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a  b  s  t  r  a  c  t

Mobile  devices  and  applications  exhibit  highly  diverse  behavior  in  their  usage  and  power/performance
requirements.  In order  to  accommodate  such  diversity,  this  paper  presents  ‘HeteroMates’  system  that  uses
heterogeneous  processors  to extend  the  dynamic  power/performance  range  of client devices,  i.e.,  offer
both high  performance  and  reduced  power  consumption.  It  proposes  core  group  abstraction  that  groups  a
small  number  of  heterogeneous  cores  to  form  a  single  execution  unit.  Group  heterogeneity  is  exposed  as
multiple heterogeneity  (H)  states,  an  interface  similar  to  the P-state  interface  already  used  for  frequency
scaling.  Further,  the  core  group  abstraction  is  extended  to a multicore  group  to allow  multiple  cores  within
a group  to  be  active  concurrently.  Also  demonstrated  is  the  importance  of  ‘uncore’  power  in total  SoC

power  consumption  and  the  need  for uncore-aware  operation  and  uncore  power  scalability  when  seeking
to extend  a platform’s  dynamic  power/performance  range  using  heterogeneity.  Experimental  evaluations
use  real-world  client  applications  and  a  unique  experimental  testbed  comprised  of  heterogeneous  cores
and  a shared  uncore  component.  Results  show  that HeteroMates  can  provide  significant  performance
improvements  while  also  lowering  energy  consumption  for  a diverse  set  of  applications  when  compared
to homogeneous  processor  configurations.
. Introduction

Mobile devices have emerged as a dominant computing plat-
orm for end users, resulting in an unprecedented increase in the
ange of performance demands imposed on them by their many
ich applications, and at the same time, battery life and energy effi-
iency remain critical concerns. Yet modern processors are typically
esigned to meet only one, not both, of these two conflicting goals of
erformance vs. efficiency. In response, chip vendors have adopted
eterogeneous multicore processors (HMPs) as their platforms of
hoice, which consist of cores with different performance/power
haracteristics. Examples include Variable SMP  from NVIDIA [1]
nd Big.LITTLE processing from ARM [2]. HMPs make it possible
or different applications within a diverse mix  of workloads to be
un on the ‘most appropriate’ cores [3–6]. For example, applica-

ions not time critical to the user can be run on low-power small
ores, while applications with their outputs visible to the user can
e allocated to high-performance big cores.

∗ Corresponding author at: 266 Ferst Drive, Atlanta, GA 30313, USA.
el.: +1 404 385 1353; fax: +1 404 385 2295.

E-mail address: vishal@cc.gatech.edu (V. Gupta).
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In addition to performance and energy-efficiency goals, the
processors used in mobile platforms also need to operate under
stringent power constraints, in part due to the devices’ limited
cooling options. At the same time, growing transistor counts under
such limited budgets, coupled with poor per-transistor power scal-
ing, are not only creating a utilization wall that limits the fraction
of a chip that can run at full speed at one time, a trend also
known as dark silicon [7], but they also create new opportunities
for realizing application performance goals under stringent power
constraints.

This paper presents the HeteroMates solution that utilize
such ‘excess’ silicon by intentionally over-provisioning the CPU
using heterogeneous cores in order to provide a wider dynamic
power-performance range for client devices, to meet both their high-
performance and low-power demands. Within a heterogeneous
mix, it opportunistically uses the right set of cores for execution to
meet the diverse requirements of mobile applications. Due to over-
provisioning, only a subset of the cores are activated for concurrent
use that fit within the power budget, while the rest are forced into

inactive mode to save power. The presence of heterogeneity allows
the system to make optimal use of constrained power resources,
by matching heterogeneous CPU resources to current application
needs.

dx.doi.org/10.1016/j.suscom.2013.01.010
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
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Moreover, the wide adoption of accelerators allows them to offload
significant portions of their computation to accelerators. Fig. 1(b)
shows the IPC trace of the openarena gaming benchmark. As the
observed IPC is low for the application, it can be run on a small
V. Gupta et al. / Sustainable Computing

HeteroMates forms execution units using the core group abstrac-
ion, where each group consists of a small number of (e.g., 2–4)
eterogeneous cores. Cores within a core group are exposed to
he system as multiple heterogeneity (H) states, similar to the P-
tates used for voltage and frequency scaling. An H-state controller
odule performs H-state transitions based upon workload behav-

or and user-defined policies. Depending on the selected H-state,
he workload is transparently migrated to the appropriate core by

 core switcher. The work also highlight the growing importance of
ncore power in total SoC power consumption and the need for a
calable uncore in order to fully realize the potential gains obtained
rom the use of heterogeneity. To this end, we augment the H-state
ontroller for uncore-aware operation by adding energy-override
ondition and thus improve energy-efficiency. H-state abstraction
ecouples heterogeneity from scheduling such that the scheduler
erceives only homogeneous cores. The performance/power differ-
nces among cores are transparently handled by a separate H-state
river. H-states can be implemented in hardware, firmware, or
oftware, thereby providing a way to hide heterogeneity from the
perating system to support legacy software for wider adoption.
urther, core groups allow the system to easily accommodate a
ariable number of different heterogeneous cores, by adding an
-state for each core. Finally, core groups can be useful in thermal-
onstrained scenarios (also known as dark silicon [7]) which allow
nly a fraction of the chip components to be active simultaneously.

The core group abstraction is extended to multiple concurrently
xecuting cores using multicore groups.  A multicore group is a set
f different multicore configurations of a platform by choosing a
ubset of the heterogeneous cores that meet the power budget.
he platform’s activity in different CPU configurations is exposed
sing multicore states (M-states). Each M-state represents a dif-
erent platform configuration and a switch between two M-states
auses the execution to move a different set of cores, i.e., the ones
atching the chosen M-state. Transitions among these states are

overned by a controller module depending on the application
ehavior and platform power constraints.

HeteroMates is implemented on top of the Linux kernel. Exper-
mental evaluations use a unique, experimental heterogeneous

ulticore platform comprised of both high and low power cores,
long with client applications typically seen in modern end-user
evices. Two different usage policies are compared for H-state
olution: a performance-driven policy favors high performance
or user-facing applications, whereas a power-driven policy favors
educed power consumption and longer battery life. Similarly,
n analysis is performed for M-state solution comparing several
nder-provisioned (all-small, all-big, heterogeneous) and over-
rovisioned configurations (with parallelism-aware and static
racle M-state controllers). Experimental results demonstrate that
y opportunistically utilizing heterogeneous cores, HeteroMates
an provide both improved performance and lowered energy
onsumption for various client applications when compared to
omogeneous cores.

