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Abstract—Data Stream Processing is an important class
of data intensive applications in the “Big Data” era. Chip
Multi-Processors (CMPs) are the standard hosting platforms
in modern data centers. Gaining high performance for stream
processing applications on CMPs is therefore of great interest.
Since the performance of stream processing applications largely
depends on their effective use of the complex cache structure
present on CMPs, this paper proposes the StreamMap ap-
proach for tuning streaming applications’ use of cache. Our
major idea is to map application threads to CPU cores to facil-
itate data sharing AND mitigate memory resource contention
among threads in a holistic manner. Applying StreamMap to
the IBM’s System S middleware leads to improvements of up to
1.8x in the performance of realistic applications over standard
Linux OS scheduler on three different CMP platforms.
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I. INTRODUCTION

Data Stream Processing is an important class of data
intensive applications in the “Big Data” era. Providing real-
time data analytics capabilities to extract insights from
live data streams, it has been applied to many application
domains, including finance & trading, image processing,
network intrusion detection, and environmental monitoring.

An important question to ask about stream processing
applications is their performance on common hardware
platforms like the modern chip multiprocessors (CMPs)
now used across the entire spectrum of portable devices
to high end server systems. Today’s multicore architectures
are equipped with complex cache hierarchies. On one hand,
multi-level caches are used to alleviate the two-order-of
magnitude gap in speed between CPU and DRAM, mak-
ing maximizing cache utilization a significant factor for
application performance. On the other hand, cores share
certain memory resources with each other, including last
level cache, hardware prefetch unit, front side bus and
memory controller. While sharing those resources between
cores can be constructive for data sharing (e.g., to facilitate
data reuse in shared cache and reduce cache coherency
traffic), such sharing can also cause severe interference due
to contention on those resources [18]. Therefore, judiciously
managing application’s interaction with cache structure is of
great importance to achieve high performance on CMPs.

This paper argues that thread-to-core mapping is an
effective way to control how a stream processing appli-
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cation interact with CMP’s caches. This is because how
application threads are placed onto cores largely determines
how memory resources are shared between threads. This,
in turn, impacts not only the efficiency of data messaging
and sharing between threads, but also the intensiveness of
resource contention between threads for their private state
data. In fact, our experiments show up to 3x difference in
performance between different thread-to-core mappings for
some streaming applications.

Unfortunately, current operating systems are largely igno-
rant of data sharing and conflicts in resource demands among
application threads, and assign threads to cores based on core
idleness, often resulting in sub-optimal and highly varying
application performance. Although there has been previous
work on mapping applications onto CMPs [14, 24, 34], their
effectiveness for stream processing applications is not well
understood. Besides, most existing solutions do not consider
data sharing and resource contention relationships between
threads in a holistic manner and fall short for streaming
applications with complicated inter-thread relationships.

This paper proposes StreamMap, an approach that makes
streaming applications cache topology aware to obtain high
performance on CMP architectures. StreamMap assigns ap-
plication threads to cores so that (i) constructive inter-
thread data sharing is respected while (ii) negative resource
contention between threads is reduced. It uses offline pro-
filing to collect relevant information about threads’ cache
behavior and derives high-quality thread-to-core mappings.
The mapping is enforced when launching the application
onto target machine for production run. StreamMap is trans-
parent to user programs and operates at user level without
modifications to operating systems or hardware.

This paper makes the following contributions:

1) Behavior characterization. It characterizes the cache
behavior of streaming applications and quantifies the impact
of cache topology on streaming application performance.
Findings include that (1) data sharing and messaging be-
tween threads is sensitive to CMP’s cache topology, (2)
the resource demands of several widely-used streaming
operators is quite diverse and resource contention between
operators can cause severe performance loss, and (3) the
default Linux OS thread scheduler fails to schedule applica-
tions in ways that efficiently use CMP memory hierarchies.

2) Cache topology aware thread mapping. It proposes a
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holistic mapping policy which improves data reuse for better
cache utilization and reduces negative resource contention.
Its user-level implementation facilitates its adoption by the
stream processing middleware.

3) Realistic experimental evaluation. The approach is
implemented within IBM’s System S middleware and is
evaluated with two real-world applications in the financial
and scientific domains, respectively. Performance evalua-
tions on three different Intel architectures show consistent,
up to 1.8x performance improvements for cache topology
aware mapping versus unaware techniques.

The remainder of the paper is organized as follows.
Section II presents background information on the System S
middleware and CMP cache topology. Section III motivates
our work by demonstrating the significance of a CMP’s
cache topology to the performance of streaming applications.
Section IV describes details about the cache topology aware
mapping techniques. Section V shows the performance
improvements of two realistic applications brought by the
StreamMap approach. Section VI reviews related work, and
Section VII concludes the paper.

