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Abstract—Data Stream Processing is an important class
of data intensive applications in the “Big Data” era. Chip
Multi-Processors (CMPs) are the standard hosting platforms
in modern data centers. Gaining high performance for stream
processing applications on CMPs is therefore of great interest.
Since the performance of stream processing applications largely
depends on their effective use of the complex cache structure
present on CMPs, this paper proposes the StreamMap ap-
proach for tuning streaming applications’ use of cache. Our
major idea is to map application threads to CPU cores to facil-
itate data sharing AND mitigate memory resource contention
among threads in a holistic manner. Applying StreamMap to
the IBM’s System S middleware leads to improvements of up to
1.8× in the performance of realistic applications over standard
Linux OS scheduler on three different CMP platforms.

Keywords-Data Stream Processing; Cache Topology; Thread
Mapping; IBM Infosphere Streams

I. INTRODUCTION

Data Stream Processing is an important class of data

intensive applications in the “Big Data” era. Providing real-

time data analytics capabilities to extract insights from

live data streams, it has been applied to many application

domains, including finance & trading, image processing,

network intrusion detection, and environmental monitoring.

An important question to ask about stream processing

applications is their performance on common hardware

platforms like the modern chip multiprocessors (CMPs)

now used across the entire spectrum of portable devices

to high end server systems. Today’s multicore architectures

are equipped with complex cache hierarchies. On one hand,

multi-level caches are used to alleviate the two-order-of

magnitude gap in speed between CPU and DRAM, mak-

ing maximizing cache utilization a significant factor for

application performance. On the other hand, cores share

certain memory resources with each other, including last

level cache, hardware prefetch unit, front side bus and

memory controller. While sharing those resources between

cores can be constructive for data sharing (e.g., to facilitate

data reuse in shared cache and reduce cache coherency

traffic), such sharing can also cause severe interference due

to contention on those resources [18]. Therefore, judiciously

managing application’s interaction with cache structure is of

great importance to achieve high performance on CMPs.

This paper argues that thread-to-core mapping is an

effective way to control how a stream processing appli-

cation interact with CMP’s caches. This is because how

application threads are placed onto cores largely determines

how memory resources are shared between threads. This,

in turn, impacts not only the efficiency of data messaging

and sharing between threads, but also the intensiveness of

resource contention between threads for their private state

data. In fact, our experiments show up to 3× difference in

performance between different thread-to-core mappings for

some streaming applications.

Unfortunately, current operating systems are largely igno-

rant of data sharing and conflicts in resource demands among

application threads, and assign threads to cores based on core

idleness, often resulting in sub-optimal and highly varying

application performance. Although there has been previous

work on mapping applications onto CMPs [14, 24, 34], their

effectiveness for stream processing applications is not well

understood. Besides, most existing solutions do not consider

data sharing and resource contention relationships between

threads in a holistic manner and fall short for streaming

applications with complicated inter-thread relationships.

This paper proposes StreamMap, an approach that makes
streaming applications cache topology aware to obtain high

performance on CMP architectures. StreamMap assigns ap-

plication threads to cores so that (i) constructive inter-

thread data sharing is respected while (ii) negative resource

contention between threads is reduced. It uses offline pro-

filing to collect relevant information about threads’ cache

behavior and derives high-quality thread-to-core mappings.

The mapping is enforced when launching the application

onto target machine for production run. StreamMap is trans-

parent to user programs and operates at user level without

modifications to operating systems or hardware.

This paper makes the following contributions:

1) Behavior characterization. It characterizes the cache

behavior of streaming applications and quantifies the impact

of cache topology on streaming application performance.

Findings include that (1) data sharing and messaging be-

tween threads is sensitive to CMP’s cache topology, (2)

the resource demands of several widely-used streaming

operators is quite diverse and resource contention between

operators can cause severe performance loss, and (3) the

default Linux OS thread scheduler fails to schedule applica-

tions in ways that efficiently use CMP memory hierarchies.

2) Cache topology aware thread mapping. It proposes a
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holistic mapping policy which improves data reuse for better

cache utilization and reduces negative resource contention.

Its user-level implementation facilitates its adoption by the

stream processing middleware.

3) Realistic experimental evaluation. The approach is

implemented within IBM’s System S middleware and is

evaluated with two real-world applications in the financial

and scientific domains, respectively. Performance evalua-

tions on three different Intel architectures show consistent,

up to 1.8× performance improvements for cache topology

aware mapping versus unaware techniques.

The remainder of the paper is organized as follows.

Section II presents background information on the System S

middleware and CMP cache topology. Section III motivates

our work by demonstrating the significance of a CMP’s

cache topology to the performance of streaming applications.

Section IV describes details about the cache topology aware

mapping techniques. Section V shows the performance

improvements of two realistic applications brought by the

StreamMap approach. Section VI reviews related work, and

Section VII concludes the paper.