The rest of the paper is organized as follows: Section 2 presents
otivational examples and use cases from client domain. Sec-

ion 3 discusses emerging trends in the semiconductor industry. A
etailed design of HeteroMates system describing core group and
ulticore group abstractions is presented in Section 4. Section 5

nalyzes the impact of uncore power on the design. Evaluation
ethodology and experimental results are provided in Sections 6

nd 7, respectively. Finally, Sections 8 and 9 summarize related
ork and conclusions from the work.
. Motivation

Users perform a wide variety of tasks on mobile devices, result-
ng in diverse platform demands. Since their battery capacities are
matics and Systems 3 (2013) 194– 206 195

severely restricted due to constraints on size and weight, energy
efficiency is critical to their usability. To provide extended battery
life and at the same time, meet the rapidly increasing demands of
high performance mobile use cases, a client device must offer a wide
dynamic power-performance range – it must be able to operate both
in high-performance and in power-savings modes. As explained in
detail in Section 3.1, heterogeneous cores can be used to extend
the dynamic power/performance range offered by homogeneous
processor configurations. In that context, this section discusses
examples of client workloads (see the list in Table 2), and the usage
patterns of client devices that motivate the need for a wide dynamic
power/performance range and discusses opportunities for using
heterogeneous cores for this purpose.

2.1. Client workloads

Client applications exhibit highly diverse behavior in their pro-
cessor usage and performance requirements. These applications
can be categorized based on their behavior as described below.

2.1.1. Intermittent workloads
Client devices like cell phones and tablets are typically powered-

on for long periods of time, but often perform their heavy
processing in short bursts. Web-browsing is an example of such
usage, and workloads browse and palbum in Table 2 belong to this
category. A timeline trace of IPC (instructions-per-cycle) for the
browse workload is shown in Fig. 1(a). Idle periods are marked
by low IPC periods, while page-loads correspond to spikes in the
graph. Since page-loads generate high IPC activity, a big core can
be used for rendering the pages and improving page-load perfor-
mance, while resorting to a small core during low activity periods
to conserve power.

2.1.2. Sustained workloads
These differ from intermittent workloads in that their behavior

is uniform over a longer duration. They can be further classified into
two  sub-categories: sustained-high and sustained-low.

Sustained-low: Client applications like gaming and media play-
back typically run for a long duration (a few minutes to hours).
Fig. 1. Diverse client workload profiles (IPC vs. time).
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and opportunities in terms of finding novel ways to utilize such
over-provisioned resources to improve performance or energy-
efficiency. One way  to address the problem of dark silicon is to build
smaller processors and discard dark silicon, but various economic
96 V. Gupta et al. / Sustainable Computing

ore without significant degradation in performance and at lower
ower.

Sustained-high: Mobile devices are also used for compute-
ntensive tasks such as media encoding, video editing, etc. These
pplications typically have a high IPC (e.g., see x264 encoder in
ig. 1(c)), and their performance scales well on a big core. This
akes big cores suitable for these applications when they require

igh performance, e.g., when they are user-facing, while a small
ore may  provide higher energy-efficiency when they run in back-
round mode (e.g., virus-scan).

.1.3. Multi-threaded workloads
With increasing numbers of cores on mobile devices, par-

llelization of client applications is key to further performance
nhancement. Such multi-threaded applications also present
pportunities for exploiting heterogeneity. 7zip, gmagick, and
clipse are examples of parallel applications. The mytube workload
lso uses multiple threads for audio, video decoding, and rendering,
or instance. Since such threads differ in behavior and needs, their
erformance will be affected by how they are mapped to differ-
nt heterogeneous cores. For example, Fig. 1(d) shows that various
hreads within the mytube workload differ significantly in their IPC,
hich can be leveraged by task mapping and scheduling methods.

.2. Client devices

.2.1. Mobility constraints
Mobility means that client devices will either be powered via

all-power or by battery. Wall-power usage does not impose
nergy constraints, so that big cores can provide desired high lev-
ls of performance. During battery-driven operation, however, a
ser may  be willing to accept lower performance at the benefit of
igher battery life. Low-powered energy-efficient small cores may
e more suitable under such conditions.

.2.2. Thermal constraints
Client devices like cell phones and tablets rely on natural cooling.

herefore, these devices are quite sensitive to platform thermal
onstraints that impose limits on the extent to which it is possible to
se power-hungry big cores for sustained periods of time. A small
ore can be used for moving the execution away from a big core
hen thermal constraints are violated.

. Processor design trends

Several emerging trends in microprocessor design including
eterogeneous cores and processor over-provisioning influence the
esign of HeteroMates which are summarized in this section.

.1. Heterogeneous cores

Modern processors are typically designed to satisfy only one of
he two conflicting requirements: high-performance and energy-
fficiency. Current low-power cores (e.g., Intel’s Atom processor)
re energy efficient, but their performance is limited. More power-
ul big cores like Intel Core® processors provide high performance,
ut at the cost of higher levels of power consumption. The
echnological reasons for this are the fact that the power con-
umption of a processor core consists of static (leakage) power and
ynamic (switching) power. During high activity periods, the total
ower consumption of the device is dominated by dynamic power
onsumption, while during low activity periods, leakage power

ecomes a significant component of the total power consump-
ion. Current high performance cores are built from transistors on
ast process technologies that have high leakage power and very
ast switching times [1]. Such big cores, therefore, consume high
Fig. 2. Big cores are less efficient at low activity points, while small cores are less
efficient at high activity points. Using a heterogeneous processor provides a wide
dynamic power/performance range.

leakage power under idle or near-idle conditions, but can provide
high performance without significant increase in dynamic power,
as shown in Fig. 2. Conversely, low power small cores are built from
low power process technologies with low leakage power but slower
switching times [1]. Such processors consume small amounts of
leakage power, but significantly increase dynamic power consump-
tion to provide a high-performance mode (see Fig. 2). Static power is
mainly determined by the silicon process technology, and dynamic
power is determined by silicon process technology and by operat-
ing voltages and frequencies.

The intuitive outcome is that by using both types of cores, a
single platform can be optimized for both high performance and
low power consumption. The objective of such a system would be
to always use its most efficient cores for the tasks at hand (shown
by the solid line in Fig. 2). Such a heterogeneous platform exhibits a
higher power-performance range than individual big or small cores.
This paper explores whether and to what extent the hardware-
based arguments for heterogeneity stated above lead to realistically
achievable gains on client devices.

