and the need for a
scalable uncore in order to fully realize the potential gains obtained
from the use of heterogeneity. To this end, we augment the H-state
controller for uncore-aware operation by adding energy-override
condition and thus improve energy-efficiency. H-state abstraction
decouples heterogeneity from scheduling such that the scheduler
perceives only homogeneous cores. The performance/power differ-
ences among cores are transparently handled by a separate H-state
driver. H-states can be implemented in hardware, firmware, or
software, thereby providing a way to hide heterogeneity from the
operating system to support legacy software for wider adoption.
Further, core groups allow the system to easily accommodate a
variable number of different heterogeneous cores, by adding an
H-state for each core. Finally, core groups can be useful in thermal-
constrained scenarios (also known as dark silicon [7]) which allow
only a fraction of the chip components to be active simultaneously.

The core group abstraction is extended to multiple concurrently
executing cores using multicore groups. A multicore group is a set
of different multicore configurations of a platform by choosing a
subset of the heterogeneous cores that meet the power budget.
The platform’s activity in different CPU configurations is exposed
using multicore states (M-states). Each M-state represents a dif-
ferent platform configuration and a switch between two M-states
causes the execution to move a different set of cores, i.e., the ones
matching the chosen M-state. Transitions among these states are
governed by a controller module depending on the application
behavior and platform power constraints.

HeteroMates is implemented on top of the Linux kernel. Exper-
imental evaluations use a unique, experimental heterogeneous
multicore platform comprised of both high and low power cores,
along with client applications typically seen in modern end-user
devices. Two different usage policies are compared for H-state
solution: a performance-driven policy favors high performance
for user-facing applications, whereas a power-driven policy favors
reduced power consumption and longer battery life. Similarly,
an analysis is performed for M-state solution comparing several
under-provisioned (all-small, all-big, heterogeneous) and over-
provisioned configurations (with parallelism-aware and static
oracle M-state controllers). Experimental results demonstrate that
by opportunistically utilizing heterogeneous cores, HeteroMates
can provide both improved performance and lowered energy
consumption for various client applications when compared to
homogeneous cores.

The rest of the paper is organized as follows: Section 2 presents
motivational examples and use cases from client domain. Sec-
tion 3 discusses emerging trends in the semiconductor industry. A
detailed design of HeteroMates system describing core group and
multicore group abstractions is presented in Section4. Section 5
analyzes the impact of uncore power on the design. Evaluation
methodology and experimental results are provided in Sections 6
and 7, respectively. Finally, Sections8 and 9 summarize related
work and conclusions from the work.

2. Motivation

Users perform a wide variety of tasks on mobile devices, result-
ing in diverse platform demands. Since their battery capacities are

severely restricted due to constraints on size and weight, energy
efficiency is critical to their usability. To provide extended battery
life and at the same time, meet the rapidly increasing demands of
high performance mobile use cases, a client device must offerawide
dynamic power-performance range — it must be able to operate both
in high-performance and in power-savings modes. As explained in
detail in Section 3.1, heterogeneous cores can be used to extend
the dynamic power/performance range offered by homogeneous
processor configurations. In that context, this section discusses
examples of client workloads (see the list in Table 2), and the usage
patterns of client devices that motivate the need for a wide dynamic
power/performance range and discusses opportunities for using
heterogeneous cores for this purpose.

2.1. Client workloads

Client applications exhibit highly diverse behavior in their pro-
cessor usage and performance requirements. These applications
can be categorized based on their behavior as described below.

2.1.1. Intermittent workloads

Client devices like cell phones and tablets are typically powered-
on for long periods of time, but often perform their heavy
processing in short bursts. Web-browsing is an example of such
usage, and workloads browse and palbum in Table 2 belong to this
category. A timeline trace of IPC (instructions-per-cycle) for the
browse workload is shown in Fig. 1(a). Idle periods are marked
by low IPC periods, while page-loads correspond to spikes in the
graph. Since page-loads generate high IPC activity, a big core can
be used for rendering the pages and improving page-load perfor-
mance, while resorting to a small core during low activity periods
to conserve power.

2.1.2. Sustained workloads

These differ from intermittent workloads in that their behavior
is uniform over a longer duration. They can be further classified into
two sub-categories: sustained-high and sustained-low.

Sustained-low: Client applications like gaming and media play-
back typically run for a long duration (a few minutes to hours).
Moreover, the wide adoption of accelerators allows them to offload
significant portions of their computation to accelerators. Fig. 1(b)
shows the IPC trace of the openarena gaming benchmark. As the
observed IPC is low for the application, it can be run on a small

2.0 2.0
; S
150 ¢ ; ; R ' 1.5
oo Py 3 P03 .
1.0 ! H z i oy f10,

PR G R N i i
SR .4 — i e T
o " 0.5

0.0

0051020 30 40 50 60 70 80 90
Time (s)

0 5 10 15 20 25
Time (s)

(a) Intermittent (browse) (b) Sustained-low (openarena)

2.0 2.0
N e S N Sty s
1s e fafaeg, ®asumatetesey LN . 15 ‘.. .:-. .
ERS N RO w . _‘,/‘-“:2_

g 1.0 10

05 0.5 lertmsten e et T T

0.0 0.0

0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60
Time (s) Time (s)

(c) Sustained-high (x264) (d) Multi-threaded (mytube)

Fig. 1. Diverse client workload profiles (IPC vs. time).

196 V. Gupta et al. / Sustainable Computing: Informatics and Systems 3 (2013) 194-206

core without significant degradation in performance and at lower
power.

Sustained-high: Mobile devices are also used for compute-
intensive tasks such as media encoding, video editing, etc. These
applications typically have a high IPC (e.g., see x264 encoder in
Fig. 1(c)), and their performance scales well on a big core. This
makes big cores suitable for these applications when they require
high performance, e.g., when they are user-facing, while a small
core may provide higher energy-efficiency when they run in back-
ground mode (e.g., virus-scan).

2.1.3. Multi-threaded workloads

With increasing numbers of cores on mobile devices, par-
allelization of client applications is key to further performance
enhancement. Such multi-threaded applications also present
opportunities for exploiting heterogeneity. 7zip, gmagick, and
eclipse are examples of parallel applications. The mytube workload
also uses multiple threads for audio, video decoding, and rendering,
for instance. Since such threads differ in behavior and needs, their
performance will be affected by how they are mapped to differ-
ent heterogeneous cores. For example, Fig. 1(d) shows that various
threads within the mytube workload differ significantly in their IPC,
which can be leveraged by task mapping and scheduling methods.

2.2. Client devices

2.2.1. Mobility constraints

Mobility means that client devices will either be powered via
wall-power or by battery. Wall-power usage does not impose
energy constraints, so that big cores can provide desired high lev-
els of performance. During battery-driven operation, however, a
user may be willing to accept lower performance at the benefit of
higher battery life. Low-powered energy-efficient small cores may
be more suitable under such conditions.

2.2.2. Thermal constraints

Clientdevices like cell phones and tablets rely on natural cooling.
Therefore, these devices are quite sensitive to platform thermal
constraints thatimpose limits on the extent to whichitis possible to
use power-hungry big cores for sustained periods of time. A small
core can be used for moving the execution away from a big core
when thermal constraints are violated.

3. Processor design trends

Several emerging trends in microprocessor design including
heterogeneous cores and processor over-provisioning influence the
design of HeteroMates which are summarized in this section.

3.1. Heterogeneous cores

Modern processors are typically designed to satisfy only one of
the two conflicting requirements: high-performance and energy-
efficiency. Current low-power cores (e.g., Intel’s Atom processor)
are energy efficient, but their performance is limited. More power-
ful big cores like Intel Core® processors provide high performance,
but at the cost of higher levels of power consumption. The
technological reasons for this are the fact that the power con-
sumption of a processor core consists of static (leakage) power and
dynamic (switching) power. During high activity periods, the total
power consumption of the device is dominated by dynamic power
consumption, while during low activity periods, leakage power
becomes a significant component of the total power consump-
tion. Current high performance cores are built from transistors on
fast process technologies that have high leakage power and very
fast switching times [1]. Such big cores, therefore, consume high

High switching power at
high performance points

High leakage power at ¢
low performance points .-

power

performance

Fig. 2. Big cores are less efficient at low activity points, while small cores are less
efficient at high activity points. Using a heterogeneous processor provides a wide
dynamic power/performance range.

leakage power under idle or near-idle conditions, but can provide
high performance without significant increase in dynamic power,
as shown in Fig. 2. Conversely, low power small cores are built from
low power process technologies with low leakage power but slower
switching times [1]. Such processors consume small amounts of
leakage power, but significantly increase dynamic power consump-
tion to provide a high-performance mode (see Fig. 2). Static power is
mainly determined by the silicon process technology, and dynamic
power is determined by silicon process technology and by operat-
ing voltages and frequencies.