II. BACKGROUND
A. IBM System S Middleware

Our work is based on System S [9] (commercialized as
IBM Infosphere Streams). System S is an industry-leading
middleware enabling high throughput, low latency stream
processing. As shown in Figure 1, it provides a program-
ming language, a compilation framework, and an execution
runtime to implement and run streaming application in a
distributed environment. The Streams Processing Language
(SPL) is the high-level declarative language supporting
the operator-stream programming model. Operators can be
primitive ones supported by System S, reused from existing
toolkits, or implemented by programmers on their own in
C++ and/or Java. With SPL, operators are composed into a
dataflow graph by defining the streams that connect them.
Streams carry a continuous stream of tuples with fixed
schema. The SPL compiler compiles the SPL source code
to generate C++ code, which is then compiled by native
compilers to generate deployable binary executables. The
System S runtime provides the execution environment for
streaming applications and handles job scheduling, monitor-
ing, and fault-tolerance.

System S provides language support for multi-threading
an SPL program. Programmers can specify an input port of
an operator as a “Threaded Port”, for which the System S
runtime will create a thread to handle the incoming tuples
from that port and execute the subgraph of operators rooted
from that input. In the sample program shown in Figure 1,
the operator FinalData has its input port configured as a
Threaded Port. The SPL compiler will accordingly introduce
a separate thread to handle incoming tuples from this input
and drive the execution downstream.
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namespace sample;
composite Main {
type
RecT = int32 v1, list<int32>[32] v2;

graph

stream<RecT> Source = Beacon() {
logic state: mutable int32 i = 0;
param iterations : 100u;
output Source : v1 = i++; SPL

} Compiler

T> FinalData = F {

logic state: mutable int32 i = 0;
output FinalData: v1 = i++;
config threadedPort : queue(Source, Sys.Wait, 10).

}
() as Sink = Custom(FinalData) {
logic onTuple FinalData : { printin(v1); }

) ) 7 \ System S Runtime )
SPL program Executable
Figure 1. System S Middleware.
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QuickPath Interconnect

When targeting a multi-core platform, Threaded Ports
and in-memory queues provide the necessary mechanism
to multi-thread SPL programs and exploit various forms of
parallelism inherent in the programs. There are additional
ways to introduce threads, however. One common case is
that each source operator (those that does not have an input
port) has its own thread to drive the execution of operators
rooted from the source operator. For example, in Figure 1,
there is one thread to drive the execution from operator
FirstSource to downstream operators until it encounters a
threaded port. Other places where additional threads are
created and participate in the execution of stream graphs
include threads associated with time-based windows and
those introduced by the underlying transport layer.

While inter-thread communication is made explicit at the
SPL level through the Threaded Port language construct,
actual data movement is instantiated through an in-memory
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Figure 3. Three Possible Thread Relationships.

queue between producer and consumer threads. The queue is
a FIFO, lock-free, circular buffer, with various optimizations
to reduce cache coherency traffic (for more details of the
queue implementation, we refer readers to [12]).

B. CMP and its Cache Topology

Chip Multiprocessors (CMPs or simply multi-cores) have
been the standard hosting platform for enterprise and sci-
entific computing workloads and are also becoming per-
vasive in personal and mobile computing environments.
Modern CMPs typically feature deep and complex memory
hierarchies. Figure 2 shows the cache topology of three
machines equipped with different Intel Xeon processors.
The first (Figure 2(a)) is a 4-core Xeon X5355 where all
cores reside in a single socket. Each core has its own L1
data and instruction cache, and each pair of cores share one
L2 cache. All four cores share the Front Side Bus (FSB)
and memory controller and have access to DRAM with
equal cost (known as UMA, i.e., Uniform Memory Access).
The second machine (Figure 2(b)) has two quad-core Xeon
ES5320 processors. In each socket, each core has its own
L1 cache and shares L2 cache with another core. All 8-
cores share the FSB and memory controller and have access
to DRAM in a UMA fashion. Different from the former
two machines, the third machine (see Figure 2(c)) has a
NUMA (Non-Uniform Memory Access) architecture, where
there are two quad-core processors, each with its own local
on-chip memory controller. Accessing data in local memory
banks is faster than accessing data in remote memory banks.

III. CHALLENGES IN MAPPING STREAMING
APPLICATIONS ONTO CMPs

This section uses experimental measurements to establish
the fact that on multicore platforms, thread-to-core mappings
can have a significant impact on streaming application
performance, motivating the need for carefully determining
its best thread-to-core mapping.

A. Multi-threaded Streaming Applications

There are various forms of parallelism inherent in the
operator graphs of streaming applications, typically resulting
in a partitioning of operators among threads and a temporal
scheduling of how operators are run within each thread.