3.2. Over-provisioned processors

The transistor density on modern processors continues to grow,
but due to poor Dennard scaling, i.e., reduction in CMOS threshold
and supply voltages, per-transistor power is decreasing at a much
slower rate. Under constant power budgets, which are governed by
the cooling technology of the platform, the gap between the tran-
sistors that can be fit into the die area and the transistors that can be
activated simultaneously is widening (see Fig. 3) [7]. Thus, future
processors are likely to have significant dark resources, e.g., it is esti-
mated that in 8 years, we  will be faced with designs that would have
93.75% silicon over its provisioned power limit. This phenomenon
is more severe in passively cooled mobile devices such as netbooks,
tablets, and smart phones.

Mitigating or exploiting dark silicon presents new challenges
Fig. 3. Future processors are likely to be over-provisioned due to the increasing
gap between transistor density and transistors that can be sustained within power
budgets.
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onstraints are likely to promote large size chips that will have
ar more transistors than can be used simultaneously. Another
pproach to mitigate dark silicon is to slow down all of the com-
onents on the processor to fit into the power envelope, but this
pproach is energy-inefficient as DVFS incurs a quadratic power
ost for a linear frequency boost. Therefore, the approach explored
n this work is to design processors which are provisioned above
heir TDP (thermal-design-power) limits, but it employs hetero-
eneity to exploit over-provisioning such that only a subset of
omponents are used for concurrent execution.

. HeteroMates design

HeteroMates enables a wide dynamic power/performance range
sing heterogeneous cores. This section describes its key concepts
nd components.

.1. Core groups

A heterogeneous core group is a collection of a small number
f (e.g., 2–4) heterogeneous cores that are grouped together to
orm a single execution unit. For example, Fig. 4 shows a core
roup consisting of three heterogeneous cores: a big (B), a small
S), and a tiny (T) core. The core group appears as a single execu-
ion unit with multiple performance/power levels. Depending on
pplication behavior and user-defined policies, an appropriate core
s dynamically chosen to run the user task in question, by transpar-
ntly moving the task’s execution to that core, and by placing the
ther inactive cores into a low power idle state to conserve power.
or example, the tiny core can be used for background tasks like
mail update checks, the small core for normal user operation, and
he big core is reserved for performance-critical tasks.

.1.1. Heterogeneity-states
Different cores within a core group are exposed using

eterogeneity-states (H-states), an interface similar to the P-state
performance-states) interface defined by the ACPI standard and
sed by operating systems to scale the frequency and voltage
f processors. Higher P-state numbers represent slower proces-
or speeds. Thus, P0 is the highest-performance state, with P1
o Pn being successively lower-performance states. Similarly, an
-state is assigned to each type of core in the core group. A high-
erformance big core corresponds to a lower numbered H-state,
hile a low-power small core corresponds to a higher-numbered
-state. Thus, a core group exposes a set of H-states (H0, . . .,  Hn)

hich are controlled by an H-state controller module. Depending on

he state transition logic and the resultant H-state, a core switcher
ransparently migrates the execution to the appropriate core. In
his manner, applications perceive only homogeneous cores with

ig. 4. A core group consisting of three heterogeneous cores: a big (B), a small (S),
nd a tiny (T) core exposed as three H-states.
Fig. 5. H-state and P-state transition state machines. H-state determine the core for
execution, while P-states determine the frequency on that core.

larger dynamic power/performance range than any of the individ-
ual cores.

4.1.2. H-state controller
H-states on a core group are controlled by the H-state controller,

in a manner similar to frequency scaling operations performed by
a CPU governor. A CPU governor is a kernel module that changes
core P-states based on a policy. In a similar manner, the H-state
controller performs H-state scaling operations. However, instead of
changing voltage and frequency as in the case of P-states, a change
in H-state causes the execution to move to a different core. The
functions of the H-state controller and of the traditional P-state
governor complement each other. For example, Fig. 5 shows the
combined P-state and H-state transition diagram for a two-core
heterogeneous core group. Here, Hk corresponds to the small core,
and Hk−1 corresponds to the big core. P-state changes within a core
are performed by the P-state governor, while cross-core migrations
are governed by the H-state controller.

CPU governors available in current operating systems (e.g., the
ondemand governor in Linux [8]) dynamically change CPU fre-
quency in response to CPU load (utilization). However, CPU load
alone is not sufficient to drive H-state scaling operations, which
also require determining whether a bigger or smaller core is more
suitable for execution. Previous work on heterogeneous processor
scheduling [4–6] has identified application IPC (instructions-per-
cycle) as a key metric to select the right core for execution.
Therefore, HeteroMates uses a combination of CPU load and appli-
cation IPC to form the H-state transition logic shown in Fig. 6.

The intuition behind the scaling algorithm can be explained as
follows. An application with high CPU load but low IPC is likely to
perform equally well on both big and small cores due to its low IPC
requirements, which can easily be met  on a small core. Applications
with high IPC but small CPU load under-utilize the big core. Moving
such applications to a smaller core results in higher utilization of the
small core, but without a significant penalty in application perfor-
mance. When both of these conditions are violated, the application

is likely to gain performance by executing on a bigger core.

The H-state controller monitors application IPC and CPU load at
periodic intervals and compares them with pre-defined thresholds

Fig. 6. H-state scaling operations in response to application IPC and CPU load.
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o determine the resultant state (see Algorithm 1). If both the IPC
nd load are above thresholds IPCHI and LoadHI, respectively, the
ore group is scaled up, i.e., moved to a higher-performance or
ower numbered state (Hcur−1). If either IPC or load are lower than
hresholds IPCLO and LoadLO, the H-state is scaled down to a lower-
erformance state (Hcur+1). For values in between these thresholds,
o H-state change is performed. These thresholds are defined for
ach type of core in the system. By setting different values for these
hresholds, different policies can be enforced. For example, low val-
es of thresholds force the execution to big cores, and thus prefer
erformance over power. Similarly, a policy having thresholds with
igh values picks smaller cores more often.

lgorithm 1 (H-state controller heuristic).

An H-state change operation causes the execution to switch to
 different core. This switching overhead could be substantial due
o migration latency and loss of private cached data if such changes
re very frequent. In response, we use history counters to dampen
ore switching frequency. A switch is performed only after a cer-
ain number of consecutive identical H-state change requests are
eceived. The history counter is a simple integer counter associated
ith each core group, which is incremented whenever consecutive

ntervals generate the same requests and reset otherwise.

