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Abstract—Distributed state monitoring plays a critical role
in Cloud datacenter management. One fundamental problem
in distributed state monitoring is to minimize the monitoring
cost while maximizing the monitoring accuracy at the same
time. In this paper, we present Volley, a violation likelihood
based approach for efficient distributed state monitoring in
Cloud datacenters. Volley achieves both efficiency and accuracy
with a flexible monitoring framework which uses dynamic
monitoring intervals determined by the likelihood of detecting
state violations. Volley consists of three unique techniques. It
utilizes efficient node-level adaptation algorithms that mini-
mize monitoring cost with controlled accuracy. Volley also
employs a distributed scheme that coordinates the adaptation
on multiple monitor nodes of the same task for optimal task-
level efficiency. Furthermore, it enables multi-task level cost
reduction by exploring state correlation among monitoring
tasks. We perform extensive experiments to evaluate Volley
with system, network and application monitoring tasks in
a virtualized datacenter environment. Our results show that
Volley can reduce considerable monitoring cost and still deliver
user specified monitoring accuracy under various scenarios.

Keywords-Distributed, State, Monitoring, Datacenter, Likeli-
hood, Correlation, Adaptation

I. INTRODUCTION

To ensure performance and availability of distributed sys-
tems and applications, administrators often run a large num-
ber of monitoring tasks to continuously track the global state
of a distributed system or application by collecting and ag-
gregating information from distributed nodes. For instance,
to provide a secured datacenter environment, administrators
may run monitoring tasks that collect and analyze datacenter
network traffic data to detect abnormal events such as
Distributed Denial of Service (DDoS) attacks [1]. As another
example, Cloud applications often rely on monitoring and
dynamic provisioning to avoid violations to Service Level
Agreements (SLA). SLA monitoring requires collecting of
detailed request records from distributed application-hosting
servers, and checks if requests are served based on the SLA
(e.g., whether the response time for a particular type of
requests is less than a given threshold). We refer to this type
of monitoring as distributed state monitoring [2], [3], [4], [5]
which continuously examines if a certain global state (e.g.,
traffic flowing to an IP) of a distributed system violates a
predefined condition. Distributed state monitoring tasks are
useful for detecting signs of anomalies and are widely used

in scenarios such as resource provisioning [6], distributed
rate limiting [2], QoS maintenance [7] and fighting network
intrusion [8].

One substantial cost aspect in distributed state monitoring
is the overhead of collecting and processing monitoring data,
a common procedure which we refer to as sampling. First,
sampling operations can be resource-intensive. For example,
sampling in the aforementioned DDoS attack monitoring
may involve packet logging and deep packet inspection over
large amounts of datacenter network traffic data [9]. Even for
relatively simple tasks such as SLA monitoring, the cost can
still be substantial for running a large number of such tasks
for various applications. This is also the primary reason that
commercial monitoring services and systems often provide
at most 1-minute level periodical sampling granularity, if not
at 5-minute level or 15-minute level [10]. Second, users of
Cloud monitoring services (e.g., Amazon’s CloudWatch) pay
for monetary cost proportional to the frequency of sampling
(pay-as-you-go). Such monitoring costs can account for up
to 18% of total operation cost [10]. Clearly, sampling cost
is a major factor for the scalability and effectiveness of
datacenter state monitoring.