As mentioned in Section II, with System S, such paral-
lelization is expressed with Threaded Ports introduced into
the proper locations in the stream graph. This results in
the runtime creation of threads that each execute a group
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of operators in a per-tuple, depth-first manner. Threads
within the same streaming program may have three possible
relationships with each other, as shown in Figure 3.

Independent: threads progress independently from each
other, without communicating or sharing any common op-
erator, as shown in Figure 3 (a).

Producer-Consumer: as shown in Figure 3 (b), the pro-
ducer thread copies tuple into the queue associated with the
Thread Port and the consumer thread directly operates on
tuples in the queue.

Operator-Sharing: two threads share one or multiple
operators, as shown in Figure 3 (¢); they synchronize through
a mutex lock to execute the shared operator(s).

This paper assumes that a streaming application is multi-
threaded by programmers or with automated mechanisms
like graph partitioning-based operator fusion [15]. Given
such an application, our goal is to determine the thread-to-
core mapping that maximizes overall application throughput.

B. Inter-Thread Data Movement

Data movement performance between producer and con-
sumer threads in CMPs is sensitive to the relative distance
of source and destination cores along the cache topology.
Consider a pair of threads shown in Figure 3 (b). On a
machine like that shown in Figure 2(a), if the two threads
reside on two cores that share L2 cache (e.g., on core 0 and
1), then the consumer thread may directly read the data from
the L2 cache; on the other hand, if the two threads are on
two cores that are "far away’ from each other (e.g., core 0
and core 2), then the sender’s updates to shared data will
cause invalidation of copies in the other L2 cache, and the
consumer thread will experience L2 cache misses and wait
for data to be moved through cache coherency protocol.

We demonstrate this fact with a sender-receiver bench-
mark that measures data movement throughout via a queue
associated with Thread Port. Figure 4 shows up to a 3
times throughput difference between sharing vs. not sharing
Last Level Cache. This suggests that threads with producer-
consumer relationship can benefit from sharing cache. It
also shows that the OS scheduler does not respect the data
movement between threads and leads to performance loss.

C. Shared Resource Contention

When running a multi-threaded streaming application on a
CMP, threads share certain resources in the CMP’s memory
hierarchy, including the last-level cache, prefetching hard-
ware, the Front Side Bus (FSB), and Memory Controllers



Table I
TUPLE CONSUMPTION RATE OF THE LEFT THREAD WHEN SHARING L2
CACHE WITH THE RIGHT THREAD (NORMALIZED TO THE LEFT
THREAD’S SOLO-RUN TUPLE CONSUMPTION RATE.)

Left Right Filt. Func. Aggr. Sort HashJ.

Filt. Func. Aggr. Sort HashJ.
Filter 99.9% 99.9% | 101.8% 99.9% | 100.4%
Functor 100.4% | 100.4% | 100.2% 98.0% | 100.6%
Aggregator 99.9% 99.9% | 103.5% | 112.8% | 114.7%
Sort 100.2% 99.4% | 148.8% | 192.9% | 205.8%
HashJoin 100.1% | 100.2% | 122.6% | 134.4% | 136.6%

Table II

TUPLE CONSUMPTION RATE OF THE LEFT THREAD WHEN NOT
SHARING L2 CACHE WITH THE RIGHT THREAD (NORMALIZED TO THE
LEFT THREAD’S SOLO-RUN TUPLE CONSUMPTION RATE.)

Left Right Filt. Func. Aggr. Sort HashJ.
Filter 99.3% 99.8% | 100.3% 99.8% 99.8%
Functor 97.9% | 100.5% 97.5% 97.5% | 100.8%
Aggregator 100.0% | 100.0% | 100.0% | 101.3% | 104.3%
Sort 96.3% 96.4% 95.0% | 100.0% | 103.4%
HashJoin 96.7% 97.3% | 99.00% 99.7% | 102.1%

(as shown in Figure 2). While such resource sharing can
be constructive for data movement between producer and
consumer threads, it can also cause destructive contention
on shared resources demanded by multiple threads and slow
down overall performance. This is particularly the case for
threads with Independent relationship (Figure 3 (a)): since
those threads do not share data with each other, each thread’s
accesses to its own working set compete for resources (cache
space, memory bandwidth, etc.) against other threads.