The intuitive outcome is that by using both types of cores, a
single platform can be optimized for both high performance and
low power consumption. The objective of such a system would be
to always use its most efficient cores for the tasks at hand (shown
by the solid line in Fig. 2). Such a heterogeneous platform exhibits a
higher power-performance range than individual big or small cores.
This paper explores whether and to what extent the hardware-
based arguments for heterogeneity stated above lead to realistically
achievable gains on client devices.

3.2. Over-provisioned processors

The transistor density on modern processors continues to grow,
but due to poor Dennard scaling, i.e., reduction in CMOS threshold
and supply voltages, per-transistor power is decreasing at a much
slower rate. Under constant power budgets, which are governed by
the cooling technology of the platform, the gap between the tran-
sistors that can be fit into the die area and the transistors that can be
activated simultaneously is widening (see Fig. 3) [7]. Thus, future
processors are likely to have significant dark resources, e.g., it is esti-
mated thatin 8 years, we will be faced with designs that would have
93.75% silicon over its provisioned power limit. This phenomenon
is more severe in passively cooled mobile devices such as netbooks,
tablets, and smart phones.

Mitigating or exploiting dark silicon presents new challenges
and opportunities in terms of finding novel ways to utilize such
over-provisioned resources to improve performance or energy-
efficiency. One way to address the problem of dark silicon is to build
smaller processors and discard dark silicon, but various economic

Transistor
Density

sllicon

Y

years

Fig. 3. Future processors are likely to be over-provisioned due to the increasing
gap between transistor density and transistors that can be sustained within power
budgets.

V. Gupta et al. / Sustainable Computing: Informatics and Systems 3 (2013) 194-206 197

constraints are likely to promote large size chips that will have
far more transistors than can be used simultaneously. Another
approach to mitigate dark silicon is to slow down all of the com-
ponents on the processor to fit into the power envelope, but this
approach is energy-inefficient as DVFS incurs a quadratic power
cost for a linear frequency boost. Therefore, the approach explored
in this work is to design processors which are provisioned above
their TDP (thermal-design-power) limits, but it employs hetero-
geneity to exploit over-provisioning such that only a subset of
components are used for concurrent execution.

4. HeteroMates design

HeteroMates enables a wide dynamic power/performance range
using heterogeneous cores. This section describes its key concepts
and components.

4.1. Core groups

A heterogeneous core group is a collection of a small number
of (e.g., 2-4) heterogeneous cores that are grouped together to
form a single execution unit. For example, Fig. 4 shows a core
group consisting of three heterogeneous cores: a big (B), a small
(S), and a tiny (T) core. The core group appears as a single execu-
tion unit with multiple performance/power levels. Depending on
application behavior and user-defined policies, an appropriate core
is dynamically chosen to run the user task in question, by transpar-
ently moving the task’s execution to that core, and by placing the
other inactive cores into a low power idle state to conserve power.
For example, the tiny core can be used for background tasks like
email update checks, the small core for normal user operation, and
the big core is reserved for performance-critical tasks.

4.1.1. Heterogeneity-states

Different cores within a core group are exposed using
heterogeneity-states (H-states), an interface similar to the P-state
(performance-states) interface defined by the ACPI standard and
used by operating systems to scale the frequency and voltage
of processors. Higher P-state numbers represent slower proces-
sor speeds. Thus, PO is the highest-performance state, with P1
to Pn being successively lower-performance states. Similarly, an
H-state is assigned to each type of core in the core group. A high-
performance big core corresponds to a lower numbered H-state,
while a low-power small core corresponds to a higher-numbered
H-state. Thus, a core group exposes a set of H-states (Hy, ..., Hyp)
which are controlled by an H-state controller module. Depending on
the state transition logic and the resultant H-state, a core switcher
transparently migrates the execution to the appropriate core. In
this manner, applications perceive only homogeneous cores with

H-state Controller

Go Go
_--YDown______ Upy_ .
Hk-1 Hk Hk+1 H-States

Hetero
B = S -' Core

Group
LG I

| Core Switcher |

Fig. 4. A core group consisting of three heterogeneous cores: a big (B), a small (S),
and a tiny (T) core exposed as three H-states.

_____ M1 o Mk
: up ' Up ! uP :
L DN i Go . ___ DN _

Big Core Down Small Core

Fig. 5. H-state and P-state transition state machines. H-state determine the core for
execution, while P-states determine the frequency on that core.

larger dynamic power/performance range than any of the individ-
ual cores.

4.1.2. H-state controller

H-states on a core group are controlled by the H-state controller,
in a manner similar to frequency scaling operations performed by
a CPU governor. A CPU governor is a kernel module that changes
core P-states based on a policy. In a similar manner, the H-state
controller performs H-state scaling operations. However, instead of
changing voltage and frequency as in the case of P-states, a change
in H-state causes the execution to move to a different core. The
functions of the H-state controller and of the traditional P-state
governor complement each other. For example, Fig. 5 shows the
combined P-state and H-state transition diagram for a two-core
heterogeneous core group. Here, H;, corresponds to the small core,
and H;,_; corresponds to the big core. P-state changes within a core
are performed by the P-state governor, while cross-core migrations
are governed by the H-state controller.

CPU governors available in current operating systems (e.g., the
ondemand governor in Linux [8]) dynamically change CPU fre-
quency in response to CPU load (utilization). However, CPU load
alone is not sufficient to drive H-state scaling operations, which
also require determining whether a bigger or smaller core is more
suitable for execution. Previous work on heterogeneous processor
scheduling [4-6] has identified application IPC (instructions-per-
cycle) as a key metric to select the right core for execution.
Therefore, HeteroMates uses a combination of CPU load and appli-
cation IPC to form the H-state transition logic shown in Fig. 6.

The intuition behind the scaling algorithm can be explained as
follows. An application with high CPU load but low IPC is likely to
perform equally well on both big and small cores due to its low IPC
requirements, which can easily be met on a small core. Applications
with high IPC but small CPU load under-utilize the big core. Moving
such applications to a smaller core results in higher utilization of the
small core, but without a significant penalty in application perfor-
mance. When both of these conditions are violated, the application
is likely to gain performance by executing on a bigger core.

The H-state controller monitors application IPC and CPU load at
periodic intervals and compares them with pre-defined thresholds

Load , Lo¢adHI

IPC Hk LG

J_PCLO

Load

Fig. 6. H-state scaling operations in response to application IPC and CPU load.

198 V. Gupta et al. / Sustainable Computing: Informatics and Systems 3 (2013) 194-206

to determine the resultant state (see Algorithm 1). If both the IPC
and load are above thresholds IPCy; and Loady;, respectively, the
core group is scaled up, i.e.,, moved to a higher-performance or
lower numbered state (Hc,_1). If either IPC or load are lower than
thresholds IPC;g and Load; ¢, the H-state is scaled down to a lower-
performance state (Hgyr+1). For values in between these thresholds,
no H-state change is performed. These thresholds are defined for
each type of core in the system. By setting different values for these
thresholds, different policies can be enforced. For example, low val-
ues of thresholds force the execution to big cores, and thus prefer
performance over power. Similarly, a policy having thresholds with
high values picks smaller cores more often.

Algorithm 1 (H-state controller heuristic).
if IPC > IPCy; AND Load > Loady; then

// Scale up
Hyert = Heur—1
end

else if ITPC < IPCro OR Load < Loadro then
// Scale down

Hyezt = Heur1
end
else

// No change

Hyewt = Heur
end

An H-state change operation causes the execution to switch to
a different core. This switching overhead could be substantial due
to migration latency and loss of private cached data if such changes
are very frequent. In response, we use history counters to dampen
core switching frequency. A switch is performed only after a cer-
tain number of consecutive identical H-state change requests are
received. The history counter is a simple integer counter associated
with each core group, which is incremented whenever consecutive
intervals generate the same requests and reset otherwise.

