
An Infrastructure for Automating Large-scale
Performance Studies and Data Processing

Deepal Jayasinghe, Josh Kimball, Tao Zhu, Siddharth Choudhary, and Calton Pu.
Center for Experimental Research in Computer Systems, Georgia Institute of Technology

266 Ferst Drive, Atlanta, GA 30332-0765, USA.
{deepal, jmkimball, tao.zhu, siddharthchoudhary, calton}@cc.gatech.edu

Abstract—The Cloud has enabled the computing model to
shift from traditional data centers to publicly shared computing
infrastructure; yet, applications leveraging this new computing
model can experience performance and scalability issues, which
arise from the hidden complexities of the cloud. The most reliable
path for better understanding these complexities is an empirically
based approach that relies on collecting data from a large number
of performance studies. Armed with this performance data, we
can understand what has happened, why it happened, and more
importantly, predict what will happen in the future. However,
this approach presents challenges itself, namely in the form of
data management. We attempt to mitigate these data challenges
by fully automating the performance measurement process.
Concretely, we have developed an automated infrastructure,
which reduces the complexity of the large-scale performance
measurement process by generating all the necessary resources
to conduct experiments, to collect and process data and to store
and analyze data. In this paper, we focus on the performance
data management aspect of our infrastructure.

Keywords-Automation, Benchmarking, Cloud, Code Genera-
tion, Data Warehouse, ETL, Performance, Visualization.

I. INTRODUCTION

An application that performs one way in the data center
may not perform identically in computing clouds [18]. Hence,
companies need to ensure that their applications can move
safely and smoothly to the cloud, because failing to do so
could result in significant impacts to the business. Neglecting
the possible performance impacts could ultimately lead to
lower user satisfaction, missed Service Level Agreements
(SLAs), and worse, reduced profit. To prevent such outcomes,
a rigorous experimentation and holistic data analysis effort
must accompany any cloud migration effort. This approach
can help us to understand what has happened, explain why it
happened, and more importantly, anticipate what will happen
in the future. However, this empirical approach is not without
its own set of challenges.

These challenges arise from the nature of large-scale perfor-
mance experimentation. The introduction of the cloud signif-
icantly increases the number of possible system configuration
permutations, which increases both the amount of testing and
the degree of experimental data heterogeneity–diversity and
volume. These data management challenges alone make large-
scale experimentation impractical to manage using manually
intensive techniques. Finally, the nature of the cloud increases
the complexity of other, more pedestrian testing activities such

as application deployment, configuration, workload execution
and monitoring.

We address these challenges through a flexible automation
framework that we have developed to create, store and analyze
large-scale experimental measurement data–called Expertus.
Automation removes the error prone and cumbersome involve-
ment of human testers, reduces the burden of configuring and
testing distributed applications and accelerates the process of
reliable applications testing. The main contribution of this
paper is the tools and approaches we have developed to
automate the data (structure, size, patterns, and noise)-related
aspects of the large-scale experiment measurement process.

Our approach addresses the three fundamental data man-
agement issues–generation, extraction/collection and storage/-
analysis. First, Expertus generates all of the resources that
are necessary to automate the execution of an experiment.
Using a provided domain-specific language (or provided web
portal), a user merely provides a description of the experiment
to execute. To address the extraction and data processing
challenges, we extend ETL (extract, transform, and load) tools
and approaches [19], [20] to build a generic parser to process
the collected data. The current parser can handle a significant
fraction (over 80%) of the most commonly used file formats in
our experimental domain. To address the storage and analysis
challenges, we have designed a special, fully dynamic data
warehouse (Experstore) to store performance measurement
data. Finally, we have built a web portal to address the related
challenges of navigating and analyzing an enormous amount
of performance measurement data. This tool in addition to
embedded data analysis provided by the the R framework helps
the user to navigate, visualize and analyze the data in the
warehouse.

The remainder of this paper is structured as follows. In Sec-
tion II we provide the big picture of the experiment automation
framework. We discuss the code generator framework to aid
the automation in Section III, and Section IV provides our
approach to performance data generation. Section V presents
our data warehouse solution, and in Section VI, we discuss the
approach that we have developed to extract the performance
data. We evaluate the effectiveness of our approach in Sec-
tion VII. Finally, we provide a discussion of the related state
of the art approaches in Section VIII, and we conclude the
paper with Section IX.