.1.3. Advantages
The design of HeteroMates offers multiple advantages. First,

-state interface decouples heterogeneity from scheduling such
hat the scheduler need not deal with performance/power dif-
erences among cores. Instead, a separate H-state driver handles
his transparently to the scheduler. Second, H-states can be imple-

ented either in hardware, firmware, operating system, or even
ypervisors, allowing a broader applicability. As an architectural
olution, it provides a way  to completely hide heterogeneity from
he operating system, which is critical to support legacy software
nd applications. Further, core groups provide a unified mechanism
o easily accommodate a variable number of heterogeneous cores
y adding an H-state for each type of core. Finally, core groups can
e useful when TDP (thermal-design-point) limits may  constraint
he number of cores that can be active simultaneously. As transistor
ensity on modern processors keep increasing, such TDP limits are
roving to be a critical design constraint in the form of dark silicon
7].

.2. Multicore groups

The core group abstraction can be extended to multicore sys-
ems using multicore groups.  This section describes how multicore
roups can exploit dark silicon using over-provisioned heteroge-
eous processors.

.2.1. Exploiting over-provisioning
Due to the presence of dark silicon [7], future platforms are
ikely to be constrained by CPU power rather than die area. This
resents interesting choices for platform designers to utilize such
xcess die area. For example, Fig. 7 shows several processor design
hoices containing homogeneous and heterogeneous cores for a
Fig. 7. Over-provisioned platform can be morphed into different configurations by
dynamic core selection.

fixed power budget (equivalent to CPU area in the figure). One
design option is to use only homogeneous cores, while staying
below the platform power budget. Thus, it may  contain few big
cores or many smaller cores. However, these different configura-
tions are suited for different types of applications. For example, the
big core can deliver high responsiveness for single-threaded user-
facing applications, while multiple small cores are more suited for
applications with parallelism. Therefore, heterogeneous cores can
be used to extract the benefits of both types of cores. However,
fixed CPU power budget constraints require either slower or fewer
processors to be used in the heterogeneous configuration to stay
within budget ceiling when compared to homogeneous options,
thus, comprising performance for certain applications.

In comparison, the over-provisioned configuration (bottom
figure) exploits dark silicon by employing heterogeneous cores con-
sisting of many low-powered smaller cores and high-performance
bigger cores. Since the total power consumption of all the cores
exceeds the TDP limits of the platform, it requires dynamic core
selection mechanisms to activate a subset of the cores such that
they conform to the budget specifications. Such an over-provisioned
heterogeneous processor can be used to provide the goodness of
various configurations shown, by opportunistically using the right
set of cores for application execution depending on application
behavior and user preferences. By matching execution resources
to application needs, it maximizes system performance/energy-
efficiency under power-constrained conditions.

4.2.2. Platform reconfiguration
Various platform configuration that satisfy the budget require-

ments can be pre-configured or dynamically created during
execution, which are exposed using multicore-states (M-states). As
different H-states represent various cores within a core group, an
M-state is similarly assigned to each platform configuration. For
example, a state M0  could represent a configuration consisting of
fewer high-performance big cores, while a configuration consist-
ing of many low-power small cores corresponds to a different state
(M1) which are controlled by an M-state controller module. Depend-
ing on the state transition logic and the resultant state, a task
switcher transparently migrates the execution to the appropriate
cores. M-state switching operations are controlled by the M-state
controller. A change in M-state causes the execution to move to a
different set of cores. The controller needs to take platform power
constraints, application power consumption, and thread behavior
into account to select the optimal execution environment.

4.3. Implementation

HeteroMates is implemented for the Linux kernel. The current

implementation of core groups considers systems involving pairs of
heterogeneous cores. H-states are implemented by customizing the
P-state tables on each core to expose two P-states corresponding
to each core in a pair. H-state changes work in lock-step on both



: Informatics and Systems 3 (2013) 194– 206 199

o
c
c
f
o
a

r
r
a
t
i
a
i
f
r
q
f
t
r
s
a
u

t
M
b
f
w
f
o

5

c
u

5

t
c
t
f
c
(
i
b

5

t

Table 1
Core and package idle state coordination.

Package PCx Core 1

C0 C1 C2
V. Gupta et al. / Sustainable Computing

f these cores to avoid conflicting operations. An H-state change
auses execution to switch cores instead of performing DVFS. Our
urrent implementation does not consider traditional voltage and
requency scaling. This is because there is substantial previous work
n DVFS [9–12], which can be used to perform P-state scaling in
ddition to H-state transitions.

The H-state controller is implemented as a kernel module which
uns on each active core as a kernel thread. It periodically (40 ms)
eads various hardware performance monitoring counters (PMCs),
pplies models, and performs any H-state changes depending on
he policy and thresholds chosen. The overhead of running models
s measured to be small (approximately 2% increase in core active
nd 5% increase in package active residency). The core switcher is
mplemented in the OS kernel by changing the runqueue pointer
or the tasks in the source runqueue to point to the destination
unqueue. The overhead of this operation is minimal when run-
ueue length is not large, which we have observed as being the case
or the typical client workloads used in our experiments. We  note
hat similar functionality can be provided by hardware, to further
educe overheads. Also, only active cores are made available for
cheduling to the Linux CFS scheduler. Inactive cores are put into
n offline mode using a lightweight mechanism. A value of three is
sed for history counters.

For the M-state solution, this paper considers designs where
he system is configured to operate in one of the many built-in

-states that are under budget limits. Further, a simple heuristic
ased upon the thread-level-parallelism in the application is used
or analysis as described in Section 7.2.1. As part of our future work,
e are exploring designs which dynamically compose various plat-

orm configurations based on the power profile and thread behavior
f running applications.

. Beyond core:uncore

The dynamic power/performance range offered by a platform
onsisting of heterogeneous cores can be strongly affected by the
ncore subsystem present on modern multicore processors.

.1. What is uncore?

The uncore is a collection of components of a processor not in
he core but essential for core performance. The CPU core contains
omponents involved in executing instructions, including execu-
ion units, L1 and L2 cache, branch prediction logic, etc. Uncore
unctions include the last level cache (LLC), integrated memory
ontrollers (IMC), on-chip interconnect (OCI), power control logic
PWR), etc. as shown in Fig. 8. With growing cache sizes and the
ntegration of various SoC components on CPU die, the uncore is
ecoming an increasingly important contributor to total SoC power.
.2. Idle state coordination

Modern multicore processors contain core idle states (C-states)
o progressively turn off components in order to conserve power.

Fig. 8. Core and uncore in multicore processors.
Core 0 C0 PC0 PC0 PC0
C1 PC0 PC1 PC1
C2 PC0 PC1 PC2

These C-states are denoted as Cx, where x is a digit. C0 is the active
C-state when processor is executing instructions, while a higher
numbered C-state (e.g., C2) is a deeper sleep state consuming lesser
power.