To assess such contention effects, we run a benchmark
program structured as Figure 3 (a). Two independent threads
each execute a chain of three operators. The two opera-
tors in the middle of the chains are chosen among five
commonly-used operators: Filter, Functor, Sort, Aggregator
and Hash Join, in order of their working set size. There
are 5 X 5 combinations. We run the benchmark on the 4-
core UMA machine (Figure 2(a)). For each combination,
the two threads are mapped to either share L2 cache or use
separate .2 caches. Under each of the two thread-to-core
mappings, we measure the tuple consumption rate of the left
thread and normalize the rate to the rate when the left thread
runs in solo and the right thread does not exist. When the
two threads share L2 cache, they contend for shared cache
space, resulting in performance degradation. The larger the
working sets, the worse the performance (e.g., the left thread
executing Sort operator is slowed down by 105.8% when
the right thread executing Hash Join, as shown in Table I).
On the other hand, when each thread is given a separate
L2 cache, the contention is greatly reduced and the left
thread experiences no more than 4.4% slowdown compared
to running solo (shown in Table II).

The benchmark results imply that threads with contending
demands on memory resources should be mapped far away
from each other in cache topology to reduce contention on
shared resources in the memory hierarchy.

55

Percentage (%)

8-core UMA

4-core UMA 8-core NUMA

Figure 5. Runtime of Operator Sharing Benchmark (Normalized to the
Sharing Last Level Cache Case).

D. Operator Sharing

When threads share a set of operators protected by a
mutex lock, they synchronize with each other to execute
the shared operators, as shown in Figure 3 (c). The lock and
the shared operator(s)’ instructions and data are thus shared
by threads. Similar to the producer-consumer case, threads
with shared operators may benefit from sharing cache since
one thread’s access to the lock and shared operators loads
data into cache which can then be re-used by other threads.

We run a benchmark to show how sharing operators may
affect application performance. The benchmark measures
the time of two threads synchronizing on a shared barrier
operator 10 million times. The benchmark is run on three
machines, each with three different thread-to-core mappings:
sharing Last Level Cache (LLC) vs. different LLC vs.
OS default thread scheduling. Figure 5 shows that on all
three CMPs, sharing LLC between threads improves barrier
performance by up to 2.2x over forcing threads use separate
LLC. The mapping by OS scheduler (“Not Pin” in Figure 5)
causes sub-optimal performance with large variation.

E. Opportunities and Challenges

Benchmark results indicate that when running multi-
threaded streaming applications on CMPs, the thread-to-core
mapping can significantly affect application performance
due to: (1) inter-thread data movement, (2) contention on
shared resources, and (3) inter-thread data sharing. Judicious
thread mapping can improve benchmark performance by up
to 3x over the default OS scheduler.

However, complexities exist in determining the thread-to-
core mapping that leads to the optimal application perfor-
mance. Real-world streaming applications may have a large
number of threads that exhibit sophisticated relationships.
Figure 6 shows a three-thread streaming program in which
Threads 1 and 2 share an operator and both move data to
Thread 3 through a queue. Each thread’s data working set
consists of (1) private data (including state data of operators
only executed by this thread and tuples passed between
private operators) and (2) shared data (including the state
data of operators shared with other threads and tuples passed
through queues). As a result, obtaining the optimal mapping
requires non-trivial knowledge of threads’ cache behavior
and intelligently considering how mapping would impact all
threads’ accesses to their private and shared data (e.g., assess
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whether the benefit of data sharing between two threads

outweighs their contention for accessing private data).

IV. STREAMMAP: ALGORITHMS & IMPLEMENTATION
A. Overview

Motivated by the potential performance gains and com-
plexity of thread mappings, we implement StreamMap as
an offline optimization step in the System S compilation
process to decide and enforce thread mapping onto a target
multicore platform. As shown in Figure 7, StreamMap
is an optional step in application compilation and build
process. StreamMap takes as inputs a description of the
target machine and the executable file generated by the SPL.
compiler. Depending on the mapping algorithm used, it may
perform one or multiple trial runs of the executable on target
machine and record various information. StreamMap then
invokes the thread mapping algorithm to calculate the best
thread-to-core mapping. The mapping is enforced during
application initialization by setting threads’ CPU affinity.

StreamMap has the following advantages:

(1) Generality. It targets arbitrary SPL-programmed
streaming applications for multicore nodes and does not
require knowledge about operators’ internal implementation.

(2) Portability. It works on diverse homogeneous CMPs.
Its user-level implementation makes it easy to change its
mapping methods and its realization for different OSes.

(3) Transparency. Optimizations are transparent to user
programs and require minimal programmer involvement.

Although StreamMap is currently implemented with Sys-
tem S middleware, the techniques are applicable to any
stream processing applications.

B. Thread Mapping Algorithms

A good thread-to-core mapping for a streaming appli-
cation should place intensively communicating and data
sharing threads close to each other, and meanwhile isolate
threads with conflicting demands on resources. Below we
describe four thread mapping algorithms.