4.1.3. Advantages

The design of HeteroMates offers multiple advantages. First,
H-state interface decouples heterogeneity from scheduling such
that the scheduler need not deal with performance/power dif-
ferences among cores. Instead, a separate H-state driver handles
this transparently to the scheduler. Second, H-states can be imple-
mented either in hardware, firmware, operating system, or even
hypervisors, allowing a broader applicability. As an architectural
solution, it provides a way to completely hide heterogeneity from
the operating system, which is critical to support legacy software
and applications. Further, core groups provide a unified mechanism
to easily accommodate a variable number of heterogeneous cores
by adding an H-state for each type of core. Finally, core groups can
be useful when TDP (thermal-design-point) limits may constraint
the number of cores that can be active simultaneously. As transistor
density on modern processors keep increasing, such TDP limits are
proving to be a critical design constraint in the form of dark silicon
[7].

4.2. Multicore groups

The core group abstraction can be extended to multicore sys-
tems using multicore groups. This section describes how multicore
groups can exploit dark silicon using over-provisioned heteroge-
neous processors.

4.2.1. Exploiting over-provisioning

Due to the presence of dark silicon [7], future platforms are
likely to be constrained by CPU power rather than die area. This
presents interesting choices for platform designers to utilize such
excess die area. For example, Fig. 7 shows several processor design
choices containing homogeneous and heterogeneous cores for a

s|s S
=t<1 |B|B| =B

Homogeneous Homogeneous Heterogeneous

Small Big
[] Idle S IS E B Core Selection
S S {—

B Active
Fig. 7. Over-provisioned platform can be morphed into different configurations by
dynamic core selection.

Dynamic

fixed power budget (equivalent to CPU area in the figure). One
design option is to use only homogeneous cores, while staying
below the platform power budget. Thus, it may contain few big
cores or many smaller cores. However, these different configura-
tions are suited for different types of applications. For example, the
big core can deliver high responsiveness for single-threaded user-
facing applications, while multiple small cores are more suited for
applications with parallelism. Therefore, heterogeneous cores can
be used to extract the benefits of both types of cores. However,
fixed CPU power budget constraints require either slower or fewer
processors to be used in the heterogeneous configuration to stay
within budget ceiling when compared to homogeneous options,
thus, comprising performance for certain applications.

In comparison, the over-provisioned configuration (bottom
figure) exploits dark silicon by employing heterogeneous cores con-
sisting of many low-powered smaller cores and high-performance
bigger cores. Since the total power consumption of all the cores
exceeds the TDP limits of the platform, it requires dynamic core
selection mechanisms to activate a subset of the cores such that
they conform to the budget specifications. Such an over-provisioned
heterogeneous processor can be used to provide the goodness of
various configurations shown, by opportunistically using the right
set of cores for application execution depending on application
behavior and user preferences. By matching execution resources
to application needs, it maximizes system performance/energy-
efficiency under power-constrained conditions.

4.2.2. Platform reconfiguration

Various platform configuration that satisfy the budget require-
ments can be pre-configured or dynamically created during
execution, which are exposed using multicore-states (M-states). As
different H-states represent various cores within a core group, an
M-state is similarly assigned to each platform configuration. For
example, a state MO could represent a configuration consisting of
fewer high-performance big cores, while a configuration consist-
ing of many low-power small cores corresponds to a different state
(M1)which are controlled by an M-state controller module. Depend-
ing on the state transition logic and the resultant state, a task
switcher transparently migrates the execution to the appropriate
cores. M-state switching operations are controlled by the M-state
controller. A change in M-state causes the execution to move to a
different set of cores. The controller needs to take platform power
constraints, application power consumption, and thread behavior
into account to select the optimal execution environment.

4.3. Implementation

HeteroMates is implemented for the Linux kernel. The current
implementation of core groups considers systems involving pairs of
heterogeneous cores. H-states are implemented by customizing the
P-state tables on each core to expose two P-states corresponding
to each core in a pair. H-state changes work in lock-step on both

V. Gupta et al. / Sustainable Computing: Informatics and Systems 3 (2013) 194-206 199

of these cores to avoid conflicting operations. An H-state change
causes execution to switch cores instead of performing DVFS. Our
current implementation does not consider traditional voltage and
frequency scaling. This is because there is substantial previous work
on DVFS [9-12], which can be used to perform P-state scaling in
addition to H-state transitions.

The H-state controller is implemented as a kernel module which
runs on each active core as a kernel thread. It periodically (40 ms)
reads various hardware performance monitoring counters (PMCs),
applies models, and performs any H-state changes depending on
the policy and thresholds chosen. The overhead of running models
is measured to be small (approximately 2% increase in core active
and 5% increase in package active residency). The core switcher is
implemented in the OS kernel by changing the runqueue pointer
for the tasks in the source runqueue to point to the destination
runqueue. The overhead of this operation is minimal when run-
queue length is not large, which we have observed as being the case
for the typical client workloads used in our experiments. We note
that similar functionality can be provided by hardware, to further
reduce overheads. Also, only active cores are made available for
scheduling to the Linux CFS scheduler. Inactive cores are put into
an offline mode using a lightweight mechanism. A value of three is
used for history counters.

For the M-state solution, this paper considers designs where
the system is configured to operate in one of the many built-in
M-states that are under budget limits. Further, a simple heuristic
based upon the thread-level-parallelism in the application is used
for analysis as described in Section 7.2.1. As part of our future work,
we are exploring designs which dynamically compose various plat-
form configurations based on the power profile and thread behavior
of running applications.

5. Beyond core:uncore

The dynamic power/performance range offered by a platform
consisting of heterogeneous cores can be strongly affected by the
uncore subsystem present on modern multicore processors.

5.1. What is uncore?

The uncore is a collection of components of a processor not in
the core but essential for core performance. The CPU core contains
components involved in executing instructions, including execu-
tion units, L1 and L2 cache, branch prediction logic, etc. Uncore
functions include the last level cache (LLC), integrated memory
controllers (IMC), on-chip interconnect (OCI), power control logic
(PWR), etc. as shown in Fig. 8. With growing cache sizes and the
integration of various SoC components on CPU die, the uncore is
becoming anincreasingly important contributor to total SoC power.

5.2. Idle state coordination

Modern multicore processors contain core idle states (C-states)
to progressively turn off components in order to conserve power.

AIEIBEIEE
SHEEENE
[LAST LEVEL CACHE | | A w

(@]
[mc | [oci|[Pwr] |} =2

Fig. 8. Core and uncore in multicore processors.

Table 1
Core and package idle state coordination.
Package PCx Core 1
co C1 c2
Core 0 Cco PCO PCO PCO
C1 PCO PC1 PC1
2 PCO PC1 PC2

These C-states are denoted as Cx, where x is a digit. CO is the active
C-state when processor is executing instructions, while a higher
numbered C-state (e.g., C2) is a deeper sleep state consuming lesser
power.

In addition to core C-states, processors also contain package idle
states (PCx states) that govern uncore power consumption. These
package C-states are related to core C-states in that the processor
can only enter a low-power package C-state when all of the cores
are ready to enter that same core C-state. Table 1 shows this coor-
dination of core and package idle states for a two-core system with
three idle states. The resultant package C-state is always the lower
of the two core C-states. Thus, the uncore subsystem remains active
and consumes power as long as there is any active core on the CPU.

5.3. Impact of uncore

Fig. 9 illustrates the impact of uncore power on the energy con-
sumption of an application executing on heterogeneous cores. A big
core running an application finishes its execution faster and enters
a low-power idle state. The same application when executed on a
small core takes longer (ts,qy) to finish, which also keeps the uncore
active for a longer period of time. If uncore power is substantial in
comparison to core power, then the energy gains from running on
a small core are strongly affected by the uncore power. For such a
system, energy-efficiency gains from small core execution may be
offset by the increase in uncore energy consumption due to longer
execution time [13]. This observation is in line with prior work
that highlights the tradeoff between CPU and system-level power
reduction in the context of frequency scaling [14,9].

Energy consumption for the big core and small core execution
for such platforms can be modeled using Egs. (1) and (2), respec-
tively. Here, E refers to the energy consumed, t denotes execution
time, and Pgore and Pyncore represent average core and uncore power,
respectively. Py is the idle platform power, and t;g, is the corre-
sponding idle time.

bi; bi
Ebig = lpig * (Pczl)%e + Pu:;gcore) + Pidle * tigle (1)
Esmatt = tsmar * (sz'ﬂ‘el” + Pziwcao”re) (2)

To understand the impact of uncore power, the evaluation in
Section 7 considers two uncore configurations: fixed and scalable.
The fixed uncore configuration uses the same uncore subsystem
when executing on either big or small cores. The scalable uncore
scenario models an uncore where certain uncore components such
as memory controllers or cache For example, fewer memory chan-
nels, memory controllers, or a smaller cache can be used with a slow

A A
N N E
] E o iore
= | Ecore = ‘
o l----- Eidle Ol-aocoloo
uncore uncore
~thig—TLigie— tsmall

Big Core Execution Small Core Execution

Fig. 9. Effect of uncore power on the dynamic power range of heterogeneous cores.