Many existing datacenter monitoring systems provide
periodical sampling as the only available option for state
monitoring (e.g., CloudWatch [10]). Periodical sampling
performs continuous sampling with a user-specified, fixed
interval. It often introduces a cost-accuracy dilemma. On one
hand, one wants to enlarge the sampling interval between
two consecutive sampling operations to reduce sampling
overhead. This, however, also increases the chance of mis-
detecting state violations (e.g., mis-detecting a DDoS at-
tack or SLA violation), because state violations may occur
without being detected between two consecutive sampling
operations with large intervals. In addition, coarse sampling
intervals reduce the amount of data available for offline event
analysis, e.g., 15-minute sampling is very likely to provide
no data at all for the analysis of an event occurred during a
sampling interval. On the other hand, while applying small
sampling intervals lowers the chance of mis-detection, it
can introduce significantly high resource consumption or
monitoring service fees. In general, determining the ideal
sampling interval with the best cost and accuracy trade-off
for periodical sampling is difficult without studying task-
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specific characteristics such as monitored value distributions,
violation definitions and accuracy requirements. It is even
harder when such task-specific characteristics change over
time, or when a task performs sampling over a distributed
set of nodes.

We argue that one useful alternative to periodical sampling
is a flexible monitoring framework where the sampling inter-
val can be dynamically adjusted based on how likely a state
violation will be detected. This flexible framework allows us
to perform intensive monitoring with small sampling inter-
vals when the chance of a state violation occurring is high,
while still maintaining overall low monitoring overhead by
using large intervals when the chance of a state violation
occurring is low. As state violations (e.g., DDoS attacks
and SLA violations) are relatively rare during the lifetime of
many state monitoring tasks, this framework can potentially
save considerable monitoring overhead, which is essential
for Cloud state monitoring to achieve efficiency and high
scalability.

In this paper, we propose Volley, a violation likelihood
based approach for distributed state monitoring. Volley ad-
dresses three key challenges in violation likelihood based
state monitoring. First, we devise a sampling interval adapta-
tion technique that maintains a user-specified monitoring ac-
curacy while continuously adjusting the sampling interval to
minimize monitoring overhead. This interface makes Volley
easy to configure as users can specify an intuitive targeted
monitoring accuracy (e.g., < 1% miss-detection), rather
than choosing sampling intervals that depend on monitoring
tasks and data. It also employs a set of low-cost estimation
methods to ensure adaptation efficiency. Second, for tasks
that perform sampling over distributed nodes, we develop a
distributed coordination scheme that not only safeguards the
global task-level monitoring accuracy, but also minimizes
the total cost. Finally, Volley also leverages state-correlation
to further reduce monitoring cost across related tasks in a
datacenter.

To the best of our knowledge, Volley is the first violation-
likelihood based state monitoring approach that achieves
both efficiency and controlled accuracy. We perform exten-
sive experiments to evaluate the effectiveness of Volley with
real world monitoring tasks and data in a testbed virtualized
Cloud datacenter environment running 800 virtual machines.
Our results indicate that Volley reduces monitoring work-
loads by up to 90% and at the same time, achieves accuracy
that is better or close to the user-specified level. For virtual
network monitoring, Volley reduces the CPU utilization of
Dom0 from 20-34% to a mere 5%, which in turn minimizes
the interference with application workloads and improves
monitoring scalability.

II. PROBLEM DEFINITION

A distributed state monitoring task continuously tracks
a certain global state of a distributed system and raises a

state alert if the monitored global state violates a given
condition. The global state is often an aggregate result
of monitored values collected from distributed nodes. For
example, assume there are n web servers and the i-th server
observes a timeout request rate vi (the number of timeout
requests per unit time). A task may check if the total
timeout request rate over all servers exceeds a given level
T , i.e.,

∑
vi > T . The general setting of a distributed state

monitoring task includes a set of monitor nodes (e.g., the n
web servers) and a coordinator. Each monitor can observe
the current value of a variable (vi) through sampling, and
the coordinator aggregates local monitor values to determine
if a violation condition is met (e.g., whether

∑
vi > T ). We

say a state violation occurs if the violation condition is met.
We define states based on the monitored state value and

a user-defined threshold, which is commonly used in many
different monitoring scenarios. The monitored state value
can be a single metric value (e.g., CPU utilization). It can
also be a scalar output of a function taking vector-like inputs,
e.g., a DDoS detection function may parse network packets
to estimate the likelihood of an attack. We assume that all
distributed nodes have a synchronized wall clock time which
can be achieved with the Network Time Protocol (NTP)
at an accuracy of 200 microseconds (local area network)
or 10 milliseconds (Internet) [11]. Hence, the global state
can be determined based on synchronized monitored values
collected from distributed nodes.