II. BACKGROUND

A. IBM System S Middleware

Our work is based on System S [9] (commercialized as

IBM Infosphere Streams). System S is an industry-leading

middleware enabling high throughput, low latency stream

processing. As shown in Figure 1, it provides a program-

ming language, a compilation framework, and an execution

runtime to implement and run streaming application in a

distributed environment. The Streams Processing Language

(SPL) is the high-level declarative language supporting

the operator-stream programming model. Operators can be

primitive ones supported by System S, reused from existing

toolkits, or implemented by programmers on their own in

C++ and/or Java. With SPL, operators are composed into a

dataflow graph by defining the streams that connect them.

Streams carry a continuous stream of tuples with fixed

schema. The SPL compiler compiles the SPL source code

to generate C++ code, which is then compiled by native

compilers to generate deployable binary executables. The

System S runtime provides the execution environment for

streaming applications and handles job scheduling, monitor-

ing, and fault-tolerance.

System S provides language support for multi-threading

an SPL program. Programmers can specify an input port of

an operator as a “Threaded Port”, for which the System S

runtime will create a thread to handle the incoming tuples

from that port and execute the subgraph of operators rooted

from that input. In the sample program shown in Figure 1,

the operator FinalData has its input port configured as a

Threaded Port. The SPL compiler will accordingly introduce

a separate thread to handle incoming tuples from this input

and drive the execution downstream.

SPL program 

SPL 
Compiler 

Executable 

System S Runtime 

Source 

FinalData 

Sink 

Thread A 

Thread B 

Queue 

Function Call 

 
namespace sample; 
 
composite Main { 
  type 
    RecT = int32 v1, list<int32>[32] v2; 
 
  graph 
    stream<RecT>  Source = Beacon() { 
        logic state: mutable int32 i = 0; 
        param iterations : 100u; 
        output Source : v1 = i++; 
    } 
    stream<RecT> FinalData = Functor(Source) { 
        logic state: mutable int32 i = 0; 
        output FinalData: v1 = i++; 
        config threadedPort : queue(Source, Sys.Wait, 10); 
    } 
    () as Sink = Custom(FinalData) { 
        logic onTuple FinalData : { println(v1); } 
    } 
} 

Figure 1. System S Middleware.
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Figure 2. Three Different CMP Cache Topology.

When targeting a multi-core platform, Threaded Ports

and in-memory queues provide the necessary mechanism

to multi-thread SPL programs and exploit various forms of

parallelism inherent in the programs. There are additional

ways to introduce threads, however. One common case is

that each source operator (those that does not have an input

port) has its own thread to drive the execution of operators

rooted from the source operator. For example, in Figure 1,

there is one thread to drive the execution from operator

FirstSource to downstream operators until it encounters a

threaded port. Other places where additional threads are

created and participate in the execution of stream graphs

include threads associated with time-based windows and

those introduced by the underlying transport layer.

While inter-thread communication is made explicit at the

SPL level through the Threaded Port language construct,

actual data movement is instantiated through an in-memory
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Figure 3. Three Possible Thread Relationships.

queue between producer and consumer threads. The queue is

a FIFO, lock-free, circular buffer, with various optimizations

to reduce cache coherency traffic (for more details of the

queue implementation, we refer readers to [12]).

B. CMP and its Cache Topology

Chip Multiprocessors (CMPs or simply multi-cores) have

been the standard hosting platform for enterprise and sci-

entific computing workloads and are also becoming per-

vasive in personal and mobile computing environments.

Modern CMPs typically feature deep and complex memory

hierarchies. Figure 2 shows the cache topology of three

machines equipped with different Intel Xeon processors.

The first (Figure 2(a)) is a 4-core Xeon X5355 where all

cores reside in a single socket. Each core has its own L1

data and instruction cache, and each pair of cores share one

L2 cache. All four cores share the Front Side Bus (FSB)

and memory controller and have access to DRAM with

equal cost (known as UMA, i.e., Uniform Memory Access).

The second machine (Figure 2(b)) has two quad-core Xeon

E5320 processors. In each socket, each core has its own

L1 cache and shares L2 cache with another core. All 8-

cores share the FSB and memory controller and have access

to DRAM in a UMA fashion. Different from the former

two machines, the third machine (see Figure 2(c)) has a

NUMA (Non-Uniform Memory Access) architecture, where

there are two quad-core processors, each with its own local

on-chip memory controller. Accessing data in local memory

banks is faster than accessing data in remote memory banks.

III. CHALLENGES IN MAPPING STREAMING

APPLICATIONS ONTO CMPS

This section uses experimental measurements to establish

the fact that on multicore platforms, thread-to-core mappings

can have a significant impact on streaming application

performance, motivating the need for carefully determining

its best thread-to-core mapping.