200 V. Gupta et al. / Sustainable Computing: Informatics and Systems 3 (2013) 194-206

small core that imposes smaller resource requirement on the cache
and memory subsystem. units are turned off or powered down as
we move to the small core. Hence, in this case, the uncore power
scales along with core power when a workload moves to a different
core.

5.4. Uncore-aware operation

As discussed above, the energy-efficiency of a platform is not
only determined by the type of core used for execution, but also
by the power consumption of the shared uncore subsystem. Work-
loads for which execution on a bigger core provides both higher
performance and better energy-efficiency due to improved perfor-
mance scaling, should always be run on big cores as small core
degrades both performance and efficiency. HeteroMates addresses
this issue by adding the energy override condition in Eq. (3) to the
heuristic described in Section4.1.2. If the energy consumption of
the current H-state (Hcyr) is greater than the energy consumption
of the next higher state (H.,r_1), a scale up operation is performed
to move the execution to the bigger core.

EnergY(chr—l)
Energy(Heur)

For energy-aware operation, Eq. (3) requires the energy con-
sumption of the application to be estimated on a different core
(H-state). This task can be divided into two components: pro-
cessor power prediction and application behavior (e.g., execution
time, IPC) prediction. CPU power visibility to the operating system
is becoming increasingly important, with multiple CPU vendors
providing hardware counters to measure the power of different
components on the platform [15]. Further, previous work has devel-
oped light-weight models to accurately predict per-core power
using existing performance events [16]. Using a similar approach,
this work also uses power models, described in Section6.3, to
obtain core and uncore power consumption.

In order to understand the impact of a core transition on appli-
cation behavior, hardware assistance can be provided. For example,
HeteroScouts [17] proposes hardware performance counters to
predict workload behavior on a remote core (after-transition) from
the parameters available on the local core (before-transition). Due
to unavailability of such counters in current processors, simple
prediction models are developed using experimental data. The fol-
lowing section provides details of the modeling methodology.

<1 then Hpext =Heur-1 (3)

5.5. Remote behavior prediction

To model the relationship between application IPC on a big and
a small core in our experimental platform (see Fig. 11), the client
workloads in Table 2 and SPEC CINT2006 benchmarks are executed
on both types of cores. Fig. 10 plots the obtained IPCsqing data,
defined as the ratio of the big core IPC and the small core IPC, as

3.0

N
U
T

IPC Scaling
N
o
T

=
U1
T

i i i i
1.0 15 2.0 25 3.0
Big Core IPC

1'8.0 O‘.5

Fig. 10. Modeling IPC scaling as a function of IPC.

a function of the IPC on the big core. As evident from the figure, a
linear curve fits the data well, with the resultant model given by
the equations below.

IPCscaling =0.6 IPCbig +1.01 (4)

IPCygiing = 1.31 % IPCyppqy + 0.94 (5)

The impact of IPC scaling on the execution time of an application
is workload dependent. CPU-bound workloads show a propor-
tional relationship between IPC scaling and execution-time scaling.
However, this does not hold true for many client workloads with
significantidle phases, e.g., media and graphics workloads. For such
workloads, execution time is not affected by the core performance.
Instead, a change in core performance translates into change in core
idle state residency. These conditions are modeled by applying the
scaling function to the product of core active state (Rggive) reSi-
dency and execution time (t), as shown in Eq. (6). The equation was
experimentally verified using all of the client workloads in Table 2
as majority of the workloads closely follow the modeled relation-
ship. In the online model, sampling interval is substituted for the
execution time.

(Rfﬂﬁﬁé * tymall) = IPCscaling * (RZngﬁve * tbig) (6)
Further, the change in core idle residency (R;qi) impacts package
idle state (Ujq) residency in an application dependent manner.
Applications for which the package becomes idle as soon as the core
becomes idle, show a strong correlation between core and package
idle states. On the other hand for multi-threaded applications and
graphics-intensive applications, a core’s idle state does not neces-
sarily translate to the package idle state since the package can still
be busy due to activity in another core or the graphics processor.
Such applications show a weak or negligible correlation between
core and package idle states. These two scenarios are modeled in
Eq. (7) where a difference of 20% between Uy, and R;g, is assumed
as an indicator of weak correlation. For such cases, Ujgj is assumed
to be the same irrespective of the type of core used for execution.
if UVE «RDE

big
U idle’
idle (7)

ysmall _ idle
idle =)
Rsmall otherwise

Using the models presented above and the power models
described later in Section 6.3, an application’s relative energy con-
sumption on two different H-states can be obtained. These values
are used to perform energy override operations as defined earlier

by Eq. (3).

Table 2

Client workload summary.
Workload Description Metric
7zip Text file compression using archiver Time
applaunch Application launch operation Latency
bodytrack Computer vision kernel Time
browse Web-page rendering (browser) Latency
c-ray Image generation using ray-tracer Time
canvas HTMLS5 canvasing tests (browser) FPS
eclipse Java IDE performance tests Time
filescan File-system read/write operations Time
gmagick Batch resizing of images Time
grayscale Image filtering operation (browser) Latency
gtkperf GTK GUI performance tests Latency
javascript Scripting operations (browser) Latency
lightsmark 3D graphics rendering tests FPS
mplayer H/W accelerated video playback FPS
mytube Streaming video playback (browser) FPS
openarena 3D first-person-shooter game demo FPS
palbum Photo-album slide show (browser) Latency
strike 2D shooting game demo (browser) FPS
X264 Media file conversion using encoder Time
zoom Image zoom operation (browser) Latency

V. Gupta et al. / Sustainable Computing: Informatics and Systems 3 (2013) 194-206 201

Graphics
Small
core
Small
core
Small
core

Uncore
Big core
Uncore

(a) S-B core groups

Big cores | Small cores
(freq) (freq)
MO | 1 (2.4 GHz) 0
M1 |1 (1.8GHz) | 1(1.8 GHz)
M2 0 3 (1.8 GHz)

(b) Platform configuration and corresponding M-states

Fig. 11. Experimental heterogeneous platform.

6. Experimental evaluation
6.1. Experimental platform

Our experimental platform consists of a quad-core Intel i7-
2600 client processor. To create heterogeneity, we use an Intel
proprietary tool to de-feature and emulate the performance of
low-powered small cores for a subset of the cores [4]. The block dia-
grams of two platform configurations used for analysis are shown
in Fig. 11. An on-die graphics processor is used to accelerate graph-
ics workloads. All of the cores share an LLC of size 8 MB. All the
workloads are run using Linux kernel 3.0 and automated. Browser
workloads are run using Google Chrome 15.0.

The configuration shown in Fig. 11(a) is used for forming two
core groups consisting of one big and one small core each, both
operating at a frequency of 2.6 GHz. Similarly, the platform config-
uration in Fig. 11(b), consisting of one big core, three small cores,
is used to form a multicore group with three M-states as shown by
the table in the figure (on right). MO consists of a single big core
(1B) running at a frequency of 2.4 GHz, while M2 state uses three
small cores (3S) each configured to run at 1.8 GHz. Similarly, M1
contains one big and one small core, but the big core is throttled to
run at 1.8 GHz to stay within power limits (1B*,1S).

6.2. Client workloads

To assess the viability of using heterogeneity for client systems,
adiverse set of real-world applications are chosen which are typical
of modern end-user devices since prior server-centric research on
heterogeneous processors [4-6] does not directly address the needs
and processor usage models seen on client devices. Table 2 provides
a summary of the applications used in our analysis which include
browsing, gaming, media, etc., and relevant performance metrics
which are different from server workloads.

6.3. Power model

The emulated heterogeneous platform mimics the performance
of small cores. However, it does not match the power characteristics
of an actual small core built using a different process technology
for low power consumption. We therefore, rely on power models
to obtain core and uncore power consumption.

6.3.1. Core power
The average power consumption of a CPU core can be modeled
using the following equations:

o o
Peore = Ryctive * Pactr,‘eve + Rigje * Pidlze (8)

P = Cayn V2 % f (9)

active
Here, Rgcive and Rjge denote core active and idle state residen-
cies (%), and PS¢ and P, are the corresponding power values.
Cayn is the dynamic capacitance, V denotes the operating voltage,

and f represents the switching frequency. Big core Cgy,, is modeled

as a function of IPC in Eq. (10), as shown and validated by other
researchers [18]. Similarly, Eq. (11) models the capacitance for a
small core having three-times smaller area than the big core.