II. AUTOMATED PERFORMANCE MEASUREMENT
INFRASTRUCTURE

We address the above challenges by leveraging automated
techniques for performance measurement. More concretely,
we have developed Expertus — an automated infrastructure
to fully automate the performance measurement process. In
our approach, a user provides the configuration file for the
experiment, and the infrastructure generates all of the required
resources (shell scripts and other configuration files), runs the
experiments (i.e., deploy and configure applications, run the
workloads), and collects and uploads the data to the data
warehouse. Finally, the user can analyze the data using either
command line tools (R or other means) or a web portal.
The complete process for experiment measurement using our
approach is illustrated in Figure 1. A brief description for each
item in the figure is provided below:

• Code generator: is the core, which generates all the nec-
essary resources to automate the experiment management
process. In a nutshell, code generator takes experiment
configuration files as the input and generates resources
to automate the process (e.g., shell scripts and other
resources).

• Experiment Driver: is designed to use the generated
resources and controls the experimentation flow, which
involves application deployment, configuration, initial-
ization, workload execution, and data collection. Code
generator generates all the scripts, and a special script
called run.sh, which maintains the sequence for script
execution. Experiment driver uses run.sh to find the
order of execution. It connects to all the nodes through
SSH/SCP and executes the scripts on the corresponding
nodes.

• Data Extraction: Each experiment produces gigabytes
of heterogeneous data for resource monitors (e.g., CPU,
Memory, thread pool usage, and etc. . .), response time,
throughput and application logs. The structure and
amount of collected data vary based on sundry factors,
including: system architecture (64-bits vs 32-bit,
2-core vs. 4-core), monitoring strategy and moni-
toring tools (e.g., sar, iostat, dstat, oprofile),
logging strategy (e.g., Apache access logs), and the
number of deployed nodes and workloads. Data extractor
is written to help users easily import experiment data into
the data warehouse. It supports the most commonly used
data formats and has built-in flexibility to extend to new
data formats.

• Data Warehouse: Due to the nature of large-scale per-
formance experiments, creating a priori, fixed schema to
store measurement data is difficult. Even if one could
be defined, data processing becomes extremely inefficient
due to the magnitude of the data. To overcome these chal-
lenges, we have created a flexible data warehouse solution
specifically tailored to handle performance measurement
data.

• Data Analysis: The reason for conducting large-scale

Code

Generator

Experiment

Driver

Data

Extractor

Data

Warehouse

Data

Analyzer

Fig. 1. A Typical Performance Measurement Process with Our Approach.

experiments is to find and resolve performance issues.
To this end, data analysis plays an integral role; yet, due
to the magnitude of the data and structure of the data
warehouse, data analysis becomes a non-trivial task. To
address these challenges, we have provided two types
of tools: a web portal for graphical users and R scripts
for command line users. Both of these tools understand
the internal data structure, and they help to make data
analysis efficient.

III. AUTOMATION THROUGH CODE GENERATION

In our approach, we enable automated experiment measure-
ment through code generation, which generates all the neces-
sary resources to automate the measurement process. From an
architectural viewpoint, our code generator adopts a compiler-
based approach of multiple, serial transformation stages – a
code generation pipeline. The intuition behind this approach
is to deliver more extensibility and flexibility by dividing
the larger problem into smaller pieces and processing them
one at a time. The hallmarks of our approach are two-
fold: the stages typically operate on an XML document that
is an intermediate representation, and XSLT performs the
code generation. We address challenges that originate from
differences among clouds, applications, users and other cross
cutting requirements (e.g., monitoring) through aspect oriented
programming (AOP) techniques.

Use of XML provides the code generator with a high degree
of extensibility. This stems from XML’s simple, well-defined
syntax requirement and its ability to accept arbitrary new tags,
thereby bypassing the overhead encountered when managing
both XSLT templates and AOP. For example, a template can
add an arbitrary element to the intermediate XML; however,
unless the processing code is written to process this new tag,
the newly added tag remains untouched. XSLT transformation
is the process of converting an XML document into another
document through the use of XSL. Typically, XSLT converts
an XML document into another XML document (e.g., HTML)
or any other type of document. Expertus consists of two types
of templates, namely Resource templates and Aspect
templates. The former is used to generate application/-
platform independent part of a resource, and the latter is
used to modify (weave) the generated resource for the target
application/platform (e.g., Emulab vs. EC2).