In addition to core C-states, processors also contain package idle
states (PCx states) that govern uncore power consumption. These
package C-states are related to core C-states in that the processor
can only enter a low-power package C-state when all of the cores
are ready to enter that same core C-state. Table 1 shows this coor-
dination of core and package idle states for a two-core system with
three idle states. The resultant package C-state is always the lower
of the two core C-states. Thus, the uncore subsystem remains active
and consumes power as long as there is any active core on the CPU.

5.3. Impact of uncore

Fig. 9 illustrates the impact of uncore power on the energy con-
sumption of an application executing on heterogeneous cores. A big
core running an application finishes its execution faster and enters
a low-power idle state. The same application when executed on a
small core takes longer (tsmall) to finish, which also keeps the uncore
active for a longer period of time. If uncore power is substantial in
comparison to core power, then the energy gains from running on
a small core are strongly affected by the uncore power. For such a
system, energy-efficiency gains from small core execution may  be
offset by the increase in uncore energy consumption due to longer
execution time [13]. This observation is in line with prior work
that highlights the tradeoff between CPU and system-level power
reduction in the context of frequency scaling [14,9].

Energy consumption for the big core and small core execution
for such platforms can be modeled using Eqs. (1) and (2), respec-
tively. Here, E refers to the energy consumed, t denotes execution
time, and Pcore and Puncore represent average core and uncore power,
respectively. Pidle is the idle platform power, and tidle is the corre-
sponding idle time.

Ebig = tbig ∗ (Pbig
core + Pbig

uncore) + Pidle ∗ tidle (1)

Esmall = tsmall ∗ (Psmall
core + Psmall

uncore) (2)

To understand the impact of uncore power, the evaluation in
Section 7 considers two  uncore configurations: fixed and scalable.
The fixed uncore configuration uses the same uncore subsystem

when executing on either big or small cores. The scalable uncore
scenario models an uncore where certain uncore components such
as memory controllers or cache For example, fewer memory chan-
nels, memory controllers, or a smaller cache can be used with a slow

Fig. 9. Effect of uncore power on the dynamic power range of heterogeneous cores.
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described later in Section 6.3, an application’s relative energy con-
sumption on two different H-states can be obtained. These values
are used to perform energy override operations as defined earlier
by Eq. (3).

Table 2
Client workload summary.
00 V. Gupta et al. / Sustainable Computing

mall core that imposes smaller resource requirement on the cache
nd memory subsystem. units are turned off or powered down as
e move to the small core. Hence, in this case, the uncore power

cales along with core power when a workload moves to a different
ore.

.4. Uncore-aware operation

As discussed above, the energy-efficiency of a platform is not
nly determined by the type of core used for execution, but also
y the power consumption of the shared uncore subsystem. Work-

oads for which execution on a bigger core provides both higher
erformance and better energy-efficiency due to improved perfor-
ance scaling, should always be run on big cores as small core

egrades both performance and efficiency. HeteroMates addresses
his issue by adding the energy override condition in Eq. (3) to the
euristic described in Section 4.1.2. If the energy consumption of
he current H-state (Hcur) is greater than the energy consumption
f the next higher state (Hcur−1), a scale up operation is performed
o move the execution to the bigger core.

f
Energy(Hcur−1)
Energy(Hcur)

< 1 then Hnext = Hcur−1 (3)

For energy-aware operation, Eq. (3) requires the energy con-
umption of the application to be estimated on a different core
H-state). This task can be divided into two components: pro-
essor power prediction and application behavior (e.g., execution
ime, IPC) prediction. CPU power visibility to the operating system
s becoming increasingly important, with multiple CPU vendors
roviding hardware counters to measure the power of different
omponents on the platform [15]. Further, previous work has devel-
ped light-weight models to accurately predict per-core power
sing existing performance events [16]. Using a similar approach,
his work also uses power models, described in Section 6.3, to
btain core and uncore power consumption.

In order to understand the impact of a core transition on appli-
ation behavior, hardware assistance can be provided. For example,
eteroScouts [17] proposes hardware performance counters to
redict workload behavior on a remote core (after-transition) from
he parameters available on the local core (before-transition). Due
o unavailability of such counters in current processors, simple
rediction models are developed using experimental data. The fol-

owing section provides details of the modeling methodology.

.5. Remote behavior prediction

To model the relationship between application IPC on a big and

 small core in our experimental platform (see Fig. 11), the client
orkloads in Table 2 and SPEC CINT2006 benchmarks are executed

n both types of cores. Fig. 10 plots the obtained IPCscaling data,
efined as the ratio of the big core IPC and the small core IPC, as

Fig. 10. Modeling IPC scaling as a function of IPC.
matics and Systems 3 (2013) 194– 206

a function of the IPC on the big core. As evident from the figure, a
linear curve fits the data well, with the resultant model given by
the equations below.

IPCscaling = 0.6 ∗ IPCbig + 1.01 (4)

IPCscaling = 1.31 ∗ IPCsmall + 0.94 (5)

The impact of IPC scaling on the execution time of an application
is workload dependent. CPU-bound workloads show a propor-
tional relationship between IPC scaling and execution-time scaling.
However, this does not hold true for many client workloads with
significant idle phases, e.g., media and graphics workloads. For such
workloads, execution time is not affected by the core performance.
Instead, a change in core performance translates into change in core
idle state residency. These conditions are modeled by applying the
scaling function to the product of core active state (Ractive) resi-
dency and execution time (t), as shown in Eq. (6). The equation was
experimentally verified using all of the client workloads in Table 2
as majority of the workloads closely follow the modeled relation-
ship. In the online model, sampling interval is substituted for the
execution time.

(Rsmall
active ∗ tsmall) = IPCscaling ∗ (Rbig

active
∗ tbig) (6)

Further, the change in core idle residency (Ridle) impacts package
idle state (Uidle) residency in an application dependent manner.
Applications for which the package becomes idle as soon as the core
becomes idle, show a strong correlation between core and package
idle states. On the other hand for multi-threaded applications and
graphics-intensive applications, a core’s idle state does not neces-
sarily translate to the package idle state since the package can still
be busy due to activity in another core or the graphics processor.
Such applications show a weak or negligible correlation between
core and package idle states. These two  scenarios are modeled in
Eq. (7) where a difference of 20% between Uidle and Ridle is assumed
as an indicator of weak correlation. For such cases, Uidle is assumed
to be the same irrespective of the type of core used for execution.