A. Multi-threaded Streaming Applications

There are various forms of parallelism inherent in the

operator graphs of streaming applications, typically resulting

in a partitioning of operators among threads and a temporal

scheduling of how operators are run within each thread.

As mentioned in Section II, with System S, such paral-

lelization is expressed with Threaded Ports introduced into

the proper locations in the stream graph. This results in

the runtime creation of threads that each execute a group
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Figure 4. Inter-Thread Communication Performance.

of operators in a per-tuple, depth-first manner. Threads

within the same streaming program may have three possible

relationships with each other, as shown in Figure 3.

Independent: threads progress independently from each

other, without communicating or sharing any common op-

erator, as shown in Figure 3 (a).

Producer-Consumer: as shown in Figure 3 (b), the pro-

ducer thread copies tuple into the queue associated with the

Thread Port and the consumer thread directly operates on

tuples in the queue.

Operator-Sharing: two threads share one or multiple

operators, as shown in Figure 3 (c); they synchronize through

a mutex lock to execute the shared operator(s).

This paper assumes that a streaming application is multi-

threaded by programmers or with automated mechanisms

like graph partitioning-based operator fusion [15]. Given

such an application, our goal is to determine the thread-to-

core mapping that maximizes overall application throughput.

B. Inter-Thread Data Movement

Data movement performance between producer and con-

sumer threads in CMPs is sensitive to the relative distance

of source and destination cores along the cache topology.

Consider a pair of threads shown in Figure 3 (b). On a

machine like that shown in Figure 2(a), if the two threads

reside on two cores that share L2 cache (e.g., on core 0 and

1), then the consumer thread may directly read the data from

the L2 cache; on the other hand, if the two threads are on

two cores that are ’far away’ from each other (e.g., core 0

and core 2), then the sender’s updates to shared data will

cause invalidation of copies in the other L2 cache, and the

consumer thread will experience L2 cache misses and wait

for data to be moved through cache coherency protocol.

We demonstrate this fact with a sender-receiver bench-

mark that measures data movement throughout via a queue

associated with Thread Port. Figure 4 shows up to a 3

times throughput difference between sharing vs. not sharing

Last Level Cache. This suggests that threads with producer-

consumer relationship can benefit from sharing cache. It

also shows that the OS scheduler does not respect the data

movement between threads and leads to performance loss.

C. Shared Resource Contention

When running a multi-threaded streaming application on a

CMP, threads share certain resources in the CMP’s memory

hierarchy, including the last-level cache, prefetching hard-

ware, the Front Side Bus (FSB), and Memory Controllers
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Table I
TUPLE CONSUMPTION RATE OF THE LEFT THREAD WHEN SHARING L2

CACHE WITH THE RIGHT THREAD (NORMALIZED TO THE LEFT
THREAD’S SOLO-RUN TUPLE CONSUMPTION RATE.)

�������Left
Right

Filt. Func. Aggr. Sort HashJ.

Filt. Func. Aggr. Sort HashJ.
Filter 99.9% 99.9% 101.8% 99.9% 100.4%
Functor 100.4% 100.4% 100.2% 98.0% 100.6%
Aggregator 99.9% 99.9% 103.5% 112.8% 114.7%
Sort 100.2% 99.4% 148.8% 192.9% 205.8%
HashJoin 100.1% 100.2% 122.6% 134.4% 136.6%

Table II
TUPLE CONSUMPTION RATE OF THE LEFT THREAD WHEN NOT

SHARING L2 CACHE WITH THE RIGHT THREAD (NORMALIZED TO THE

LEFT THREAD’S SOLO-RUN TUPLE CONSUMPTION RATE.)
�������Left

Right
Filt. Func. Aggr. Sort HashJ.

Filter 99.3% 99.8% 100.3% 99.8% 99.8%
Functor 97.9% 100.5% 97.5% 97.5% 100.8%
Aggregator 100.0% 100.0% 100.0% 101.3% 104.3%
Sort 96.3% 96.4% 95.0% 100.0% 103.4%
HashJoin 96.7% 97.3% 99.00% 99.7% 102.1%

(as shown in Figure 2). While such resource sharing can

be constructive for data movement between producer and

consumer threads, it can also cause destructive contention

on shared resources demanded by multiple threads and slow

down overall performance. This is particularly the case for

threads with Independent relationship (Figure 3 (a)): since

those threads do not share data with each other, each thread’s

accesses to its own working set compete for resources (cache

space, memory bandwidth, etc.) against other threads.