Expertus takes an XML document and produces another
XML document through XSLT transformation. Expertus treats

the first and last stage differently as compared to the rest
of the pipeline. In the first stage, it takes the experiment
specification as the input, and in the final stage, it generates
the automation resources for the target file system (in lieu
of an intermediate XML). At each stage, Expertus uses the
intermediate XML document created from the previous stage
as the input to the current stage. It uses the intermediate XML
file to retrieve the names of the templates that are needed
for the current stage, and it transforms the intermediate XML
document, which produces yet another XML document. If
needed, AOP pointcuts are added to the intermediate XML
during the transformation phase. Consequently, Aspect Weaver
is used to weave such pointcuts into the intermediate
XML. Aspect Weaver processes the pointcuts through
Aspect templates and creates the woven XML. The
woven file is then written to the file system using the file
writer. During the final stage of the pipeline, the automation
scripts are written to the file system; while at each of the other
intermediate stages of the pipeline, an intermediate XML is
generated, and the next stage in the pipeline is called.

IV. APPROACH TO PERFORMANCE DATA GENERATION

In our approach to performance measurement, we execute
workloads by deploying actual or representative applications
(e.g., benchmarks like RUBBoS [10], RUBiS [11], Cloud-
stone c [7]) on actual or representative deployment platforms
(e.g., Amazon EC2). These large-scale experiments produce a
huge amount of heterogeneous performance data. The hetero-
geneity of the data arises from the assemblage of applications,
clouds, monitoring tools, and monitoring strategies used. We
conduct large-scale experiments and collect data by fully
automating the process, and our code generator generates all
the necessary resources to automate this process.

Experiment driver takes care of the experimental deploy-
ment and configuration, and once deployed, the driver executes
the workload against the specific, deployed configuration. In
this step, we run the planned experiments according to the
availability of hardware resources. For example, we usually
run the experiments by increasing the workload. For each
workload, we run the easily scalable (browse only) scenario
first, followed by read/write scenarios. After each batch of
experiments, we collect data, ramp-down the system, stop all
servers, and start the next batch of experiments. This sequence
allows for sufficient ramp-up time, which minimizes cache
inter-dependencies across experiments. The iterations continue
until all of the experiments have been completed.

During experiment execution, the experiment driver collects
information about system resources (e.g., CPU, memory),
application specific data (e.g., thread pool usage), application
logs (e.g., apache logs), high level data like throughput and
response time, and any other data that the user wants to collect.
This process continues for each and every workload. In fact,
experiments in our domain consist of 50 to 60 workloads,
and each workload runs for approximately 30 minutes. The
framework is capable of collecting, managing and storing data
without any help from the user. The data extractor, as the name

implies, extracts this data and stores it in the data warehouse
after the experiment has completed.

V. FLEXIBLE DATA WAREHOUSE

During large-scale performance measurement, researchers do
not know beforehand which resources need to be monitored
(whether it be high-level data like response time or throughput
or low-level data like resource utilization data and application
logs). Monitoring all the potential resources is infeasible
because of the performance overhead. Researchers may choose
different monitoring regimens, change testing strategies or
software and test on hetergenous platforms. Because of this
type of variability, experimental data cannot be feasibly stored
in a set of static tables. Moreover, failures during experimen-
tation usually lead to incomplete or faulty data that waste
database resources and slow data processing. Even without
failures, these data tables tend to be quite large, so processing
becomes very expensive if these tables cannot be loaded into
primary memory.

To address above challenges, we have designed Experstore
– a special data warehouse designed to store performance
measurement data. Expestore is fully dynamic that is its tables
are created and populated on-the-fly based on the specific
experimental data. At the end of each experiment, we create a
set of tables to store the data, and the resultant schema is solely
based on the structure of this data (e.g., how many columns,
tables, relations, etc.).

The experiment measurements in our domain consist of
multiple workloads running against a deployed system (a
unique configuration of hardware and software); hence, each
experiment produces measurement data for each and every
workload. We have designed the experiment driver to store
measurement data for each experiment in a separate directory.
In most cases, each directory follows the same structure
(names and number of files). During the data loading stage,
the data loader iteratively processes all of the directories i.e., it
recurses over all of the directories and loads the corresponding
data contained in each. The data loading configuration maps
directories to workloads, and the loader uses the information
about the data parser to process data files contained in a given
directory.