1) Exhaustive Search: The “Exhaustive Search” algo-
rithm takes as inputs the set of threads within the streaming
application and the core ids of the target machine. It runs
the application on the target machine with all possible
thread-to-core mapping combinations, and after completion,
chooses the mapping with highest application throughput.
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The algorithm also takes advantage of the symmetry of cache

topology to eliminate obviously redundant mappings. Ex-
haustive Search is guaranteed to find the optimal thread-to-
core mapping, and does not require any additional profiling
information about the application or target machine. This
algorithm, however, suffers from its poor scalability with
numbers of threads and CPU cores.

2) Communication Aware Mapping — TreeMatch: The
“TreeMatch” algorithm [14] aims to minimize data move-
ment cost for mapping a group of MPI processes onto a CMP
machine. It takes as input the machine’s cache topology and
an inter-process communication matrix. The cache topology
is modeled as a tree with cores as leaves. The inter-process
communication matrix describes the data transfer volumes
between each pair of MPI processes. TreeMatch incremen-
tally divides processes into non-overlapping groups whose
sizes are equal to the arity of each level of the topology
tree, starting from the leaf level and up to the root. At each
level, the grouping uses a greedy heuristic that minimizes
inter-group communication volume. After process groupings
at all levels of the cache topology tree are determined, the
mapping of processes to cores can be identified.

For System S applications, since inter-thread communica-
tions are explicitly specified at the SPL level (via Threaded
Ports), it is straightforward to determine the communication
relationship between threads. System S also has profiling
support to record the total data volumes passing through
Threaded Ports, based on which the inter-thread communi-
cation matrix can be constructed. Greedy partitioning is then
applied to determine the thread mapping.

3) Sharing Aware Mapping — TreeMatch-S: We have
developed the “TreeMatch-S” algorithm (shown in Fig-
ure 8), which extends TreeMatch by additionally considering
operator sharing between threads. Since both inter-thread
communication and operator sharing can be viewed as
data sharing between threads, TreeMatch-S quantifies these
two relationships with a uniform metric that measures the
’intensity’ of data sharing. This intensity depends on: (i) the
amount of data shared by threads, which depends on the size
of shared operators’ internal states, and (ii) on how threads
access such data, i.e., thread cache access behavior.

The metric is obtained with the DynamoRIO/Umbra tool,
which measures threads’ cache access at cache line level.
DynamoRIO [1] uses dynamic instrumentation of binary
executables to obtain various program characteristics at
instruction granularity. Umbra [31] adds a set of plug-ins
to DynamoRIO for tracking program’s memory references.

We measure thread cache behavior using Umbra’s cache

Executable Production Run
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Ilustration of TreeMatch and TreeMatch-S Algorithms.

line ownership tracking capability [32]. During program
execution, Umbra assigns an ownership bitmap in shadow
memory for each application-accessed cache line. Each bit in
the bitmap represents one thread, and setting a bit to 1 means
the corresponding thread owns a copy of that cache line in its
private cache. Umbra dynamically inserts instructions before
every memory access instruction to maintain the ownership
bitmaps. When a thread reads a cache line, it installs a
copy of that cache line in its private cache; accordingly,
the instructions inserted by Umbra set thread’s bit in that
cache line’s ownership bitmap. If a thread updates a cache
line, it invalidates all other threads’ copies of that cache
line; Umbra-inserted instructions accordingly set the writing
thread’s bit and clear all other bits in the bitmap.

With cache line ownership tracking, thread sharing inten-
sity is measured as follows. (1) It records the last thread that
updates each cache line, using an array of counters for each
thread to record its interaction intensity with other threads.
(2) When a thread reads a cache line of which it does not
own a copy (a cache miss) or updates a cache line which it
does not exclusively own (a cache invalidation), its counter
corresponding to the last updating thread of that cache line
is increased by 1. (3) When the program finishes, a thread
correlation matrix is constructed from threads’ counters.
This matrix records the sharing intensity between thread
which uniformly captures both inter-thread communication
and operator sharing relationships. TreeMatch-S uses this
thread correlation matrix and applies thread grouping and
mapping in the same way as TreeMatch.

4) Holistic Mapping: Neither TreeMatch nor TreeMatch-
S considers shared resource contention between threads. The
Holistic Mapping algorithm takes into account both sharing
AND contention intensity between threads and strikes a
balance between them to determine an appropriate mapping.

To mitigate contention on shared memory resources (e.g.,
last level cache, FSB), we need to quantify each thread’s
demand on those resources and distribute those demands
in a balanced way. Previous work [34, 26] suggests that
the Last Level Cache Miss Rate (measured as number of
last level cache misses per thousand instructions) is a good
measure of a thread’s demand on those resources. This is
because the LLC miss rate not only indirectly measures
a thread’s working set size (in terms of how much of
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its working set cannot fit into last level cache), but also
measures how much traffic it imposes on the Front Side
Bus. We adopt this approach and obtain each thread’s LLC
miss rate values as follows. We first apply TreeMatch-S to
get an initial thread mapping. We then run the application
on the target machine with this mapping and measure the
relevant hardware performance counter events. We use the
Likwid tool [2] to collect performance counter values and
calculate the LLC miss rate for each thread.