Usmall
idle =

{
Ubig

idle
if Ubig

idle
� Rbig

idle
,

Rsmall
idle

otherwise
(7)

Using the models presented above and the power models
Workload Description Metric

7zip Text file compression using archiver Time
applaunch Application launch operation Latency
bodytrack Computer vision kernel Time
browse Web-page rendering (browser) Latency
c-ray Image generation using ray-tracer Time
canvas HTML5  canvasing tests (browser) FPS
eclipse Java IDE performance tests Time
filescan File-system read/write operations Time
gmagick Batch resizing of images Time
grayscale Image filtering operation (browser) Latency
gtkperf GTK GUI performance tests Latency
javascript Scripting operations (browser) Latency
lightsmark 3D graphics rendering tests FPS
mplayer H/W  accelerated video playback FPS
mytube Streaming video playback (browser) FPS
openarena 3D first-person-shooter game demo FPS
palbum Photo-album slide show (browser) Latency
strike 2D shooting game demo (browser) FPS
x264 Media file conversion using encoder Time
zoom Image zoom operation (browser) Latency
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only perform scale up operations and not scale down, therefore,
only HI thresholds are relevant for small cores. Similarly, only LO
thresholds are relevant for the big cores. The first performance-
driven policy favors performance over power by using big cores

Table 3
Thresholds for performance- and power-driven policies.

Small core Big core
Fig. 11. Experimenta

. Experimental evaluation

.1. Experimental platform

Our experimental platform consists of a quad-core Intel i7-
600 client processor. To create heterogeneity, we  use an Intel
roprietary tool to de-feature and emulate the performance of

ow-powered small cores for a subset of the cores [4]. The block dia-
rams of two platform configurations used for analysis are shown
n Fig. 11. An on-die graphics processor is used to accelerate graph-
cs workloads. All of the cores share an LLC of size 8 MB.  All the

orkloads are run using Linux kernel 3.0 and automated. Browser
orkloads are run using Google Chrome 15.0.

The configuration shown in Fig. 11(a) is used for forming two
ore groups consisting of one big and one small core each, both
perating at a frequency of 2.6 GHz. Similarly, the platform config-
ration in Fig. 11(b), consisting of one big core, three small cores,

s used to form a multicore group with three M-states as shown by
he table in the figure (on right). M0  consists of a single big core
1B) running at a frequency of 2.4 GHz, while M2  state uses three
mall cores (3S) each configured to run at 1.8 GHz. Similarly, M1
ontains one big and one small core, but the big core is throttled to
un at 1.8 GHz to stay within power limits (1B*,1S).

.2. Client workloads

To assess the viability of using heterogeneity for client systems,
 diverse set of real-world applications are chosen which are typical
f modern end-user devices since prior server-centric research on
eterogeneous processors [4–6] does not directly address the needs
nd processor usage models seen on client devices. Table 2 provides

 summary of the applications used in our analysis which include
rowsing, gaming, media, etc., and relevant performance metrics
hich are different from server workloads.

.3. Power model

The emulated heterogeneous platform mimics the performance
f small cores. However, it does not match the power characteristics
f an actual small core built using a different process technology
or low power consumption. We  therefore, rely on power models
o obtain core and uncore power consumption.

.3.1. Core power
The average power consumption of a CPU core can be modeled

sing the following equations:

core = Ractive ∗ Pcore
active + Ridle ∗ Pcore

idle (8)

core
active = Cdyn ∗ V2 ∗ f (9)
ere, Ractive and Ridle denote core active and idle state residen-
ies (%), and Pcore

active
and Pidle are the corresponding power values.

dyn is the dynamic capacitance, V denotes the operating voltage,
nd f represents the switching frequency. Big core Cdyn is modeled
rogeneous platform.

as a function of IPC in Eq. (10), as shown and validated by other
researchers [18]. Similarly, Eq. (11) models the capacitance for a
small core having three-times smaller area than the big core.

Cbig = 0.499 ∗ ipcbig + 0.841 (10)

Csmall = 0.472 ∗ ipcsmall + 0.176 (11)

6.3.2. Uncore power
Similar to core power, uncore power can be modeled using

package idle state residencies (Ux) as shown in Eq. (12).

Puncore = Uactive ∗ Puncore
active + Uidle ∗ Puncore

idle (12)

Puncore
active = Pwake + Pactivity ∗ LLCrate (13)

Further, uncore active power (Puncore
active

) is modeled as a function
of the LLC activity in Eq. (13) where Pwake is the fixed power cost of
waking up various uncore components, while the Pactivity compo-
nent scales with the LLC access rate LLCrate (relative to peak access
rate including both cache hits and misses).

The analysis uses a value of 0.9 V for the voltage (V). For this
platform, the average big core and small core power for all our
workloads is obtained to be 2.37 W and 0.95 W,  respectively. A
comparable uncore is modeled using a value of 1.2 W for Pwake and
Pactivity in case of a fixed uncore and scaled down to half for a scal-
able uncore. Core and uncore idle power are assumed to be 0.1 W
and a 1.5 W power component is attributed to the on-die graphics
processor which also scales with the LLC activity.

7. Results

Experimental results evaluating H-state and M-state solutions
are presented in Sections 7.1 and 7.2, respectively.

7.1. H-state evaluation

7.1.1. Methodology
Two different policies, performance-driven and power-driven,

are used for evaluation. This is done by choosing different thresh-
old values, obtained after experimenting with several combinations
of thresholds. Table 3 summarizes the various thresholds used to
cater to these policies. For a paired-core system, small cores can
IPCHI LoadHI IPCLO LoadLO

Performance-driven 0.5 70% 0.8 40%
Power-driven 0.7 80% 1.25 50%
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Fig. 12. A comparison of the behavior of 

or execution in an aggressive manner. This is achieved by choos-
ng smaller thresholds in the table. The power-driven policy, on
he other hand, focuses on power by choosing bigger thresholds
nd forcing the execution to small cores more often. The eval-
ation is carried out by comparing the performance and energy
onsumption of the performance-driven policy with only big core
xecution and of the power-driven policy with just small core exe-
ution. These two comparison points provide us a perspective of
he advantage of using heterogeneous cores over homogeneous
onfigurations.

.1.2. Client workload characterization
The results shown in Fig. 12 provide a comparison of the

ehavior of various client applications on heterogeneous cores.
pecifically, they compare average IPC (instructions-per-cycle),
ore idle residency, and package idle state residency for all of the
orkloads in Table 2 for big and small core execution. As evi-
ent from Fig. 12(a), most of the applications observe a significant
ecrease in their IPC when running on the small core as compared
o the big core. This reduction in IPC results in the small core being
ctive for longer durations, thereby causing a decrease in core and
ackage idle residency (see Fig. 12(b) and (c)). Further, many appli-
ations are seen to have almost negligible package idle residency.
hese applications either heavily use the graphics processor (e.g.,
penarena, lightsmark), or they always keep one of the CPU cores
usy (e.g., 7zip, gmagick, x264), and do not allow the uncore to
nter into an idle state.