As mentioned earlier, large-scale experiments commonly
result in failures, and storing failures is incredibly wasteful.
During the data loading stage, the data loader creates db scripts
to remove all of the failure data for a given experiment. The
data engine uses these same scripts to recover in the event
of a loading failure. To minimize the possibility of such a
failure, we reduce data loading overhead by not loading data
in a transaction.

During data parsing, each file is matched to a profile, and
the parser uses this profile to update the database accordingly.
More concretely, data processors provide an API for the parser
such that the parser only needs to provide values for each row,
and the data engine does the rest of the work. This approach
enables the parser and the data engine to be loosely coupled.

Fig. 2. Experstore - Static and Dynamic Tables

The data loading configuration file provides all the neces-
sary data for the data loader and the data engine. For example,
a user can specify how to format a given data field (e.g, date-
time), where to begin and end in a file, and how to relate a data
column (row) to columns in the database table and etc. . . . This
configuration file can be reused across experiments as long as
the directory structures are identical across experiments. For
each resource type, we create a ‘profile’, which maps a file’s
structure to an applicable schema, i.e. relating the columns
in a CSV file to a particular database table. Next, we have a
mapping, which specifies what profiles apply to a given node.
A mapping contains node name, file name and corresponding
profile. A sample profile and a mapping file is shown below:

Listing 1. Code Listening for Profile and Mapping
<p r o f i l e>

<s e p a r a t o r>,</ s e p a r a t o r>
<r e s o u r c e−name>CPU0</ r e s o u r c e−name>
<p r o c e s s o r−c l a s s>d a t a i m p o r t . f i l t e r . C S V F i l e P r o c e s s o r
</ p r o c e s s o r−c l a s s>
<column i n d e x = ‘ ‘0 ’ ’ colname = ‘ ‘ u s e r ’ ’ d a t a t y p e = ‘ ‘ do ub l e ’ ’ />
<column i n d e x = ‘ ‘1 ’ ’ colname = ‘ ‘ sys tem ’ ’ d a t a t y p e = ‘ ‘ do ub l e ’ ’ />
<s t a r t−i n d e x>10</ s t a r t−i n d e x>
<end−i n d e x>0</ end−i n d e x>

</ p r o f i l e>

<mapping nodename = ‘ ‘ Apache ’ ’ f i l n a m e = ‘ ‘ 1 6 9 . 2 5 4 . 1 0 0 . 3 . csv ’ ’
s t a r t w i t h = ‘ ‘ f a l s e ’ ’ endwi th = ‘ ‘ f a l s e ’ ’
p r o f i l e s = ‘ ‘CPU0 , DISK , CPU1 ,NETWORK,SYSTEM ’ ’ />

The structure of the data warehouse is shown in Figure 2. As
shown in the figure, it consists of four static tables that store
experimental metadata (e.g., experiment name, platforms, node
and workload information), which are typically fixed across
experiments. As shown in the figure, the highlighted tables
are the tables that are created on-the-fly,. ‘Resource Mapping
Table’ stores the names of the dynamically created tables along
with the resource names. For example, it has a record for
CPU utilization for experiment ID (EXP ID), and the value is
EXP ID CPU. Likewise, all the monitoring data for a given
experiment is stored. In fact, it has a record for each unique
node, workload, and resource.

VI. AUTOMATED DATA EXTRACTION

In general, the problem of extracting data from various log file
formats reduces to a problem of attempting to disambiguate
presentation concerns from those related to data. While this
reduction narrows the thinking around this problem, it does
not account for the numerous points of variability that occur,

particularly related to any given log file’s layout and structure,
e.g. the presentation of the embedded data. At the highest
level, files can be described as containing unstructured, semi-
structured or structured data. Most of the log files presented
in our domain fall into the semi-structured category (the
remaining portion are structured). Hence, an approach that ac-
commodates semi-structured files could be used for structured,
so we focused on solving semi-structured files.