Existing works on distributed state monitoring focus on
dividing a distributed state monitoring task into local tasks
that can be efficiently executed on distributed nodes with
minimum inter-node communication [3], [5]. As a common
assumption, a monitoring task employs a user specified
sampling interval that is fixed across distributed nodes and
over the entire task lifetime (more details in Section VI).
In this paper, we address a different yet important problem
in distributed state monitoring, how to achieve efficient and
accurate monitoring through dynamic sampling intervals.

A. A Motivating Example

DDoS attacks bring serious threats to applications and
services running in datacenters. To detect DDoS attacks,
some techniques [9] leverage the fact that most existing
DDoS attacks lead to a growing difference between incom-
ing and outgoing traffic volumes of the same protocol. For
example, a SYN flooding attack often causes an increasing
asymmetry of incoming TCP packets with SYN flags set and
outgoing TCP packets with SYN and ACK flags set [9]. State
monitoring based on such techniques watches the incoming
rate of packets with SYN flags set Pi observed on a certain
IP address, and the outgoing rate of packets with SYN and
ACK flags set Po observed on the same IP address. It then
checks whether the traffic difference ρ = Pi − Po exceeds
a given threshold, and if true, it reports a state alert. Such
monitoring tasks collect network packets and perform deep
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Figure 1. A Motivating Example

packet inspection [12] in repeated monitoring cycles. For
brevity, we refer to each cycle of packets collection and
processing as sampling.

Periodical Sampling versus Dynamic Sampling. Sam-
pling frequency plays a critical role in this type of DDoS
attack monitoring. First, the sampling cost in the DDoS
attack monitoring case is non-trivial. As we show later in the
evaluation section, frequent collecting and analyzing packets
flowing to or from virtual machines running on a server leads
to an average of 20-34% server CPU utilization. As a result,
reducing the sampling frequency is important for monitoring
efficiency and scalability. Second, sampling frequency also
determines the accuracy of monitoring. Figure 1 shows an
example of a task which monitors the traffic difference
between incoming and outgoing traffic for a given IP. The
x-axis shows the time where each time point denotes 5
seconds. The y-axis shows the traffic difference ρ. The
dashed line indicates the threshold. We first employ high
frequency sampling which we refer to as scheme A and
show the corresponding trace with the curve in Chart (a).
Clearly, scheme A records details of the value changes
and can detect the state violation in the later portion of
the trace where ρ exceeds the threshold. Nevertheless, the
high sampling frequency also introduces high monitoring
cost, and most of the earlier sampling yields little useful
information (no violation). One may sample less frequently
to reduce monitoring cost. For example, scheme B (bar)
reduces considerable monitoring cost by using a relatively
large monitoring interval. Consequently, as the curve in
Chart (b) shows, scheme B also misses many details in the
monitored values, and worst of all, it fails to detect the state
violation (between the gap of two consecutive samples of
scheme B). In general, it is difficult to find a fixed sampling
frequency for a monitoring task that achieves both accuracy
and efficiency.

One possible way to avoid this issue is to use dynamic
sampling schemes where the sampling frequency is contin-
uously adjusted on the fly based on the importance of the
results. Scheme C (circle) in Chart (c) gives an example of
dynamic sampling. It uses a low sampling frequency at first,
but switches to high frequency sampling when a violation

is likely to happen.
While such an approach seems promising, it also involves

several fundamental obstacles. First, we must find a way
to measure and estimate violation likelihood before using
it to adjust sampling intervals. The estimation should also
be efficient. Second, since sampling introduces a trade-off
between cost and accuracy, a dynamic sampling scheme
should provide accuracy control by meeting a user-specified
accuracy goal, e.g., “I can tolerate at most 1% state alerts
being missed”.