With the generated measurements, the Holistic Mapping
method groups threads in accordance with the cache topol-
ogy tree. It treats the grouping of threads at each level
as a graph partitioning problem. Each thread is assigned a
weight that is its LLC miss rate, and each pair of threads is
assigned a weight that represents the data sharing intensity
obtained with the TreeMatch-S measurements. The goal of
graph partitioning is to reduce cross-group data sharing and
in addition, to maintain a reasonable balance of aggregate
LLC miss rate values among thread groups. Partitioning is
performed with the SCOTCH graph partitioning tool [3].

5) Additional Implementation Details:

NUMA Effect: When running on a NUMA machine, each
thread initialize its operators AFTER binding to target cores
so that its data is placed in local NUMA domain.

Measurement Cost. Obtaining a machine’s cache con-
figuration is a one-time cost. For any application/machine
combination, Exhaustive Search requires a complete run.
For TreeMatch, information about inter-thread communica-
tion can be measured once and used across machines. For
TreeMatch-S, data sharing intensity needs to be measured
once for any given cache line size. Holistic Mapping needs
to obtain the same data sharing intensity information as
TreeMatch-S; it must additionally collect hardware perfor-
mance counter values with one run on target machine.

Sensitivity to Input Data. All four algorithms make map-
ping decisions based on profiling information using sample
input data. If threads’ runtime behavior diverges dramatically
from the profiling runs, the offline mapping generated by
those algorithms may lead to unsatisfactory performance.
One possible solution to this problem is to continuously
monitor and adjust thread mappings at runtime. Since most
streaming applications with which we have worked have
steady behavior (the same observation is made for StreamlIt
applications [28]), we leave this topic for future work.

V. PERFORMANCE EVALUATION

We apply StreamMap to two real-world streaming appli-
cations (VWAP and LOIS) on three CMP machines whose
architectures are shown in Figure 2. All machines runs Red
Hat Enterprise Linux Server release 5.8. The diversity of
machines’ cache structures helps assessing the effectiveness
of StreamMap across different CMP platforms.

For comparison, we also measure the application perfor-
mance achieved without StreamMap, i.e., we run application
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without setting thread affinity and let the OS scheduler de-
cide the core on which each thread runs. On a typical Linux
OS, the scheduler schedules threads based on core idleness
and may migrate threads across cores during execution.

A. VWAP Application Performance

The VWAP application ingests financial ticket streams
containing trade and quota data from a stock exchange and
detects bargains from the data. As shown in Figure 9, input
data streams flow into VWAP via a source operator. A split
operator uses a hash function to route each tuple to one of
the downstream branches. Each branch has an aggregator
operator to maintain a running average of trades and a join
operator with a sliding window where each new quota tuple
will be matched with trades to determine bargains. There is
one source thread executing the subgraph from the source to
the split operator. Each downstream branch is executed by a
worker thread. The source thread passes data to each worker
thread via a separate Threaded Port queue. Worker threads
do not communicate or share operator with each other.

We run VWAP with two different configurations: the first
(referred to as “Small Window”) sets the sliding window size
to 5 tuples, and the second (referred to as “Large Window”)
sets the sliding window size to 75000 tuples. We use a
sample input dataset consisting of a day of traces. We use
a subset of this sample dataset for StreamMap to quickly
calculate offline thread mappings and use the whole dataset
to measure resulting application performance.

Figure 12 shows the normalized throughput of VWAP
with “Small Window” configuration. We make three ob-
servations from the results. First, the maximum difference
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between the best and worst performing mappings is 27%
on 4-Core UMA, 43% on 8-Core UMA, and 68% on 8-
Core NUMA. On both 8-Core UMA and 8-Core NUMA
machines, the differences are the most evident with 3, 4 and
5 threads. Figure 11 shows the inter-thread communication
and correlation matrices for VWAP with 4 threads. Both ma-
trices reveal that the source thread has balanced data sharing
relationships with each of the three worker threads, which
is expected from VWAP’s dataflow structure. Figure 11 also
shows the best and worst performing mappings on 8-Core
UMA. Placing intensively communicating threads close to
each other is beneficial to application performance. As
VWAP scales beyond 6 threads, the performance differences
of different mappings diminish. This is due to the symmetry
of machines’ cache topologies and the balanced data and
work distribution among worker threads in VWAP.