Laender et al. [24] suggests wrapper inductive approaches
might be particularly relevant for this problem because of their
reliance on format and presentation. This observation serves
as the foundation for the intuition for our design. In short,
wrapper inductive approaches rely on format and structure to
impart order when order is not explicit. The extractor begins by
creating a replica of the log file in memory. Next, it performs a
“first pass” to probabilistically encode rows of the file such that
they are coded as containing: the header (“header rows”), data
(“data rows”) or some other type of information (“misc rows”)
such as generic batch job information. Next, it attempts to
match the data rows to headers (many of the files contain more
than one header in the file.) To accomplish this matching, the
extractor uses order and presentation information (particularly
invisible ASCII characters) to compute the probability that a
given row of data corresponds to a given header in the log file
of interest. Once we have a match, we use the presentation
information of the header row - layout and structure - to
extract data from the matched data rows. Once the data has
been extracted, it is loaded into a data warehouse loading file.
During this entire process, the operator is asked to evaluate or
validate rows that do not have significant statistical power, e.g.
the rows received low encoding or matching probabilities. In
this case, the operator provides input to the extractor to either
encode or match the row (depending on the specific algorithm)
based on his judgment.

This design primarily relies on two algorithms: the
Row-Encoding Algorithm and the Matching
Algorithm. Row-Encoding Algorithm works by prompting
a user only when the system “thinks” the row is a header
row. Headers have two distinct characteristics. They contain
more alphabetic and more special characters relative to the
total length of a given string. “Misc” rows, i.e rows that
should be ignored for later processing, have one of these
two properties but not both, which differentiates them from
header rows. The core of this algorithm works by calculating
string length-weighted character frequencies. The second, the
Header-to-Data Row Matching Algorithm, operates similarly
to Row-Encoding. First, it computes character frequencies
and scales the “weights” corresponding to these frequencies
by the type of character identified, e.g. visible ASCII vs.
invisible ASCII. The algorithm makes a match by calculating
two metrics: the bytewise difference of “invisibles” between a
header row and a given data row in addition to the (vertical)
distance between a header row and a given data row. The
lowest sum of these two metrics yields a match.

VII. EFFECTIVENESS OF THE INFRASTRUCTURE

We have used Expertus extensively to perform a large num-
ber of experiments on different computing clouds; through
experimentation, we have collected a huge amount of data
with various data formats, stored these in the data warehouse,
and observed interesting performance phenomena. In this
section, we evaluate the success of our approach managing
performance measurement data.

A. Usability of the Tool

Here, we present how quickly a user can change an existing
specification to run the same experiment with different settings
(e.g., MySQL Cluster vs. C-JDBC), on different clouds (e.g.,
Emulab vs. EC2), with different numbers of nodes (e.g.,
two vs. four app servers), or entirely different applications
(e.g., RUBBoS vs. Cloudstone). In our analysis, we created
a specification (say a.xml) to run the RUBBoS application
on Emulab with a total of 16 nodes and generated auto-
mated resources using Expertus. We then changed a.xml
to generate automated scripts for EC2, which required only
a single line change (i.e., <param name=‘‘platform’’
value=‘‘EC2’’/>) in a.xml and an IP address modifica-
tion. Even though only a few lines changed in the configuration
file, the changes to the generated code were material and
non-trivial. We followed the same procedure and modified
a.xml to change the database middleware from C-JDBC to
MySQL Cluster. This change required modifying only 36 lines
(mostly MySQL Cluster-specific settings), but the differences
in generated code were huge. Similarly, by changing only 4
lines in a.xml, we were able to move from 2 to 8 Application
servers. Furthermore, with only 52 template line changes, we
were able to extend the support from RUBBoS to Cloudstone.

B. Generated Script Types and Magnitude

The biggest advantage of our approach becomes apparent
when automating experiments for complex applications. The
number of resources generated by Expertus depends on the
application (e.g., RUBBoS, RuBiS), software packages (e.g.,
Tomcat, JBOSS), deployment platform (e.g., Emulab, EC2),
the number of experiments, the number of servers, and the
number of configuration parameters. To show the difference in
the generated code, six different hardware configurations (on
Emulab) were selected, and the number of generated lines for
each configuration was counted. When the number of nodes
increases, the size of the generated code grows significantly,
as do the differences among the generated code bases. The
magnitude of the generated code implies two conclusions:
the effectiveness of our approach and the enormous hurdles
confronting manual approaches. For example, an experiment
with 43 nodes would require approximately 15K lines of shell
scripts–a non-trivial undertaking for manual-based approaches.