Chig = 0.499 * ipcp;, + 0.841 (10)

Comat = 0.472 % ipCypay + 0.176 (11)

6.3.2. Uncore power

Similar to core power, uncore power can be modeled using
package idle state residencies (Uy) as shown in Eq. (12).
Puncore = Ugctive * Paltive: + Uidle * Pigje" (12)

P ggggge = Pyake + P activity * LLCrqte (13)

Further, uncore active power (P27¢¢) is modeled as a function
of the LLC activity in Eq. (13) where P4, is the fixed power cost of
waking up various uncore components, while the Pgiyir, cOmMpo-
nent scales with the LLC access rate LLCyqte (relative to peak access
rate including both cache hits and misses).

The analysis uses a value of 0.9V for the voltage (V). For this
platform, the average big core and small core power for all our
workloads is obtained to be 2.37W and 0.95W, respectively. A
comparable uncore is modeled using a value of 1.2 W for P4, and
Pyctiviey in case of a fixed uncore and scaled down to half for a scal-
able uncore. Core and uncore idle power are assumed to be 0.1W
and a 1.5 W power component is attributed to the on-die graphics
processor which also scales with the LLC activity.

7. Results

Experimental results evaluating H-state and M-state solutions
are presented in Sections 7.1 and 7.2, respectively.

7.1. H-state evaluation

7.1.1. Methodology

Two different policies, performance-driven and power-driven,
are used for evaluation. This is done by choosing different thresh-
old values, obtained after experimenting with several combinations
of thresholds. Table 3 summarizes the various thresholds used to
cater to these policies. For a paired-core system, small cores can
only perform scale up operations and not scale down, therefore,
only HI thresholds are relevant for small cores. Similarly, only LO
thresholds are relevant for the big cores. The first performance-
driven policy favors performance over power by using big cores

Table 3
Thresholds for performance- and power-driven policies.
Small core Big core
IPCyy Loady, IPCio Load,o
Performance-driven 0.5 70% 0.8 40%
Power-driven 0.7 80% 1.25 50%

V. Gupta et al. / Sustainable Computing: Informatics and Systems 3 (2013) 194-206

10

202
2.0 100
HE Big s HE Big
=3 Small < =3 Small
1.5 | > 8
IR =
I < 60 5
aol HHLH N
v 40 B
0.5 i °
”ll“l“l‘hl“““l 5" IHI‘ I‘
7 I
0.0 g ol
‘:gc:g‘bggahgbﬁ‘(~52%z2£2%
T S ®© O " 5B >0 T O T o ® O ©
E_QUWEEEEEgQ 5 8 V0 E
2 ° 5o Q Q o
8) g 2

(a) Instructions-per-cycle

javascript ==

(b) Core idle residency

W W = Bl Big
£ gol|Em small - I
] 2 | |
C
Iﬂl | h
=
[
: | I |
< 4
I 5
AR '

I = Ll
¥ 5 Y8 E QY Og.cwmﬁi"!g_%amg:l&]:;
s5283%4% REfs28Ec2883%8
EZ2S58% 0 X 2855 o2 EesSss b %
2EEgEGa o 8v®ECTE ES
S a o) Q
= o @ == o

(c) Package idle residency

Fig. 12. A comparison of the behavior of several client workloads on big vs. small cores.

for execution in an aggressive manner. This is achieved by choos-
ing smaller thresholds in the table. The power-driven policy, on
the other hand, focuses on power by choosing bigger thresholds
and forcing the execution to small cores more often. The eval-
uation is carried out by comparing the performance and energy
consumption of the performance-driven policy with only big core
execution and of the power-driven policy with just small core exe-
cution. These two comparison points provide us a perspective of
the advantage of using heterogeneous cores over homogeneous
configurations.

7.1.2. Client workload characterization

The results shown in Fig. 12 provide a comparison of the
behavior of various client applications on heterogeneous cores.
Specifically, they compare average IPC (instructions-per-cycle),
core idle residency, and package idle state residency for all of the
workloads in Table 2 for big and small core execution. As evi-
dent from Fig. 12(a), most of the applications observe a significant
decrease in their IPC when running on the small core as compared
to the big core. This reduction in IPC results in the small core being
active for longer durations, thereby causing a decrease in core and
package idle residency (see Fig. 12(b) and (c)). Further, many appli-
cations are seen to have almost negligible package idle residency.
These applications either heavily use the graphics processor (e.g.,
openarena, lightsmark), or they always keep one of the CPU cores
busy (e.g., 7zip, gmagick, x264), and do not allow the uncore to
enter into an idle state.

7.1.3. Performance-driven policy

Fig. 13 provides results comparing the performance and energy
consumption of the performance-driven policy with execution on
big cores. Specifically, Fig. 13(a) shows performance loss (%) with
respect to the maximum performance achievable by using big
cores for the entire execution, and Fig. 13(b) shows correspond-
ing energy savings by using small cores for partial execution when

big core is not energy-efficient. Performance is measured based
upon the metrics in Table 2, with inverse of latency as the met-
ric for latency-oriented workloads. As evident from the figures,
this policy is able to achieve performance within 15% of the big
core performance for all the workloads except browse and palbum.
This high performance loss for these two workloads is due to their
bursty nature, i.e., these applications exhibit sudden bursts of high
activity during page-rendering. HeteroMates uses history coun-
ters to dampen core switching frequency, which requires multiple
consecutive state change requests to be received before actually
making the change. Due to this reason, these bursty applications
observe a short delay before they are moved to the big core which
incurs a higher performance degradation. However, the absolute
increase in the latency for these applications may not be user-
perceivable.

Fig. 13(b) shows corresponding energy savings results for three
scenarios: core-only savings (C), SoC-wide savings (C+UC) with
a fixed uncore, and SoC-wide savings with a scalable uncore. As
seen from the figure, it is able to save significant energy for sev-
eral applications with a small performance degradation. Workload
openarena achieves highest gains with 39% core energy savings.
However, these savings are strongly affected when the power con-
sumption of the uncore is taken into account. On the other hand,
when a scalable uncore is used, these savings increase and become
comparable (25%) to core-only energy savings.

To elaborate on the importance of uncore power in total SoC
power, Fig. 13(c) shows the distribution of core and uncore energy
consumption for various applications. Core energy component
dominates for CPU-intensive applications like 7zip, eclipse, gmag-
ick, and x264, while uncore component is significant for other
applications including lightsmark, mplayer, and openarena. These
results highlight the growing importance of uncore power in the
processor power consumption and motivate the need for a scalable
uncore design when seeking to obtain large gains from heteroge-
neous multicores.

o
20 55%

‘- C I C+UC (Fixed) 3 C+UC (Scal.)‘

!

40
35
?15 530
s 8, 25
@ £ 5 1
319 & I
5 A |
; A
¥ o P
0= [c O < S = [}
328 ¢ E % % g E f:’; 3 gs8@ E
g 25 & 2
(a) Performance loss wrt. big (b) Energy
cores cores

javascript|

savings wrt. big

0 ‘- Core == Uncore‘
1
i | I
- ”
I £ 60 ‘
U1 5 |

8
Ll
UL e LT O 20

[0] —

Yy e Eog ey YefsScELg
‘“%:wg:ﬁ c 2 _1.'5,':'“>~3ug:£
EZ2 853 8% 2855835858386 %
2g8E5 2 8 588c8gegdg
5878 E Ss5f 8

(c) Core and uncore energy
distribution

Fig. 13. Comparison of performance-driven policy with big core execution.

V. Gupta et al. / Sustainable Computing: Informatics and Systems 3 (2013) 194-206 203
o -
100123% 35 10‘- Big l:ISmaII‘
o] 11 i
Aso — Ii N
S = S ‘
= n 20 <
g se | I 1 g o
2 5 ity | | g |
£t 40 210 ° 40
d 2 NN | g
o S o1 | 2
2
0 I MR FTE e 20
Oz ca xafamalgwq- _:Ac_l_cwmq)xu{a—)wmgm# O-g—¢ VT R = T £ <
g¢s8¢g2s8>563¢=8 NEg 22828282355 3%8 NE L8Rt LS55 529
Sgz2£o5 22254 ~53zZ£o5egcme2eaisd ~S5S3Z2o95¢g322a5¢g
2 58¢%¢ggzegg” 22853 fegsorss® e85 ea5ass g B X
S ESzgEG 2 s 9 ES2gER 2 a2V YEQgE2gEG 2
5 52 3 B &8 2 g 5 82 s

(a) Performance gain wrt.

small cores cores

(b) Energy loss wrt. small

(c) Core residency

Fig. 14. Comparison of power-driven policy with small core execution.