Second, TreeMatch, TreeMatch-S, and Holistic Mapping
all generate the best thread mapping in all cases. Since
threads in VWAP do not share operators, thread correlation
matrix only reflects inter-thread communication intensity
(Figure 11), based on which TreeMatch-S derives the same
mappings as TreeMatch. We further measure threads’ cache
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behavior to explain why Holistic Mapping gives the same
mappings as TreeMatch-S. We use Reuse Distance [33] to
measure cache locality: when a thread access a cache line,
this access’ Reuse Distance is the number of distinct cache
lines referenced between current access and the previous
access to that cache line; a cache line access with a long
reuse distance has a high probability of being a cache miss.
Figure 13 shows the reuse distance histograms of VWAP
with 4 threads.We see that all 4 threads has good temporal
locality since the majority of cache line accesses can fit
into L1 cache. We also measure the working set size (the
number of distinct cache lines touched) of each thread over
one million instructions, and find that the working set size of
the Source thread is 465 cache lines, and that of each Worker
threads is 9 or 10 cache lines. Due to the small working set
sizes, contention on last level cache and FSB is not severe
among VWAP threads. Therefore, Holistic Mapping has the
same results as TreeMatch and TreeMatch-S.

Third, Figure 12 shows that the mappings by the default
Linux OS scheduler is close to the worst cases for most
tests. This is because the Linux scheduler tends to spread
threads across the system, and this hurts the performance of
VWAP which is communication dominant.

Interestingly, the performance of VWAP with “Large
Window” configuration (shown in Figure 14) show trends
opposite to the “Small Window” case: spreading threads
away frome each other achieves better performance (up
to 7%) than placing them close. This is because worker
threads with large sliding windows have large working sets,
so the contention on shared cache and memory bandwidth
outweighs inter-thread communication. As a result, both
TreeMatch and TreeMatch-S generate sub-optimal mappings
due to failure to consider resource contention. Holistic
Mapping, however, still finds the best mapping. This clearly
shows the importance of holistically considering both data
sharing and resource contention for thread mapping.

B. LOIS Application Performance

The LOIS application detects outliers in radio data from
outer space. The version of LOIS used in this paper reads
from a disk file containing a sample dataset collected from
a Scandinavian radiotelescope in Europe. Figure 10 shows
a 4-thread setup of LOIS. Thread 1 calculates point-wise
coordinates for each input data record which are consumed
by Thread 2. Thread 2 and 3 maintains aggregate statistics on
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two sliding windows of past records. Thread 2 produces data
to feed into Thread 3, and also synchronizes with Thread
3 on a shared Barrier operator. Thread 4 receives from
Thread 2 and 3 the upper and lower bounds of coordinates
derived from the sliding windows, and finds all outliers in
the incoming data record. 5-thread and 6-thread versions of
LOIS are constructed by further introducing Threaded Ports
to split the work of Thread 3 and 4.

Figure 15 shows the performance of LOIS. Both
TreeMatch-S and Holistic Mapping are able to find the best-
performing thread mapping in all cases which outperforms
the worst mapping and the default OS mapping by up to
2.4 and 1.8 times, respectively. TreeMatch, on the other
hand, sometimes gives sub-optimal mappings. To explain
the difference between TreeMatch and TreeMatch-S, we
look at the inter-thread communication matrix and thread
correlation matrix for LOIS with 4 threads. Figure 16 shows
that thread correlation measurements capture data sharing
between threads (especially between Thread 2 and 3 due
to their sharing of operators), based on which the graph
partitioning algorithm makes better decisions than just using
inter-thread communication volumes.

Holistic Mapping achieves the same best mapping as
TreeMatch-S for LOIS. This is because resource contention
is not severe among threads in LOIS. Figure 17 shows the
reuse distance histograms of 4 LOIS threads. Although the
LOIS threads show worse temporal locality than VWAP
(since the histograms are more scattered towards larger dis-
tances), the majority of cache line accesses can still fit into
L2 cache. Therefore, the benefit brought by placing thread
with intensive data sharing close to each other outweighs
the penalty of resource contention.

In terms of cost, Exhaustive Search has poor scalability.
For example, enumerating all possible mappings of 6-thread
LOIS on 8-Core UMA machine takes 600 profiling runs even
after eliminating redundant mappings based on symmetry
of cache topology. TreeMatch needs one profiling run with
System S runtime’s communication profiling facility, but the
profiling overhead is negligible. TreeMatch-S needs one run
with binary instrumentation which can slow down VWAP
and LOIS by up to 8 x. Holistic Mapping requires two profil-
ing runs: the first run is the same as TreeMatch-S with binary
instrumentation enabled, and the second one is with low-
overhead hardware performance counter monitoring enabled.
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C. Major Observations from Experimental Results

(1) There is up to 2.4x difference between the best and
worst thread mappings. The difference is more evident when
there is more asymmetry in application structure and/or
cache topology. Since streaming applications with compli-
cated dataflows and parallelisms are emerging and current
and next generation of CMPs by major vendors are adopting
deep and complex cache structures, cache topology aware
mapping will show growing importance in the future.