.1.3. Performance-driven policy
Fig. 13 provides results comparing the performance and energy

onsumption of the performance-driven policy with execution on

ig cores. Specifically, Fig. 13(a) shows performance loss (%) with
espect to the maximum performance achievable by using big
ores for the entire execution, and Fig. 13(b) shows correspond-
ng energy savings by using small cores for partial execution when

Fig. 13. Comparison of performance-driv
l client workloads on big vs. small cores.

big core is not energy-efficient. Performance is measured based
upon the metrics in Table 2, with inverse of latency as the met-
ric for latency-oriented workloads. As evident from the figures,
this policy is able to achieve performance within 15% of the big
core performance for all the workloads except browse and palbum.
This high performance loss for these two  workloads is due to their
bursty nature, i.e., these applications exhibit sudden bursts of high
activity during page-rendering. HeteroMates uses history coun-
ters to dampen core switching frequency, which requires multiple
consecutive state change requests to be received before actually
making the change. Due to this reason, these bursty applications
observe a short delay before they are moved to the big core which
incurs a higher performance degradation. However, the absolute
increase in the latency for these applications may  not be user-
perceivable.

Fig. 13(b) shows corresponding energy savings results for three
scenarios: core-only savings (C), SoC-wide savings (C + UC) with
a fixed uncore, and SoC-wide savings with a scalable uncore. As
seen from the figure, it is able to save significant energy for sev-
eral applications with a small performance degradation. Workload
openarena achieves highest gains with 39% core energy savings.
However, these savings are strongly affected when the power con-
sumption of the uncore is taken into account. On the other hand,
when a scalable uncore is used, these savings increase and become
comparable (25%) to core-only energy savings.

To elaborate on the importance of uncore power in total SoC
power, Fig. 13(c) shows the distribution of core and uncore energy
consumption for various applications. Core energy component
dominates for CPU-intensive applications like 7zip, eclipse, gmag-
ick, and x264, while uncore component is significant for other
applications including lightsmark, mplayer, and openarena. These

results highlight the growing importance of uncore power in the
processor power consumption and motivate the need for a scalable
uncore design when seeking to obtain large gains from heteroge-
neous multicores.

en policy with big core execution.
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Specifically, Fig. 16(a) shows relative performance in each
Fig. 14. Comparison of power-dr

.1.4. Power-driven policy
Results for the power-driven policy are presented in Fig. 14,

here Fig. 14(a) and (b), respectively, show performance gain and
nergy loss (SoC-wide) in comparison to small-core-only execu-
ion. As results show, this policy is able to achieve significant
erformance gains for many applications by selectively using big
ores. Further, it is able to do so with only a small to moder-
te increase in energy consumption. For example, the browse and
anvas workloads observe the highest increases in energy con-
umption of 31% and 28%, respectively, while most of the other
pplications show a smaller increase. However, these two  applica-
ions also show a 31% and 54% performance gain for the increased
nergy consumption due to their usage of big cores. We  note that
ome applications like lightsmark, mplayer, and openarena exhibit
egligible performance improvement due to poor scalability.

Results in Fig. 14(c) show the percentage residency on big and
mall cores for all of the applications. Different applications exhibit
ifferent degrees of big and small core usage. For example, applica-
ions like 7zip, eclipse, and x264 with good performance scalability
pend the majority of their execution on big cores. On the other
and, applications like lightsmark, mplayer, and palbum remain
n small cores for a significant portion of their execution time.
ther applications like applaunch, canvas, and strike make use of
oth types of cores during their execution. To illustrate this fur-
her, the big and small core usage profiles of the applaunch and
trike workloads are shown in Fig. 15. The applaunch workload
aunches and executes a series of graphics-intensive applications.
he launch operation is CPU-intensive and performs better on a
ig-core, while the execution phase is accelerated using the on-die
raphics processor and a small core provides comparable perfor-
ance to the big core at a lower power. Therefore, this workload

ransits between big and small cores during launch and execution
hases (see Fig. 15(a)). Similarly, Fig. 15(b) shows the execution
rofile for the strike gaming workload. This workload exhibits sev-
ral phases with high activity (e.g., bots shooting) when big cores

re used and phases with low activity (e.g., bots aiming and mov-
ng) when small cores may  suffice. In this manner, the appropriate
ore is used depending on the activity.

Fig. 15. Big (B) and small (S) core u
olicy with small core execution.

7.2. M-state evaluation

7.2.1. Methodology
Experimental evaluation and analysis for multicore groups are

carried out as the steps summarized below.

• Each workload is first individually evaluated on each of the three
M-state configurations in Fig. 11(b).

• Using the data collected in the previous step for each M-state,
we  perform an analysis for each workload to obtain its perfor-
mance for a thread-level-parallelism-aware controller (TLP) that
assigns state M0  for single-threaded applications and M2  for
applications having multiple threads. Since many applications
use helper threads which do minimal work, only threads with
CPU load larger than 10% are used for accounting in the heuris-
tic. Our analysis assumes the use of a fixed M-state for entire
application run. The implementation and evaluation of a dynamic
switching algorithm is part of our future work.

• Similarly, we obtain results for a ‘static oracle’ controller (ORCL)
that selects the M-state with maximum performance among the
three M-states. This state corresponds to the highest performance
that can be achieved on the over-provisioned platform by select-
ing that M-state for each workload.

• Based upon the analysis methodology described and the power
models presented in Section 6.3, we compare performance
improvement and energy savings provided by three under-
provisioned platforms corresponding to each M-state and the
over-provisioned configuration with the two  controller heuris-
tics.

7.2.2. Results
Fig. 16 shows experimental results for the three M-state configu-

rations described in Section 6.1. Results presented are mean values
over three runs.
M-state (normalized to the minimum performance state) for
all of the client workloads. As evident from the figure, vari-
ous applications have affinity toward different configurations.

sage profile (x-axis: time (s)).
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Fig. 16. Experimental results for three platform

ome applications (e.g., gmagick, javascript, zoom, etc.) perform
etter in state M0,  while other applications like 7zip, c-ray,
264, etc. exhibit higher performance in state M2.  Thus, different
-states can be used to improve the performance of these applica-

ions.
The corresponding change in energy consumption for these

onfigurations is shown in Fig. 16(b). Interestingly, the increase
n energy consumption in state M0  for several applications like
magick, gtkperf, and javascript is small in comparison to the cor-
esponding performance gain. On the other hand, M2  configuration
rovides both higher performance and lower energy consumption
or 7zip, bodytrack, c-ray, and x264 applications. Both of these
bservations can be explained by the ‘race-to-idle’ phenomenon.
n the former case, a big core in state M0  consumes higher power
ut finishes execution quickly to enter a low-power idle state. Thus,
he increase in energy consumption is small. Similarly, improved
erformance and thus lower active time in state M2  for other appli-
ations causes the core and uncore subsystem to sleep longer and
ave energy.