Distributed State Monitoring. When the monitored
object is a set of servers hosting the same application,
DDoS attack monitoring requires collecting traffic data of
distributed servers. For example, suppose the traces in Chart
(a) and (d) show the traffic difference on two distributed
servers. The overall traffic difference on the two servers is
the sum of trace values (denoted as v1 and v2) in Chart
(a) and (d), and the monitoring task now checks if the
overall traffic difference exceeds a global threshold T . For
the sake of this example, we assume T = 800. While one
can collect all packets on both servers (monitors) and send
them to a coordinator which parses the packets to see if
v1 + v2 > T , a more efficient way is to divide the task
into local ones running on each monitor to avoid frequent
communication. For example, we can assign monitors in
Chart (a) and Chart (d) with local threshold T1 = 400 and
T2 = 400 respectively. As a result, as long as v1 < T1

and v2 < T2, v1 + v2 < T1 + T2 = T and no violation is
possible. Hence, each server can perform local monitoring
and no communication is necessary. We say a local violation
occurs when a local threshold is exceeded, e.g., v1 > T1.
Clearly, the coordinator only needs to collect values from
both monitors to see if v1 + v2 > T (referred to as a global
poll) when a local violation happens.

The above local task based approach is employed in most
existing state monitoring works [3], [5]. By dividing a global
task into local ones, it also introduces new challenges for
dynamic sampling. First, dynamic sampling schemes tune
sampling intervals on individual monitors for a monitor-
level accuracy requirement. For a task involving distributed
monitors, how should we coordinate interval adjusting on
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each monitor to meet a task-level accuracy requirement?
Second, suppose such coordination is possible. What prin-
ciple should we follow to minimize the total monitoring
cost? For instance, the trace in Chart (d) causes more local
violations than Chart (a). Should we enforce the same level
of accuracy requirement on both monitors?

State Correlation. Datacenter management relies on a
large set of distributed state monitoring tasks. The states of
different tasks are often related. For example, suppose the
trace in Chart (e) shows the request response time on a server
and the trace in Chart (f) shows the traffic difference on the
same server. If we observe growing traffic difference in (f),
we are also very likely to observe increasing response time
in (e) due to workloads introduced by possible DDoS at-
tacks. Based on state correlation, we can selectively perform
sampling on some tasks only when their correlated ones
suggest high violation likelihood. For instance, since increas-
ing response time is a necessary condition of a successful
DDoS attack, we can trigger high frequency sampling for
DDoS attack monitoring only when the response time is
high to reduce monitoring cost. Designing such a state-
correlation based approach also introduces challenges. How
to detect state correlation automatically? How to efficiently
generate a correlation based monitoring plan to maximize
cost reduction and minimize accuracy loss? These are all
important problems deserving careful study.

B. Volley Overview

Volley consists of dynamic sampling techniques at three
different levels. Monitor Level Sampling dynamically ad-
justs the sampling interval based on its estimation of viola-
tion likelihood. The algorithm achieves controlled accuracy
by choosing a sampling interval that makes the probability
of mis-detecting violations lower than a user specified er-
ror allowance. Furthermore, we devise violation likelihood
estimation methods with negligible overhead. Task Level
Coordination is a lightweight distributed scheme that ad-
justs error allowance allocated to individual nodes in a way
that both satisfies the global error allowance specified by
the user, and minimizes the total monitoring cost. Multi-
Task Level State Correlation based scheme leverages the
state correlation between different tasks to avoid sampling
operations that are least likely to detect violations across
all tasks. It automatically detects state correlation between
tasks and schedules sampling for different tasks at the
datacenter level considering both cost factors and degree of
state correlation. Due to space limitation, we discuss the first
two techniques in this paper and leave details of the state-
correlation based monitoring to our technical report [13].