To assess such contention effects, we run a benchmark

program structured as Figure 3 (a). Two independent threads

each execute a chain of three operators. The two opera-

tors in the middle of the chains are chosen among five

commonly-used operators: Filter, Functor, Sort, Aggregator

and Hash Join, in order of their working set size. There

are 5 × 5 combinations. We run the benchmark on the 4-

core UMA machine (Figure 2(a)). For each combination,

the two threads are mapped to either share L2 cache or use

separate L2 caches. Under each of the two thread-to-core

mappings, we measure the tuple consumption rate of the left

thread and normalize the rate to the rate when the left thread

runs in solo and the right thread does not exist. When the

two threads share L2 cache, they contend for shared cache

space, resulting in performance degradation. The larger the

working sets, the worse the performance (e.g., the left thread

executing Sort operator is slowed down by 105.8% when

the right thread executing Hash Join, as shown in Table I).

On the other hand, when each thread is given a separate

L2 cache, the contention is greatly reduced and the left

thread experiences no more than 4.4% slowdown compared

to running solo (shown in Table II).

The benchmark results imply that threads with contending

demands on memory resources should be mapped far away

from each other in cache topology to reduce contention on

shared resources in the memory hierarchy.
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Figure 5. Runtime of Operator Sharing Benchmark (Normalized to the
Sharing Last Level Cache Case).

D. Operator Sharing

When threads share a set of operators protected by a

mutex lock, they synchronize with each other to execute

the shared operators, as shown in Figure 3 (c). The lock and

the shared operator(s)’ instructions and data are thus shared

by threads. Similar to the producer-consumer case, threads

with shared operators may benefit from sharing cache since

one thread’s access to the lock and shared operators loads

data into cache which can then be re-used by other threads.

We run a benchmark to show how sharing operators may

affect application performance. The benchmark measures

the time of two threads synchronizing on a shared barrier

operator 10 million times. The benchmark is run on three

machines, each with three different thread-to-core mappings:

sharing Last Level Cache (LLC) vs. different LLC vs.

OS default thread scheduling. Figure 5 shows that on all

three CMPs, sharing LLC between threads improves barrier

performance by up to 2.2× over forcing threads use separate

LLC. The mapping by OS scheduler (“Not Pin” in Figure 5)

causes sub-optimal performance with large variation.

E. Opportunities and Challenges

Benchmark results indicate that when running multi-

threaded streaming applications on CMPs, the thread-to-core

mapping can significantly affect application performance

due to: (1) inter-thread data movement, (2) contention on

shared resources, and (3) inter-thread data sharing. Judicious

thread mapping can improve benchmark performance by up

to 3× over the default OS scheduler.

However, complexities exist in determining the thread-to-

core mapping that leads to the optimal application perfor-

mance. Real-world streaming applications may have a large

number of threads that exhibit sophisticated relationships.

Figure 6 shows a three-thread streaming program in which

Threads 1 and 2 share an operator and both move data to

Thread 3 through a queue. Each thread’s data working set

consists of (1) private data (including state data of operators
only executed by this thread and tuples passed between

private operators) and (2) shared data (including the state

data of operators shared with other threads and tuples passed

through queues). As a result, obtaining the optimal mapping

requires non-trivial knowledge of threads’ cache behavior

and intelligently considering how mapping would impact all

threads’ accesses to their private and shared data (e.g., assess
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Figure 6. Cache Behavior of Streaming Programs.

whether the benefit of data sharing between two threads

outweighs their contention for accessing private data).

IV. STREAMMAP: ALGORITHMS & IMPLEMENTATION

A. Overview

Motivated by the potential performance gains and com-

plexity of thread mappings, we implement StreamMap as

an offline optimization step in the System S compilation

process to decide and enforce thread mapping onto a target

multicore platform. As shown in Figure 7, StreamMap

is an optional step in application compilation and build

process. StreamMap takes as inputs a description of the

target machine and the executable file generated by the SPL

compiler. Depending on the mapping algorithm used, it may

perform one or multiple trial runs of the executable on target

machine and record various information. StreamMap then

invokes the thread mapping algorithm to calculate the best

thread-to-core mapping. The mapping is enforced during

application initialization by setting threads’ CPU affinity.

StreamMap has the following advantages:

(1) Generality. It targets arbitrary SPL-programmed

streaming applications for multicore nodes and does not

require knowledge about operators’ internal implementation.

(2) Portability. It works on diverse homogeneous CMPs.

Its user-level implementation makes it easy to change its

mapping methods and its realization for different OSes.

(3) Transparency. Optimizations are transparent to user

programs and require minimal programmer involvement.

Although StreamMap is currently implemented with Sys-

tem S middleware, the techniques are applicable to any

stream processing applications.

B. Thread Mapping Algorithms

A good thread-to-core mapping for a streaming appli-

cation should place intensively communicating and data

sharing threads close to each other, and meanwhile isolate

threads with conflicting demands on resources. Below we

describe four thread mapping algorithms.

1) Exhaustive Search: The “Exhaustive Search” algo-

rithm takes as inputs the set of threads within the streaming

application and the core ids of the target machine. It runs

the application on the target machine with all possible

thread-to-core mapping combinations, and after completion,

chooses the mapping with highest application throughput.
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Figure 7. Optimization Workflow of StreamMap.