C. Richness of the Tool

Richness is considered as the breadth and depth of supported
software packages, clouds, and applications the infrastructure
supports. Expertus has been used over three years to conduct

a large number of experiments spanning five clouds (Emulab,
EC2, Open Cirrus, Wipro, and Elba), three applications (RUB-
BoS, RUBiS, and Cloudstone), five database management
systems (C-JDBC, MySQL Cluster, MySQL, PostgreSQL,
Oracle), various resource monitoring tools (dstat, sar, vmstat),
and varying numbers and types of nodes.

D. Success of Data Generation
Table I provides a high level summary of the many differ-
ent experiments performed using the RUBBoS, RUBiS, and
Cloudstone benchmarks. In the table, experiment refers to a
trial of a particular experiment i.e., execution of a particular
workload against a combination of hardware and software
configurations. Typically, a trial of an experiment takes one
hour which is the aggregated value of: reset time, start time,
sleeping time, ramp-up time, running time, ramp-down time,
stop time, and data copy time. As such, in Emulab, we
have spent approximately 8,000 hours running experiments.
In the table, nodes refer to the total number of machines we
have used during our experiments. We calculated the number
of nodes by multiplying the number of experiments by the
number of nodes for each experiment. Configuration means
the number of different software and hardware configurations
that have been used in our experiments. Finally, the number
of data points collected describes the amount of data we have
collected from executing these experiments.

TABLE I
NUMBER OF EXPERIMENTS PERFORMED WITH EXPERTUS

Type Emulab EC2 Open Cirrus Elba Wipro

Experiments 8124 1436 430 2873 120
Nodes 95682 25848 4480 8734 430
Configurations 342 86 23 139 8
Data points 3,210.6M 672.2M 2.3M 1328.2M 0.1M

E. Testing for Heterogeneous Data Formats
For the purpose of evaluating the robustness of the extractor (or
parser), the following file patterns were tested: 1) one header,
2) multiple header rows with sequentially corresponding data,
3) multiple header rows with non-sequential corresponding
data, and 4) multiple header rows appearing randomly in
the file with data occurring non-sequentially, (e.g., data does
not correspond to the header it follows). These patterns were
distilled by sampling the known domain of log files. During
testing, we used actual collected performance data that adhered
to these aforementioned patterns, and Table II outlines the
observed results. The file patterns also differed in header
structure. Based on the sample, rows designated as headers
contained either one row or two rows. A header with one
row, Only Field Row Header, only contained data fields.
Alternatively, a header with two rows, Record & Field Row
Header contained a row, which enumerated the data records,
and another row, which listed the corresponding data fields for
each record. For this latter case, the numbers of records and
fields were varied from 1 to 8 (number of records) and 16
(number of fields) respectively. If the headers were correctly
matched to the applicable row of data, the specified test
received a PASS grade; otherwise, it received a FAIL grade.

TABLE II
EVALUATION SUMMARY OF SUPPORTED FILE FORMATS

Pattern Only Field Record & Field
Row Header Row Header

One header PASS PASS
Multiple header (sequentially data) PASS PASS
Multiple header (non-sequential data) PASS PASS
Multiple header (randomly headers) N/A FAIL

F. Performance of the Data Warehouse

The three criteria for choosing a DBMS to store performance
measurement data are: fast data loading, fast query execution
and small disk space usage. In our data analysis domain, most
operations result in using one or more columns (either from
one table or from multiple tables). So column-based storage
vs. row-based storage can make a huge performance difference
for data analysis. For example, column storage can provide
faster query processing than row storage, because it can avoid
unnecessary column reads. Compared to row storage, column
storage can also achieve a higher data compression ratio,
which reduces query IO and storage cost. The downside of
column-based is row-based updates and deletes are expensive.
But, the infrastructure’s GUI does not provide access to such
operations.

To illustrate the significance of performance difference,
we selected Infobright [15], a column-oriented database with
knowledge of grid architecture, as our data warehouse and
compared it with the row-based storage of MySQL (My-
ISAM). We measured the performance along three dimensions:
data loading time, table size and query execution time. Our
experiments ran on a server with 8cores (Intel Xeon CPU,
2.4GHz), 16GB RAM and 10T disk. The version of Infobright
was ICE (Infobright Community Edition) 4.07, and the version
of MySQL was 5.16.