Finally, Table 4 provides performance and energy comparison
or three under-provisioned (UP) platform configurations corre-
ponding to each M-state and an over-provisioned heterogeneous
latform (OP). Results for the OP configuration are based upon two
euristics, TLP-aware (TLP) and static oracle (ORCL), as described

n Section 7.2.1. The table shows average performance and energy
onsumption for all of the workloads in Table 2. Results demon-
trate that the big core (M0) provides small increase in performance
1.10x) for a larger increase in energy consumed (1.29x) when com-
ared to all-small configuration (M2). The corresponding values for
tate M1  are observed to be 1.01x and 1.14x.

In comparison, the OP platform shows a performance improve-
ent of 1.25x and 1.30x at the cost of an increased energy con-

umption of 1.04x and 1.05x for TLP and ORCL controllers. Thus, an
P platform can provide a performance boost for mobile devices at

he cost of a small increase in energy consumption, as demonstrated
y the results. Further, the TLP-aware controller is able to perform

omparatively to the static-oracle controller. Our current heuristic
akes only application parallelism into account, thus information
egarding the behavior of individual application threads and their
nteraction can be used to enhance the switching heuristic.

able 4
esults summary: an over-provisioned (OP) platform provides significant perfor-
ance gain in comparison to under-provisioned (UP) configurations.

Configuration Power Performance Energy

M0 (1B) UP 1.0x 1.0x
M1  (1B*,1S) UP 1.10x 1.29x
M2  (3S) UP 1.01x 1.14x
TLP  (1B,3S) OP 1.25x 1.04x
ORCL (1B,3S) OP 1.30x 1.05x
gurations: M0  (1B), M1 (1B*1S), and M2 (3S).

7.3. Summary

In summary, the results presented bring us to the following
conclusions:

• Client applications behave significantly differ from traditional
server-centric workloads.

• Heterogeneous cores can enable both higher-performance and
lower-power modes than homogeneous processor configura-
tions.

• Performance-driven H-state controller results in significant
energy-gain for several workloads with small performance-loss
in comparison to a big-core-only system. Similarly, a power-
driven policy provides performance boost for many applications
with a small increase in energy consumption.

• Uncore subsystem is a significant and even dominating contrib-
utor to total energy consumption for many workloads.

• Energy savings from the use of small cores are severely affected
by the uncore power, with a scalable uncore resulting in higher
gains.

• Heterogeneous cores enable dynamic platform reconfiguration
for power-constrained over-provisioned multicore systems.

• A TLP-aware M-state controller provides significant performance
gains over static multicore configurations.

8. Related work

Heterogeneous chip multiprocessors (CMPs) have been pro-
posed to achieve higher energy-efficiency than symmetric
multicore processors. Using a mix  of big and small cores, different
phases within an application can be mapped to the core which can
run them most efficiently [5,19,20]. Similarly, heterogeneous cores
can be used to improve the performance of parallel applications by
speeding up sequential phases within the application [3,21]. Stud-
ies have been performed to analyze the impact of performance
asymmetry on several server workloads [22] and JAVA virtual
machine services [23]. Researchers have also developed appropri-
ate scheduling algorithms for operating systems [4,6,24–27] and
virtual machine monitors [28,29] to efficiently run applications on
heterogeneous cores. However, earlier work exposed the core het-
erogeneity to systems software requiring changes to the software
stack to deal with heterogeneous cores. Also, it focused on server-
centric workloads for evaluation.

In comparison, HeteroMates proposes core group abstraction
to expose multiple heterogeneous cores as a single execution
unit and thus reduce software complexity for wider adoption of

heterogeneous systems. Our work targets client devices where
energy is a premium resource, with diverse application behav-
ior and performance metrics. In addition, previous work either
maintained a fixed heterogeneous CPU configuration or did not
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mpose power constraints on the platform to optimize core usage.
n the other hand, HeteroMates exploits over-provisioned CPU

esources using heterogeneous cores by dynamically changing
etween different M-states. Similar arguments have been made
or distributing a thread’s computation across various cores on
n over-provisioned multicore, but with a focus on maximizing
ore reuse [30]. Further, conservation cores exploit dark silicon
y using specialized processors to reduce per-computation power
31]. However, HeteroMates uses single-ISA heterogeneous cores
o improve performance of diverse mobile applications by dynam-
cally selecting a different set of cores and does not require any
anguage tool-chain support to make use of heterogeneous cores.

There is also substantial previous work on dynamic voltage
nd frequency scaling (DVFS). Several techniques have been devel-
ped to dynamically select appropriate voltage and frequency for
aximum efficiency [9–12]. However, others have questioned the

ffectiveness of DVFS on modern processors [14,32]. In this context,
e extend the existing DVFS mechanisms to go beyond homo-

eneous cores and support core heterogeneity to enable a wide
ynamic power/performance range on these client devices. We  also
ighlight the significance of uncore power in total SoC power and
otivate the need for a scalable uncore for exploiting maximum

ains from heterogeneous CMPs.

. Conclusions

This paper presents the HeteroMates solution in order to provide
 wide dynamic power/performance range on client devices.
t exploits dark silicon and core heterogeneity to enable both
igh-performance and power-savings modes while also being
nergy-efficient. Core group abstraction is proposed to mitigate
hallenges associated with heterogeneity which groups together

 small number of heterogeneous cores to form a single execution
nit. Cores within a core group are exposed as multiple hetero-
eneity (H) states. H-state transitions are governed by an H-state
ontroller, while a core switcher transparently migrates the task
o the appropriate core depending on the resultant H-state. Core
roup abstraction is extended to power-constrained multicore sys-
ems using multicore groups. A power-constrained platform is
llowed to operate in different multicore configurations, exposed as
-states, by using the right set of heterogeneous cores which cater

o the needs of running applications and fit the power envelope. In
ddition, it also highlight the growing importance of uncore power
n total SoC power consumption and the need for a scalable uncore
esign to completely realize the intended gains. Using a diverse mix
f client applications and an experimental heterogeneous platform,
e show that heterogeneous CMPs can be used to provide a supe-

ior solution for client devices by providing significant performance
nd power improvements.
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