The algorithm also takes advantage of the symmetry of cache

topology to eliminate obviously redundant mappings. Ex-

haustive Search is guaranteed to find the optimal thread-to-

core mapping, and does not require any additional profiling

information about the application or target machine. This

algorithm, however, suffers from its poor scalability with

numbers of threads and CPU cores.

2) Communication Aware Mapping – TreeMatch: The

“TreeMatch” algorithm [14] aims to minimize data move-

ment cost for mapping a group of MPI processes onto a CMP

machine. It takes as input the machine’s cache topology and

an inter-process communication matrix. The cache topology

is modeled as a tree with cores as leaves. The inter-process

communication matrix describes the data transfer volumes

between each pair of MPI processes. TreeMatch incremen-

tally divides processes into non-overlapping groups whose

sizes are equal to the arity of each level of the topology

tree, starting from the leaf level and up to the root. At each

level, the grouping uses a greedy heuristic that minimizes

inter-group communication volume. After process groupings

at all levels of the cache topology tree are determined, the

mapping of processes to cores can be identified.

For System S applications, since inter-thread communica-

tions are explicitly specified at the SPL level (via Threaded

Ports), it is straightforward to determine the communication

relationship between threads. System S also has profiling

support to record the total data volumes passing through

Threaded Ports, based on which the inter-thread communi-

cation matrix can be constructed. Greedy partitioning is then

applied to determine the thread mapping.

3) Sharing Aware Mapping – TreeMatch-S: We have

developed the “TreeMatch-S” algorithm (shown in Fig-

ure 8), which extends TreeMatch by additionally considering

operator sharing between threads. Since both inter-thread

communication and operator sharing can be viewed as

data sharing between threads, TreeMatch-S quantifies these

two relationships with a uniform metric that measures the

’intensity’ of data sharing. This intensity depends on: (i) the

amount of data shared by threads, which depends on the size

of shared operators’ internal states, and (ii) on how threads

access such data, i.e., thread cache access behavior.

The metric is obtained with the DynamoRIO/Umbra tool,

which measures threads’ cache access at cache line level.

DynamoRIO [1] uses dynamic instrumentation of binary

executables to obtain various program characteristics at

instruction granularity. Umbra [31] adds a set of plug-ins

to DynamoRIO for tracking program’s memory references.

We measure thread cache behavior using Umbra’s cache
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line ownership tracking capability [32]. During program

execution, Umbra assigns an ownership bitmap in shadow

memory for each application-accessed cache line. Each bit in

the bitmap represents one thread, and setting a bit to 1 means

the corresponding thread owns a copy of that cache line in its

private cache. Umbra dynamically inserts instructions before

every memory access instruction to maintain the ownership

bitmaps. When a thread reads a cache line, it installs a

copy of that cache line in its private cache; accordingly,

the instructions inserted by Umbra set thread’s bit in that

cache line’s ownership bitmap. If a thread updates a cache

line, it invalidates all other threads’ copies of that cache

line; Umbra-inserted instructions accordingly set the writing

thread’s bit and clear all other bits in the bitmap.

With cache line ownership tracking, thread sharing inten-

sity is measured as follows. (1) It records the last thread that

updates each cache line, using an array of counters for each

thread to record its interaction intensity with other threads.

(2) When a thread reads a cache line of which it does not

own a copy (a cache miss) or updates a cache line which it

does not exclusively own (a cache invalidation), its counter

corresponding to the last updating thread of that cache line

is increased by 1. (3) When the program finishes, a thread

correlation matrix is constructed from threads’ counters.

This matrix records the sharing intensity between thread

which uniformly captures both inter-thread communication

and operator sharing relationships. TreeMatch-S uses this

thread correlation matrix and applies thread grouping and

mapping in the same way as TreeMatch.

4) Holistic Mapping: Neither TreeMatch nor TreeMatch-

S considers shared resource contention between threads. The

Holistic Mapping algorithm takes into account both sharing

AND contention intensity between threads and strikes a

balance between them to determine an appropriate mapping.

To mitigate contention on shared memory resources (e.g.,

last level cache, FSB), we need to quantify each thread’s

demand on those resources and distribute those demands

in a balanced way. Previous work [34, 26] suggests that

the Last Level Cache Miss Rate (measured as number of

last level cache misses per thousand instructions) is a good

measure of a thread’s demand on those resources. This is

because the LLC miss rate not only indirectly measures

a thread’s working set size (in terms of how much of

its working set cannot fit into last level cache), but also

measures how much traffic it imposes on the Front Side

Bus. We adopt this approach and obtain each thread’s LLC

miss rate values as follows. We first apply TreeMatch-S to

get an initial thread mapping. We then run the application

on the target machine with this mapping and measure the

relevant hardware performance counter events. We use the

Likwid tool [2] to collect performance counter values and

calculate the LLC miss rate for each thread.