We measure the data loading time, table size and query
execution time for 11 experiments occupying a total of 323
experimental data tables. If the tables contain mostly numeric
data (e.g. sar, iostat and response time), then we say it
is a “numeric table”. Conversely, if the tables mostly have
character data (e.g. MODJK), we say these are “character
tables”. We use the data loaders provided by Infobright and
MySQL to import the experimental data to each database
respectively. Figure 3(a) shows ICE’s numeric tables’ data
loading time is almost twice that of MySQL. The reason is
Infobright compresses the data when the database loads it.
Surprisingly, ICE’s character tables’ loading process is 22%
faster than that of MySQL. As shown in Figure 3(b), the total
size of the numeric tables in ICE is only 18% of the size in
MySQL, and ICE’s total character tables’ size is only 6% of
the size in MySQL. The reason is Infobright compresses the
data, and data adjacent columns has a high degree of similarity.
We also observe the compression ratio varies depending on
the data type. The test query selects one attribute from the sar
and MODJK table stores. Figure 3(c) shows the results. The
average query execution time of ICE on a numeric table is 17%
less than that of MySQL. Even with decompression, column

storage and query optimizer [16] are two factors that lead to
the query performance improvement. But for character tables,
ICE’s queries operate a little more slowly than on MySQL.

VIII. RELATED WORK

Benchmarking is an essential approach used in both academia
and industry to gain an understanding of some or all of the
following: system behavior, hypothesis formulation and test-
ing, systems configuration and tuning, solution development,
and performance bottleneck resolution. However, few efforts
have had dual aims of building software tools for large-scale
testing of distributed applications and reducing the complexity
associated with benchmarking [1]–[6]. The ZOO [3] has
been designed to support scientific experiments by providing
experiment management languages and supporting automatic
experiment execution and data exploration. Zenturio [4] on
the other hand, is an experiment management system used for
parameter studies, performance analysis and software testing
of cluster and grid architectures. One of the closest approaches
to ours is Weevil [8], which also focuses on workload gen-
eration and script creation. In their later studies, the Weevil
team observed some of the limitations in their approach and
obstacles for reaching higher levels of confidence [5] with
their results. To our knowledge, these efforts haven’t explored
the issues of extensibility, flexibility, or modularity that is
presented in this paper.

IX. CONCLUSION

Expertus, our automated experiment management framework,
has been developed to minimize human errors and maximize
efficiency when evaluating computing infrastructures experi-
mentally. We have used the framework for a large number of
experimental studies, and through these, we have collected a
huge amount of data, which we have used for identifying in-
teresting performance phenomena. In this paper, we discussed
the use of the infrastructure for efficiently creating, storing
and analyzing performance measurement data. The code gen-
erator generates the necessary resources to fully automate the
experiment measurement process, and using these generated
scripts, users can run experimental studies to actually generate
performance data. The automated data processor processes
heterogeneous data and stores this data in a flexible data
warehouse, built specifically for measurement data. Finally,
the visualization tool helps us to easily navigate the warehouse
and to find interesting performance phenomena by facilitating
our ability to perform statistical analysis on the data in the
warehouse. We evaluated the proposed automation framework
based on its usage, the amount of data it can accommodate,
different monitoring and logs formats it supports, and finally,
the overall effectiveness of the approach based on the needs of
the scientific community. Our future work includes, extending
the data parser to support additional data formats, extending
the data warehouse to use No-SQL databases, and extending
the visualization tool to support more customizable graphing
capabilities.

(a) Data Loading Time (b) Table Size (c) Query Execution Time

Fig. 3. Comparison of Data Warehouse Performance: MySQL vs. Infobright

ACKNOWLEDGMENT

This research has been partially funded by National Sci-
ence Foundation by IUCRC/FRP (1127904) , CISE/CNS
(1138666), RAPID (1138666), CISE/CRI (0855180), NetSE
(0905493) programs, and gifts, grants, or contracts from
DARPA/I2O, Singapore Government, Fujitsu Labs, Wipro
Applied Research, and Georgia Tech Foundation through the
John P. Imlay, Jr. Chair endowment. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation or other funding
agencies and companies mentioned above.