7.1.4. Power-driven policy

Results for the power-driven policy are presented in Fig. 14,
where Fig. 14(a) and (b), respectively, show performance gain and
energy loss (SoC-wide) in comparison to small-core-only execu-
tion. As results show, this policy is able to achieve significant
performance gains for many applications by selectively using big
cores. Further, it is able to do so with only a small to moder-
ate increase in energy consumption. For example, the browse and
canvas workloads observe the highest increases in energy con-
sumption of 31% and 28%, respectively, while most of the other
applications show a smaller increase. However, these two applica-
tions also show a 31% and 54% performance gain for the increased
energy consumption due to their usage of big cores. We note that
some applications like lightsmark, mplayer, and openarena exhibit
negligible performance improvement due to poor scalability.

Results in Fig. 14(c) show the percentage residency on big and
small cores for all of the applications. Different applications exhibit
different degrees of big and small core usage. For example, applica-
tions like 7zip, eclipse, and x264 with good performance scalability
spend the majority of their execution on big cores. On the other
hand, applications like lightsmark, mplayer, and palbum remain
on small cores for a significant portion of their execution time.
Other applications like applaunch, canvas, and strike make use of
both types of cores during their execution. To illustrate this fur-
ther, the big and small core usage profiles of the applaunch and
strike workloads are shown in Fig. 15. The applaunch workload
launches and executes a series of graphics-intensive applications.
The launch operation is CPU-intensive and performs better on a
big-core, while the execution phase is accelerated using the on-die
graphics processor and a small core provides comparable perfor-
mance to the big core at a lower power. Therefore, this workload
transits between big and small cores during launch and execution
phases (see Fig. 15(a)). Similarly, Fig. 15(b) shows the execution
profile for the strike gaming workload. This workload exhibits sev-
eral phases with high activity (e.g., bots shooting) when big cores
are used and phases with low activity (e.g., bots aiming and mov-
ing) when small cores may suffice. In this manner, the appropriate
core is used depending on the activity.

T T
0 2‘0 4‘0 E;O
Time (s)

(a) applaunch

i i
60 100 120 140 160

7.2. M-state evaluation

7.2.1. Methodology
Experimental evaluation and analysis for multicore groups are
carried out as the steps summarized below.

e Each workload is first individually evaluated on each of the three
M-state configurations in Fig. 11(b).
e Using the data collected in the previous step for each M-state,
we perform an analysis for each workload to obtain its perfor-
mance for a thread-level-parallelism-aware controller (TLP) that
assigns state MO for single-threaded applications and M2 for
applications having multiple threads. Since many applications
use helper threads which do minimal work, only threads with
CPU load larger than 10% are used for accounting in the heuris-
tic. Our analysis assumes the use of a fixed M-state for entire
application run. The implementation and evaluation of a dynamic
switching algorithm is part of our future work.
Similarly, we obtain results for a ‘static oracle’ controller (ORCL)
that selects the M-state with maximum performance among the
three M-states. This state corresponds to the highest performance
that can be achieved on the over-provisioned platform by select-
ing that M-state for each workload.
Based upon the analysis methodology described and the power
models presented in Section6.3, we compare performance
improvement and energy savings provided by three under-
provisioned platforms corresponding to each M-state and the
over-provisioned configuration with the two controller heuris-
tics.

7.2.2. Results

Fig. 16 shows experimental results for the three M-state configu-
rations described in Section 6.1. Results presented are mean values
over three runs.

Specifically, Fig. 16(a) shows relative performance in each
M-state (normalized to the minimum performance state) for
all of the client workloads. As evident from the figure, vari-
ous applications have affinity toward different configurations.

10

H H
15 20
Time (s)

(b) strike

25 30

Fig. 15. Big (B) and small (S) core usage profile (x-axis: time (s)).

204 V. Gupta et al. / Sustainable Computing: Informatics and Systems 3 (2013) 194-206

I MO (1B) 3 M1 (1B*,1S) /1 M2 (35)‘
2.0
218
3
51.6 "
: 111 I
2 I BLE |
[
a
i H MH kL Hﬂ\h
I
L I |
ELN N
50.8
U
0.6
[BT LW AT L T T L T
") @ @ S ¢ & 0~
v T o o Q@z&‘ s Q‘\& 4?)%d‘q?,\v £° 4

(a) Application Performance

[mm Mo (1B) == M1(1BY1S) = M2 (39)]
2.0
1.8
2 [|
gl.ﬁ I i
§ 1.4 L h i L
el
2. .
©
] (T (A
EL
L 101 (0RO
S 0 AR
0.6
LB WL BT R L T T L B
Q) 3 O e & X o &
W o o *,,@Q‘@ewm‘? OGN
A

(b) Energy Consumption

Fig. 16. Experimental results for three platform configurations: MO (1B), M1 (1B*1S), and M2 (3S).

Some applications (e.g., gmagick, javascript, zoom, etc.) perform
better in state MO, while other applications like 7zip, c-ray,
X264, etc. exhibit higher performance in state M2. Thus, different
M-states can be used to improve the performance of these applica-
tions.

The corresponding change in energy consumption for these
configurations is shown in Fig. 16(b). Interestingly, the increase
in energy consumption in state MO for several applications like
gmagick, gtkperf, and javascript is small in comparison to the cor-
responding performance gain. On the other hand, M2 configuration
provides both higher performance and lower energy consumption
for 7zip, bodytrack, c-ray, and x264 applications. Both of these
observations can be explained by the ‘race-to-idle’ phenomenon.
In the former case, a big core in state MO consumes higher power
but finishes execution quickly to enter a low-power idle state. Thus,
the increase in energy consumption is small. Similarly, improved
performance and thus lower active time in state M2 for other appli-
cations causes the core and uncore subsystem to sleep longer and
save energy.

Finally, Table 4 provides performance and energy comparison
for three under-provisioned (UP) platform configurations corre-
sponding to each M-state and an over-provisioned heterogeneous
platform (OP). Results for the OP configuration are based upon two
heuristics, TLP-aware (TLP) and static oracle (ORCL), as described
in Section 7.2.1. The table shows average performance and energy
consumption for all of the workloads in Table 2. Results demon-
strate that the big core (MO) provides small increase in performance
(1.10x) for alarger increase in energy consumed (1.29x) when com-
pared to all-small configuration (M2). The corresponding values for
state M1 are observed to be 1.01x and 1.14x.

In comparison, the OP platform shows a performance improve-
ment of 1.25x and 1.30x at the cost of an increased energy con-
sumption of 1.04x and 1.05x for TLP and ORCL controllers. Thus, an
OP platform can provide a performance boost for mobile devices at
the cost of asmallincrease in energy consumption, as demonstrated
by the results. Further, the TLP-aware controller is able to perform
comparatively to the static-oracle controller. Our current heuristic
takes only application parallelism into account, thus information
regarding the behavior of individual application threads and their
interaction can be used to enhance the switching heuristic.

Table 4
Results summary: an over-provisioned (OP) platform provides significant perfor-
mance gain in comparison to under-provisioned (UP) configurations.

Configuration Power Performance Energy
MO (1B) up 1.0x 1.0x
M1 (1B*,1S) UpP 1.10x 1.29x
M2 (3S) up 1.01x 1.14x
TLP (1B,3S) oP 1.25x 1.04x
ORCL (1B,3S) OoP 1.30x 1.05x

7.3. Summary

In summary, the results presented bring us to the following
conclusions:

e Client applications behave significantly differ from traditional
server-centric workloads.

e Heterogeneous cores can enable both higher-performance and
lower-power modes than homogeneous processor configura-
tions.

e Performance-driven H-state controller results in significant
energy-gain for several workloads with small performance-loss
in comparison to a big-core-only system. Similarly, a power-
driven policy provides performance boost for many applications
with a small increase in energy consumption.

e Uncore subsystem is a significant and even dominating contrib-
utor to total energy consumption for many workloads.

e Energy savings from the use of small cores are severely affected
by the uncore power, with a scalable uncore resulting in higher
gains.

e Heterogeneous cores enable dynamic platform reconfiguration
for power-constrained over-provisioned multicore systems.

e ATLP-aware M-state controller provides significant performance
gains over static multicore configurations.