With the generated measurements, the Holistic Mapping

method groups threads in accordance with the cache topol-

ogy tree. It treats the grouping of threads at each level

as a graph partitioning problem. Each thread is assigned a

weight that is its LLC miss rate, and each pair of threads is

assigned a weight that represents the data sharing intensity

obtained with the TreeMatch-S measurements. The goal of

graph partitioning is to reduce cross-group data sharing and

in addition, to maintain a reasonable balance of aggregate

LLC miss rate values among thread groups. Partitioning is

performed with the SCOTCH graph partitioning tool [3].

5) Additional Implementation Details:
NUMA Effect: When running on a NUMA machine, each

thread initialize its operators AFTER binding to target cores

so that its data is placed in local NUMA domain.

Measurement Cost. Obtaining a machine’s cache con-

figuration is a one-time cost. For any application/machine

combination, Exhaustive Search requires a complete run.

For TreeMatch, information about inter-thread communica-

tion can be measured once and used across machines. For

TreeMatch-S, data sharing intensity needs to be measured

once for any given cache line size. Holistic Mapping needs

to obtain the same data sharing intensity information as

TreeMatch-S; it must additionally collect hardware perfor-

mance counter values with one run on target machine.

Sensitivity to Input Data. All four algorithms make map-
ping decisions based on profiling information using sample

input data. If threads’ runtime behavior diverges dramatically

from the profiling runs, the offline mapping generated by

those algorithms may lead to unsatisfactory performance.

One possible solution to this problem is to continuously

monitor and adjust thread mappings at runtime. Since most

streaming applications with which we have worked have

steady behavior (the same observation is made for StreamIt

applications [28]), we leave this topic for future work.

V. PERFORMANCE EVALUATION

We apply StreamMap to two real-world streaming appli-

cations (VWAP and LOIS) on three CMP machines whose

architectures are shown in Figure 2. All machines runs Red

Hat Enterprise Linux Server release 5.8. The diversity of

machines’ cache structures helps assessing the effectiveness

of StreamMap across different CMP platforms.

For comparison, we also measure the application perfor-

mance achieved without StreamMap, i.e., we run application
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Figure 12. Throughput of VWAP with Small Sliding Window (Normalized to the Throughput of Single-Threaded VWAP with Default OS Scheduler).

without setting thread affinity and let the OS scheduler de-

cide the core on which each thread runs. On a typical Linux

OS, the scheduler schedules threads based on core idleness

and may migrate threads across cores during execution.

A. VWAP Application Performance

The VWAP application ingests financial ticket streams

containing trade and quota data from a stock exchange and

detects bargains from the data. As shown in Figure 9, input

data streams flow into VWAP via a source operator. A split

operator uses a hash function to route each tuple to one of

the downstream branches. Each branch has an aggregator

operator to maintain a running average of trades and a join

operator with a sliding window where each new quota tuple

will be matched with trades to determine bargains. There is

one source thread executing the subgraph from the source to

the split operator. Each downstream branch is executed by a

worker thread. The source thread passes data to each worker
thread via a separate Threaded Port queue. Worker threads

do not communicate or share operator with each other.

We run VWAP with two different configurations: the first

(referred to as “Small Window”) sets the sliding window size

to 5 tuples, and the second (referred to as “Large Window”)

sets the sliding window size to 75000 tuples. We use a

sample input dataset consisting of a day of traces. We use

a subset of this sample dataset for StreamMap to quickly

calculate offline thread mappings and use the whole dataset

to measure resulting application performance.

Figure 12 shows the normalized throughput of VWAP

with “Small Window” configuration. We make three ob-

servations from the results. First, the maximum difference
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Figure 13. Memory Reuse Distance of VWAP with 4 Threads.

between the best and worst performing mappings is 27%

on 4-Core UMA, 43% on 8-Core UMA, and 68% on 8-

Core NUMA. On both 8-Core UMA and 8-Core NUMA

machines, the differences are the most evident with 3, 4 and

5 threads. Figure 11 shows the inter-thread communication

and correlation matrices for VWAP with 4 threads. Both ma-

trices reveal that the source thread has balanced data sharing

relationships with each of the three worker threads, which

is expected from VWAP’s dataflow structure. Figure 11 also

shows the best and worst performing mappings on 8-Core

UMA. Placing intensively communicating threads close to

each other is beneficial to application performance. As

VWAP scales beyond 6 threads, the performance differences

of different mappings diminish. This is due to the symmetry

of machines’ cache topologies and the balanced data and

work distribution among worker threads in VWAP.