REFERENCES

[1] Y. Ioannidis, M. Shivani and G. Ponnekanti. ZOO: A Desktop Exper-
iment Management Environment. In Proceedings of the 22nd VLDB
Conference, Mumbai(Bombay), India, 1996.

[2] K.L. Karavanic and B.P. Miller. Experiment management support for
performance tuning. In Proceedings of the 1997 ACM/IEEE conference
on Supercomputing, Mumbai(Bombay), India, 1996.

[3] R. Prodan and T. Fahringer. ZEN: A Directive-based Language for Au-
tomatic Experiment Management of Distributed and Parallel Programs.
In ICPP 2002, Vancouver, Canada.

[4] R. Prodan and T. Fahringer. ZENTURIO: An Experiment Management
System for Cluster and Grid Computing. In Cluster 2002.

[5] Y. Wang, A. Carzaniga and A.L. Wolf. Four Enhancements to Automated
Distributed System Experimentation Methods. In ICSE 2008.

[6] S. Babu, N. Borisov, S. Duan, H. Herodotou and V. Thummala.
Automated Experiment-Driven Management of (Database) Systems. In
HotOS 2009, Monte Verita, Switzeland.

[7] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong, A.
Klepchukov, S. Patil, A. Fox and D. Patterson. Cloudstone: Multi-
Platform, Multi-Language Benchmark and Measurement tools for Web
2.0. In CCA 2008.

[8] Y. Wang, M.J. Rutherford, A. Carzaniga and A. L. Wolf. Automating
Experimentation on Distributed Testbeds. In ASE 2005.

[9] Emulab - Network Emulation Testbed. http://www.emulab.net.
[10] RUBBoS: Bulletin board benchmark. http://jmob.objectweb.org/rubbos.

html.
[11] RUBiS: Rice University Bidding System. http://rubis.ow2.org/.
[12] Open Cirrus: Open Cloud Computing Research Testbed. https://

opencirrus.org/.
[13] WIPRO Technologies. www.wipro.com/.
[14] Amazon Elastic Compute Cloud. http://aws.amazon.com.
[15] Infobright. http://www.infobright.com/.
[16] D. Ślȩzak, J. Wróblewski, V. Eastwood, and P. Synak. Brighthouse: an

analytic data warehouse for ad-hoc queries. In VLDB 2008.
[17] S. Malkowski, M. Hedwig and C. Pu. Experimental evaluation of N-tier

systems: Observation and analysis of multi-bottlenecks. In IISWC 2009.
[18] D. Jayasinghe, S. Malkowski, Q. Wang, J. Li, P. Xiong and C. Pu. Vari-

ations in performance and scalability when migrating n-tier applications
to different clouds. CLOUD 2011.

[19] P. Vassiliadis. A Survey of Extract-Transform-Load Technology. Inte-
grations of Data Warehousing, Data Mining and Database Technologies:
Innovative Approaches (2011).

[20] R. Baumgartner, G. Wolfgang and G. Gottlob. Web Data Extraction
System. Encyclopedia of Database Systems (2009): 3465-3471.

[21] R. Kohavi, R.M. Henne and D. Sommerfield. Practical guide to
controlled experiments on the web: Listen to your customers not to
the HiPPO. In ACM KDD 2007.

[22] S. Malkowski, D. Jayasinghe, M. Hedwig, J. Park, Y. Kanemasa and
C. Pu. Empirical analysis of database server scalability using an n-tier
benchmark with read-intensive workload. ACM SAC 2010.

[23] S. Malkowski, Y. Kanemasay, H. Chen, M. Yamamotoz, Q. Wang, D.
Jayasinghe, C. Pu, and M. Kawaba, Challenges and Opportunities in
Consolidation at High Resource Utilization: Non-monotonic Response
Time Variations in n-Tier Applications. IEEE Cloud 2012.

[24] A. Laender, B. Ribeiro-Neto, A.S. da Silva and J.S. Teixeira. A Brief
Survey of Web Data Extraction Tools. ACM Sigmod Record 31.2 (2002).

[25] G. Linden. Make Your Data Useful, Amazon, November 2006. [Online].
http://home.blarg.net/∼glinden/StanfordDataMining.2006-11-29.ppt