(2) The Linux OS tends to spread threads, which does
not always lead to the best performance and sometimes
constitutes the worst case (especially for applications whose
performance is dominated by inter-thread data sharing).
Explicit thread binding also results in more consistent per-
formance than the Linux OS scheduler.

(3) When deciding the optimal thread mapping, it is
necessary to consider both constructive data sharing and
destructive resource contention between threads. This is
demonstrated by our Holistic Mapping algorithm which
always finds the best mappings.

VI. RELATED WORK
A. Mapping Multi-Threaded Programs on CMPs

Communication and Sharing Aware Mapping. The prob-
lem of mapping a multi-process or multi-threaded program
to a set of underlying resources to minimize program execu-
tion time is NP-hard [8]. Various heuristics have been pro-
posed with the objective of minimizing communication cost,
such as graph partitioning [5] and graph matching [19]. [24]
implements a OS-level scheduler which places intensively-
interacting threads close to each other. As shown in this
paper, arranging data movement based on cache topology
alone does not capture all important trade-offs and may lead
to sub-optimal overall performance.

Contention Aware Mapping. [18] shows that contention
on shared memory resources can severely degrade applica-
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Figure 17. Memory Reuse Distance of LOIS.

tion performance on CMPs. Hardware [21] and OS level [17]
cache partitioning, user level thread scheduling [34], and
compiler-time transformation [22, 25] are proposed to mit-
igate resource contention among processes and/or threads.
However, they only work for independent threads or pro-
cesses with no communication or sharing relationships.
Holistic Mapping. [26] exploits thread mapping for op-
timizing multi-threaded datacenter applications on CMPs.
However, the mapping policies in [26] either use exhaustive
search or require a new algorithm for each type of cache
topology. Our new contributions include an in-depth study
of streaming application’s cache behavior and a holistic
mapping algorithm which is more general and scalable.

B. Optimizing Streaming Applications on CMPs

Algorithmic Optimization of Streaming Algorithms. Exam-
ples include join [27, 11], aggregation [6], sorting [10], and
frequency counting [7]. Operators in a streaming program
may interact with each other in complicated ways, and
such complexity is manifested at thread level at runtime.
Managing such complicated interaction is beyond the scope
of tuning individual operators, so orchastration provided by
StreamMap is necessary to coordinate threads’ execution.
Besides, StreamMap does not require knowledge of opera-
tors’ internal implementation, and uses profiling information
collected at middleware level to make mapping decisions.
Therefore, StreamMap is orthogonal and complementary to
code tuning of individual streaming operators.

Compile-Time Scheduling and Mapping of Streaming Pro-
grams on CMPs. Pioneered by Streamlt [13], work has
been done in optimizing static scheduling of streaming
programs on multicores [16, 29, 30]. Those work apply
compiler analysis and code transformation to exploit various
parallelism in program to balance computation load among
threads. Since most of those work target Cell B.E. architec-



ture which has explicitly managed memory hierarchy, they
commonly try to hide data movement cost by overlapping
communication with computation in the execution schedule.
In comparison, StreamMap targets cache topologies seen in
x86 CMP architecture which impose distinct challenges such
as contention on shared resources, and it works at thread
level without heroic compiler analysis.

Cache-Aware Optimization of Streaming Programs. [23]
proposed three techniques to optimize Streamlt programs
on a uniprocessor: execution scaling, buffer manager, and
register replacement. [20] extends execution scaling to multi-
core. Both work assumes synchronous data flow model to
calculate static steady state schedule, and [20] does not
consider thread mapping to reduce contention or thread
synchronization cost. [4] theoretically shows that cache-
efficient scheduling of streaming programs on a uniprocessor
can be modeled as a partitioning problem and some special
cases can be solved in polynomial time. Our work targets
multi-core processors, uses mapping algorithms different
from the one proposed in [4], implements those algorithms
inside System S middleware, and evaluates them with real-
world applications on representative architectures.

VII. CONCLUSIONS AND FUTURE WORK

This paper demonstrates that CMP’s cache topology can
have a significant impact on the performance of multi-
threaded streaming applications. Our StreamMap approach
automatically places threads to cores to control the data
sharing and resource contention between threads, and can
improve real-world streaming applications’ performance by
up to 1.8 times over the default Linux OS scheduler.

Future directions of this research are twofold. We plan to
study how to use StreamMap to provide feedback informa-
tion to System S’ compiler to optimize operator fusion. We
also plan to apply StreamMap to a wider range of streaming
applications, e.g., dynamic graph analysis.
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