Second, TreeMatch, TreeMatch-S, and Holistic Mapping

all generate the best thread mapping in all cases. Since

threads in VWAP do not share operators, thread correlation

matrix only reflects inter-thread communication intensity

(Figure 11), based on which TreeMatch-S derives the same

mappings as TreeMatch. We further measure threads’ cache
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Figure 14. Throughput of VWAP with Large Sliding Window (Normalized to the Throughput of Single-Threaded VWAP with Default OS Scheduler).

behavior to explain why Holistic Mapping gives the same

mappings as TreeMatch-S. We use Reuse Distance [33] to

measure cache locality: when a thread access a cache line,

this access’ Reuse Distance is the number of distinct cache

lines referenced between current access and the previous

access to that cache line; a cache line access with a long

reuse distance has a high probability of being a cache miss.

Figure 13 shows the reuse distance histograms of VWAP

with 4 threads.We see that all 4 threads has good temporal

locality since the majority of cache line accesses can fit

into L1 cache. We also measure the working set size (the

number of distinct cache lines touched) of each thread over

one million instructions, and find that the working set size of

the Source thread is 465 cache lines, and that of each Worker

threads is 9 or 10 cache lines. Due to the small working set

sizes, contention on last level cache and FSB is not severe

among VWAP threads. Therefore, Holistic Mapping has the

same results as TreeMatch and TreeMatch-S.
Third, Figure 12 shows that the mappings by the default

Linux OS scheduler is close to the worst cases for most

tests. This is because the Linux scheduler tends to spread

threads across the system, and this hurts the performance of

VWAP which is communication dominant.
Interestingly, the performance of VWAP with “Large

Window” configuration (shown in Figure 14) show trends

opposite to the “Small Window” case: spreading threads

away frome each other achieves better performance (up

to 7%) than placing them close. This is because worker

threads with large sliding windows have large working sets,

so the contention on shared cache and memory bandwidth

outweighs inter-thread communication. As a result, both

TreeMatch and TreeMatch-S generate sub-optimal mappings

due to failure to consider resource contention. Holistic

Mapping, however, still finds the best mapping. This clearly

shows the importance of holistically considering both data

sharing and resource contention for thread mapping.

B. LOIS Application Performance
The LOIS application detects outliers in radio data from

outer space. The version of LOIS used in this paper reads

from a disk file containing a sample dataset collected from

a Scandinavian radiotelescope in Europe. Figure 10 shows

a 4-thread setup of LOIS. Thread 1 calculates point-wise

coordinates for each input data record which are consumed

by Thread 2. Thread 2 and 3 maintains aggregate statistics on

two sliding windows of past records. Thread 2 produces data

to feed into Thread 3, and also synchronizes with Thread

3 on a shared Barrier operator. Thread 4 receives from

Thread 2 and 3 the upper and lower bounds of coordinates

derived from the sliding windows, and finds all outliers in

the incoming data record. 5-thread and 6-thread versions of

LOIS are constructed by further introducing Threaded Ports

to split the work of Thread 3 and 4.

Figure 15 shows the performance of LOIS. Both

TreeMatch-S and Holistic Mapping are able to find the best-

performing thread mapping in all cases which outperforms

the worst mapping and the default OS mapping by up to

2.4 and 1.8 times, respectively. TreeMatch, on the other

hand, sometimes gives sub-optimal mappings. To explain

the difference between TreeMatch and TreeMatch-S, we

look at the inter-thread communication matrix and thread

correlation matrix for LOIS with 4 threads. Figure 16 shows

that thread correlation measurements capture data sharing

between threads (especially between Thread 2 and 3 due

to their sharing of operators), based on which the graph

partitioning algorithm makes better decisions than just using

inter-thread communication volumes.

Holistic Mapping achieves the same best mapping as

TreeMatch-S for LOIS. This is because resource contention

is not severe among threads in LOIS. Figure 17 shows the

reuse distance histograms of 4 LOIS threads. Although the

LOIS threads show worse temporal locality than VWAP

(since the histograms are more scattered towards larger dis-

tances), the majority of cache line accesses can still fit into

L2 cache. Therefore, the benefit brought by placing thread

with intensive data sharing close to each other outweighs

the penalty of resource contention.

In terms of cost, Exhaustive Search has poor scalability.

For example, enumerating all possible mappings of 6-thread

LOIS on 8-Core UMA machine takes 600 profiling runs even

after eliminating redundant mappings based on symmetry

of cache topology. TreeMatch needs one profiling run with

System S runtime’s communication profiling facility, but the

profiling overhead is negligible. TreeMatch-S needs one run

with binary instrumentation which can slow down VWAP

and LOIS by up to 8×. Holistic Mapping requires two profil-

ing runs: the first run is the same as TreeMatch-S with binary

instrumentation enabled, and the second one is with low-

overhead hardware performance counter monitoring enabled.
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Figure 15. Throughput of LOIS (Normalized to the Throughput of Single-Threaded LOIS with Default OS Scheduler).
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C. Major Observations from Experimental Results

(1) There is up to 2.4x difference between the best and

worst thread mappings. The difference is more evident when

there is more asymmetry in application structure and/or

cache topology. Since streaming applications with compli-

cated dataflows and parallelisms are emerging and current

and next generation of CMPs by major vendors are adopting

deep and complex cache structures, cache topology aware

mapping will show growing importance in the future.