8. Related work

Heterogeneous chip multiprocessors (CMPs) have been pro-
posed to achieve higher energy-efficiency than symmetric
multicore processors. Using a mix of big and small cores, different
phases within an application can be mapped to the core which can
run them most efficiently [5,19,20]. Similarly, heterogeneous cores
can be used to improve the performance of parallel applications by
speeding up sequential phases within the application [3,21]. Stud-
ies have been performed to analyze the impact of performance
asymmetry on several server workloads [22] and JAVA virtual
machine services [23]. Researchers have also developed appropri-
ate scheduling algorithms for operating systems [4,6,24-27] and
virtual machine monitors [28,29] to efficiently run applications on
heterogeneous cores. However, earlier work exposed the core het-
erogeneity to systems software requiring changes to the software
stack to deal with heterogeneous cores. Also, it focused on server-
centric workloads for evaluation.

In comparison, HeteroMates proposes core group abstraction
to expose multiple heterogeneous cores as a single execution
unit and thus reduce software complexity for wider adoption of
heterogeneous systems. Our work targets client devices where
energy is a premium resource, with diverse application behav-
ior and performance metrics. In addition, previous work either
maintained a fixed heterogeneous CPU configuration or did not

V. Gupta et al. / Sustainable Computing: Informatics and Systems 3 (2013) 194-206 205

impose power constraints on the platform to optimize core usage.
On the other hand, HeteroMates exploits over-provisioned CPU
resources using heterogeneous cores by dynamically changing
between different M-states. Similar arguments have been made
for distributing a thread’s computation across various cores on
an over-provisioned multicore, but with a focus on maximizing
core reuse [30]. Further, conservation cores exploit dark silicon
by using specialized processors to reduce per-computation power
[31]. However, HeteroMates uses single-ISA heterogeneous cores
to improve performance of diverse mobile applications by dynam-
ically selecting a different set of cores and does not require any
language tool-chain support to make use of heterogeneous cores.

There is also substantial previous work on dynamic voltage
and frequency scaling (DVFS). Several techniques have been devel-
oped to dynamically select appropriate voltage and frequency for
maximum efficiency [9-12]. However, others have questioned the
effectiveness of DVFS on modern processors [14,32]. In this context,
we extend the existing DVFS mechanisms to go beyond homo-
geneous cores and support core heterogeneity to enable a wide
dynamic power/performance range on these client devices. We also
highlight the significance of uncore power in total SoC power and
motivate the need for a scalable uncore for exploiting maximum
gains from heterogeneous CMPs.

9. Conclusions

This paper presents the HeteroMates solution in order to provide
a wide dynamic power/performance range on client devices.
It exploits dark silicon and core heterogeneity to enable both
high-performance and power-savings modes while also being
energy-efficient. Core group abstraction is proposed to mitigate
challenges associated with heterogeneity which groups together
a small number of heterogeneous cores to form a single execution
unit. Cores within a core group are exposed as multiple hetero-
geneity (H) states. H-state transitions are governed by an H-state
controller, while a core switcher transparently migrates the task
to the appropriate core depending on the resultant H-state. Core
group abstraction is extended to power-constrained multicore sys-
tems using multicore groups. A power-constrained platform is
allowed to operate in different multicore configurations, exposed as
M-states, by using the right set of heterogeneous cores which cater
to the needs of running applications and fit the power envelope. In
addition, it also highlight the growing importance of uncore power
in total SoC power consumption and the need for a scalable uncore
design to completely realize the intended gains. Using a diverse mix
of client applications and an experimental heterogeneous platform,
we show that heterogeneous CMPs can be used to provide a supe-
rior solution for client devices by providing significant performance
and power improvements.

Acknowledgement

This work was partially supported by Intel Science and Technol-
ogy Center for Embedded Computing (ISTC-EC) funding.

References

[1] NVIDIA, Variable SMP: a multi-core CPU architecture for low power and high
performance, White paper, 2011.

[2] P. Greenhalgh, Big.LITTLE processing with ARM CortexTM-A15 & Cortex-A7,
White paper, ARM, September 2011.

[3] M.D.Hill, M.R. Marty, Amdahl’s law in the multicore era, Computer41(7)(2008)
33-38.

[4] D. Koufaty, D. Reddy, S. Hahn, Bias scheduling in heterogeneous multi-core
architectures, in: Proceedings of the 5th European Conference on Computer
systems, EuroSys’10, ACM, Paris, France, 2010, pp. 125-138.

[5] R. Kumar, KI. Farkas, N.P. Jouppi, P. Ranganathan, D.M. Tullsen, Single-
ISA heterogeneous multi-core architectures: the potential for processor
power reduction, in: Proceedings of the 36th annual IEEE/ACM International

Symposium on Microarchitecture, MICRO36, IEEE Computer Society, Washing-
ton, DC, 2003, p. 81.

[6] J.C. Saez, M. Prieto, A. Fedorova, S. Blagodurov, A comprehensive scheduler for
asymmetric multicore systems, in: Proceedings of the 5th European conference
on Computer systems, EuroSys’10, ACM, Paris, France, 2010, pp. 139-152.

[7] H.Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, D. Burger, Dark silicon
and the end of multicore scaling, in: Proceedings of the 38th annual interna-
tional symposium on Computer architecture, ISCA’11, ACM, San Jose, CA, 2011,
pp. 365-376.

[8] V. Pallipadi, A. Starikovskiy, The ondemand governor: past, present and future,
Linux Symposium 2 (2006) 223-238.

[9] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, R. Rajkumar, Criti-
cal power slope: understanding the runtime effects of frequency scaling, in:
Proceedings of the 16th international conference on Supercomputing, ICS’02,
ACM, New York, NY, 2002, pp. 35-44.

[10] K.Rajamani, H. Hanson, J. Rubio, S. Ghiasi, F. Rawson, Application-aware power
management, in: 2006 IEEE International Symposium on Workload Character-
ization, 2006, pp. 39-48.

[11] D.C.Snowdon, E. Le Sueur, S.M. Petters, G. Heiser, Koala: a platform for OS-level
power management, in: Proceedings of the 4th ACM European conference on
Computer systems, EuroSys’09, ACM, Nuremberg, Germany, 2009, pp. 289-302.

[12] A. Weissel, F. Bellosa, Process cruise control: event-driven clock scaling for
dynamic power management, in: Proceedings of the 2002 International Con-
ference on Compilers, Architecture, and Synthesis for Embedded Systems,
CASES’02, ACM, Grenoble, France, 2002, pp. 238-246.

[13] V. Gupta, P. Brett, D. Koufaty, D. Reddy, S. Hahn, K. Schwan, G. Srinivasa,
The forgotten ‘uncore’: on the energy-efficiency of heterogeneous cores, in:
Proceedings of the 2012 USENIX Conference on Annual Technical Conference,
USENIX ATC'12, USENIX Association, Boston, MA, 2012, p. 34.

[14] G. Dhiman, K.K. Pusukuri, T. Rosing, Analysis of dynamic voltage scaling for
system level energy management, in: Proceedings of the 2008 Conference on
Power aware Computing and Systems, HotPower’08, USENIX Association, San
Diego, CA, 2008, p. 9.

[15] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. Rubio, F. Rawson,]. Carter, Archi-
tecting for power management: the IBM POWER7 approach, in: 2010 [EEE 16th
International Symposium on High Performance Computer Architecture (HPCA),
2010, pp. 1-11.

[16] B. Goel, S. McKee, R. Gioiosa, K. Singh, M. Bhadauria, M. Cesati, Portable scal-
able per-core power estimation for intelligent resource management, in: 2010
International Green Computing Conference, 2010, pp. 135-146.

[17] S. Srinivasan, R. Iyer, L. Zhao, R. Illikkal, HeteroScouts: hardware assist for
OS scheduling in heterogeneous CMPs, SIGMETRICS: Performance Evaluation
Review 39 (2011) 341-342.

[18] V.Spiliopoulos, S. Kaxiras, G. Keramidas, Green governors: a framework for con-
tinuously adaptive DVFS, in: 2011 International Green Computing Conference
and Workshops (IGCC), 2011, pp. 1-8.

[19] A.Fedorova,].C.Saez, D. Shelepov, M. Prieto, Maximizing power efficiency with
asymmetric multicore systems, Communications of the ACM 52 (12) (2009)
48-57.

[20] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi, K.I. Farkas, Single-ISA het-
erogeneous multi-core architectures for multithreaded workload performance,
in: Proceedings of the 31st annual international symposium on Computer archi-
tecture, ISCA’04, IEEE Computer Society, Washington, DC, 2004, p. 64.

[21] M.A. Suleman, O. Mutlu, M.K. Qureshi, Y.N. Patt, Accelerating critical section
execution with asymmetric multi-core architectures, in: Proceedings of the
14th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS’09, ACM, Washington, DC, 2009, pp.
253-264.

[22] S. Balakrishnan, R. Rajwar, M. Upton, K. Lai, The impact of performance
asymmetry in emerging multicore architectures, in: Proceedings of the 32nd
International Symposium on Computer Architecture, 2005 (ISCA’05), 2005, pp.
506-517.

[23] T. Cao, S.M. Blackburn, T. Gao, K.S. McKinley, The yin and yang of power and
performance for asymmetric hardware and managed software, in: Proceedings
of the 39th International Symposium on Computer Architecture, ISCA'12, IEEE
Press, Portland, OR, 2012, pp. 225-236.

[24] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, J. Emer, Scheduling hetero-
geneous multi-cores through performance impact estimation (pie), in: 2012
39th Annual International Symposium on Computer Architecture (ISCA), 2012,
pp. 213-224.

[25] N.B. Lakshminarayana,]. Lee, H. Kim, Age based scheduling for asymmet-
ric multiprocessors, in: Proceedings of the Conference on High Performance
Computing Networking Storage and Analysis, SC'09, ACM, Portland, OR, 2009,
pp. 25:1-25:12.

[26] T. Li, D. Baumberger, D.A. Koufaty, S. Hahn, Efficient operating system sched-
uling for performance-asymmetric multi-core architectures, in: Proceedings
of the 2007 ACM/IEEE Conference on Supercomputing, SC'07, ACM, Reno, NV,
2007, pp. 53:1-53:11.

[27] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, S. Hahn, Operating system
support for overlapping-ISA heterogeneous multi-core architectures, in: 2010
IEEE 16th International Symposium on High Performance Computer Architec-
ture (HPCA), 2010, pp. 1-12.

[28] V. Kazempour, A. Kamali, A. Fedorova, AASH: an asymmetry-aware scheduler
for hypervisors, in: Proceedings of the 6th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE'10, ACM, Pittsburgh, PA,
2010, pp. 85-96.

206

V. Gupta et al. / Sustainable Computing: Informatics and Systems 3 (2013) 194-206

[29] Y. Kwon, C. Kim, S. Maeng, J. Huh, Virtualizing performance asymmetric multi-

core systems, in: Proceedings of the 38th Annual International Symposium on
Computer Architecture, ISCA'11, ACM, San Jose, CA, 2011, pp. 45-56.

[30] K. Chakraborty, P.M. Wells, G.S. Sohi, A case for an over-provisioned multicore

[31]

[32]

system: energy efficient processing of multithreaded programs, Tech. Rep. CS-
TR-2007-1607, University of Wisconsin-Madison, August 2007.

G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,]. Lugo-Martinez, S.
Swanson, M.B. Taylor, Conservation cores: reducing the energy of mature com-
putations, in: Proceedings of the Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems, ASPLOS’'10, ACM,
Pittsburgh, PA, 2010, pp. 205-218.

D.G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, V. Vasudevan,
Fawn: a fast array of wimpy nodes, in: Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, SOSP’09, ACM, Big Sky, MT, 2009,

Vishal Guptais a Ph.D. candidate in the College of Comput-
ing at Georgia Institute of Technology, Atlanta. He received
his M.S. in computer science from the University of North
Carolina at Chapel Hill in 2008, and a B.Tech. from the
Indian Institute of Technology (IIT) Madras, India in 2006.
He is a recipient of Intel PhD fellowship award for the
year 2012-2013. His research interests include operating
systems, virtualization, and distributed systems with a
focus on systems software targeting future heterogeneous
multi-core architectures in his recent research activities.

Paul Brett is a senior software engineer in the Operating
System Research group at Intel Labs where his focus has
ranged from Operating System development for the Plan-
etLab distributed testbed to studying the design, modeling
and implementation of heterogeneous multi-core archi-
tectures. His professional interests include virtualization,
distributed systems, and system software. Paul has a first-
class honors degree in systems engineering from the Open
University, UK.

David A. Koufaty was born in Venezuela in 1966. He
received the B.S. and M.S. in computer science from the
Universidad Simon Bolivar in Caracas in 1988 and 1991,
respectively, and a Ph.D. from the University of Illinois
at Urbana-Champaign in 1997. After completing his Ph.D.
he joined Intel Corporation. Between 1997 and 2004 he
was part of the microarchitecture and performance team
responsible for designing multiple server and desktop
processors and was a key developer of Hyper-Threading
Technology. Since 2005 he has been with Intel Labs as
a research scientist in the Systems Architecture Lab, his
most recent research focusing on heterogeneous archi-
tectures. His primary interests are in architecture, system

software and performance analysis.

)

Dheeraj Reddy is a research scientist at Intel Labs
working on heterogeneous architectures and operating
systems. His professional interests include operating sys-
tems, processor micro-architecture, data networking and
high-performance simulation and emulation. He gradu-
ated with a Ph.D. from Georgia Institute of Technology in
2007.

Scott Hahn is a Principal Engineer in Intel Labs. Scott
joined Intel in 1994 and spent much of his career working
on various aspects of computer networking. Scott started
working at Intel in the Supercomputer Systems Division
where he was responsible for developing Intel’s IP over
ATM solution for Intel’s TeraFLOP super computer and
has been active in defining several network management
technologies including chairing an IETF working group
and co-authoring several Internet standards-track RFCs.
Scott joint Intel Labs in 2005 and has most recently been
focused on various aspects of heterogeneous architec-
tures.

Karsten Schwan is a Regents’ professor in the College
of Computing at the Georgia Institute of Technology.
He is also the Director of the Center for Experimental
Research in Computer Systems (CERCS). He received his
M.S. and Ph.D. degrees from Carnegie-Mellon University
in Pittsburgh, Pennsylvania. He established the PArallel,
Real-time Systems (PARTS) Laboratory at the Ohio State
University. At Georgia Tech, his work ranges from topics in
operating and communication systems, middleware, par-
allel and distributed applications, and high performance
computing.

Ganapati Srinivasa is a senior principal engineer with
the Intel Architecture Group (IAG) at Intel Corporation.
Currently, he is leading research activities on heteroge-
neous computing for energy and power efficiency. He
graduated from Indian Institute of Science in 1983 from
School of Automation. He has worked at WIPRO in the
performance computing and aerospace areas; at Texas
Instruments-India lead their Design Automation software
development; at Microsoft member of team developing
0S. In 93, he joined Intel where he led the efforts on VLSI
CAD and created the Area Routing concepts for Intel’s
microprocessor design and led Xeon Architecture work for
the past 10 years.

	Core groups: System abstractions for extending the dynamic range of client devices using heterogeneous cores
	1 Introduction
	2 Motivation
	2.1 Client workloads
	2.1.1 Intermittent workloads
	2.1.2 Sustained workloads
	2.1.3 Multi-threaded workloads

	2.2 Client devices
	2.2.1 Mobility constraints
	2.2.2 Thermal constraints

	3 Processor design trends
	3.1 Heterogeneous cores
	3.2 Over-provisioned processors

	4 HeteroMates design
	4.1 Core groups
	4.1.1 Heterogeneity-states
	4.1.2 H-state controller
	4.1.3 Advantages

	4.2 Multicore groups
	4.2.1 Exploiting over-provisioning
	4.2.2 Platform reconfiguration

	4.3 Implementation

	5 Beyond core:uncore
	5.1 What is uncore?
	5.2 Idle state coordination
	5.3 Impact of uncore
	5.4 Uncore-aware operation
	5.5 Remote behavior prediction

	6 Experimental evaluation
	6.1 Experimental platform
	6.2 Client workloads
	6.3 Power model
	6.3.1 Core power
	6.3.2 Uncore power

	7 Results
	7.1 H-state evaluation
	7.1.1 Methodology
	7.1.2 Client workload characterization
	7.1.3 Performance-driven policy
	7.1.4 Power-driven policy

	7.2 M-state evaluation
	7.2.1 Methodology
	7.2.2 Results

	7.3 Summary

	8 Related work
	9 Conclusions
	Acknowledgement
	References