(2) The Linux OS tends to spread threads, which does

not always lead to the best performance and sometimes

constitutes the worst case (especially for applications whose

performance is dominated by inter-thread data sharing).

Explicit thread binding also results in more consistent per-

formance than the Linux OS scheduler.

(3) When deciding the optimal thread mapping, it is

necessary to consider both constructive data sharing and

destructive resource contention between threads. This is

demonstrated by our Holistic Mapping algorithm which

always finds the best mappings.

VI. RELATED WORK

A. Mapping Multi-Threaded Programs on CMPs

Communication and Sharing Aware Mapping. The prob-
lem of mapping a multi-process or multi-threaded program

to a set of underlying resources to minimize program execu-

tion time is NP-hard [8]. Various heuristics have been pro-

posed with the objective of minimizing communication cost,

such as graph partitioning [5] and graph matching [19]. [24]

implements a OS-level scheduler which places intensively-

interacting threads close to each other. As shown in this

paper, arranging data movement based on cache topology

alone does not capture all important trade-offs and may lead

to sub-optimal overall performance.

Contention Aware Mapping. [18] shows that contention

on shared memory resources can severely degrade applica-
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Figure 17. Memory Reuse Distance of LOIS.

tion performance on CMPs. Hardware [21] and OS level [17]

cache partitioning, user level thread scheduling [34], and

compiler-time transformation [22, 25] are proposed to mit-

igate resource contention among processes and/or threads.

However, they only work for independent threads or pro-

cesses with no communication or sharing relationships.

Holistic Mapping. [26] exploits thread mapping for op-

timizing multi-threaded datacenter applications on CMPs.

However, the mapping policies in [26] either use exhaustive

search or require a new algorithm for each type of cache

topology. Our new contributions include an in-depth study

of streaming application’s cache behavior and a holistic

mapping algorithm which is more general and scalable.

B. Optimizing Streaming Applications on CMPs

Algorithmic Optimization of Streaming Algorithms. Exam-
ples include join [27, 11], aggregation [6], sorting [10], and

frequency counting [7]. Operators in a streaming program

may interact with each other in complicated ways, and

such complexity is manifested at thread level at runtime.

Managing such complicated interaction is beyond the scope

of tuning individual operators, so orchastration provided by

StreamMap is necessary to coordinate threads’ execution.

Besides, StreamMap does not require knowledge of opera-

tors’ internal implementation, and uses profiling information

collected at middleware level to make mapping decisions.

Therefore, StreamMap is orthogonal and complementary to

code tuning of individual streaming operators.

Compile-Time Scheduling and Mapping of Streaming Pro-
grams on CMPs. Pioneered by StreamIt [13], work has

been done in optimizing static scheduling of streaming

programs on multicores [16, 29, 30]. Those work apply

compiler analysis and code transformation to exploit various

parallelism in program to balance computation load among

threads. Since most of those work target Cell B.E. architec-
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ture which has explicitly managed memory hierarchy, they

commonly try to hide data movement cost by overlapping

communication with computation in the execution schedule.

In comparison, StreamMap targets cache topologies seen in

x86 CMP architecture which impose distinct challenges such

as contention on shared resources, and it works at thread

level without heroic compiler analysis.

Cache-Aware Optimization of Streaming Programs. [23]
proposed three techniques to optimize StreamIt programs

on a uniprocessor: execution scaling, buffer manager, and

register replacement. [20] extends execution scaling to multi-

core. Both work assumes synchronous data flow model to

calculate static steady state schedule, and [20] does not

consider thread mapping to reduce contention or thread

synchronization cost. [4] theoretically shows that cache-

efficient scheduling of streaming programs on a uniprocessor

can be modeled as a partitioning problem and some special

cases can be solved in polynomial time. Our work targets

multi-core processors, uses mapping algorithms different

from the one proposed in [4], implements those algorithms

inside System S middleware, and evaluates them with real-

world applications on representative architectures.

VII. CONCLUSIONS AND FUTURE WORK

This paper demonstrates that CMP’s cache topology can

have a significant impact on the performance of multi-

threaded streaming applications. Our StreamMap approach

automatically places threads to cores to control the data

sharing and resource contention between threads, and can

improve real-world streaming applications’ performance by

up to 1.8 times over the default Linux OS scheduler.

Future directions of this research are twofold. We plan to

study how to use StreamMap to provide feedback informa-

tion to System S’ compiler to optimize operator fusion. We

also plan to apply StreamMap to a wider range of streaming

applications, e.g., dynamic graph analysis.
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