III. ACCURACY-DRIVEN DYNAMIC SAMPLING

A dynamic sampling scheme has several requirements.
First, it needs a method to estimate violation likelihood in a
timely manner. Second, a connection between the sampling

interval and the mis-detection rate should be established, so
that the dynamic scheme can strive to maintain a certain level
of error allowance specified by users. Third, the estimation
method should be efficient because it is invoked frequently
to quickly adapt to changes in monitoring data. We next
address these requirements and present the details of our
approach.

A. Violation Likelihood Estimation

The specification of a monitoring task includes a default
sampling interval Id, which is the smallest sampling interval
necessary for the task. Since Id is the smallest sampling
interval necessary, the mis-detection rate of violations is
negligible when Id is used. In addition, we also use Id as
our guideline for evaluating accuracy. The specification of a
monitoring task also includes an error allowance which is
an acceptable probability of mis-detecting violations (com-
pared with periodical sampling using Id as the sampling
interval). We use err to denote this error allowance. Note
that err ∈ [0, 1]. For example, err = 0.01 means at most
1 percent of violations (that would be detected when using
periodical sampling with the default sampling interval Id)
can be missed.

Recall that state monitoring reports state alerts whenever
v > T where v is the monitored value and T is a given
threshold. Hence, violation likelihood is defined naturally
as follows,

Definition 1: Violation likelihood at time t is defined by
P [v(t) > T ] where v(t) is the monitored metric value
observed at time t.

Before deriving an estimation method for violation likeli-
hood, we need to know 1) when to estimate and 2) for which
time period the estimation should be made. For 1), because
we want the dynamic sampling scheme to react to changes in
monitored values as quickly as possible, estimation should
be performed right after a new monitored value becomes
available. For 2), note that uncertainties are introduced by
unseen monitoring values between the current sampling and
the next sampling (inclusive). Hence, estimation should be
made for the likelihood of detecting violations within this
period.

Violation likelihood for the next (future) sampled value is
determined by two factors: the current sampled value and
changes between two sampled values. When the current
sampled value is low, a violation is less likely to occur
before the next sampling time, and vice versa. Similarly,
when the change between two continuously sampled values
is large, a violation is more likely to occur before the
next sampling time. As a result, estimation should also be
based on the current sampled value and changes between
sampled values. Let v(t1) denote the current sampled value,
and v(t2) denote the next sampled value (under current
sampling frequencies). Let δ be the difference between the
two continuously sampled values when the default sampling
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interval is used. We consider δ as a time-independent1

random variable. Hence, the violation likelihood for a value
v(t2) that is sampled i default sampling intervals after v(t1)
is,

P [v(t2) > T ] = P [v(t1) + iδ > T ]

To efficiently estimate this probability, we apply Cheby-
shev’s Inequality [14] to obtain its upper bound. The one-
sided Chebyshev’s inequality has the form P (X − μ �

kσ) �
1

1+k2 , where X is a random variable, μ and σ are
the mean and the variance of X , and k > 0. The inequality
provides an upper bound for the probability of a random
variable “digressing” from its mean by a certain degree,
regardless of the distribution of X . To apply Chebyshev’s
inequality, we have

P [v(t1) + iδ > T ] = P [δ >
T − v(t1)

i
]

Let kσ + μ = T−v(t1)
i

where μ and σ are the mean and
variance of δ; we obtain k = T−v(t1)−iμ

iσ
. According to

Chebyshev’s inequality, we have

P [δ >
T − v(t1)

i
] � 1/(1 + (

T − v(t1)− iμ

iσ
)2) (1)

When selecting a good sampling interval, we are inter-
ested in the corresponding probability of mis-detecting a
violation during the gap between two continuous samples.
Therefore, we define the mis-detection rate for a given
sampling interval I as follows,

Definition 2: Mis-detection rate β(I) for a sampling in-
terval I is defined as P{v(t1+Δt) > T,Δt ∈ [1, I]} where
I(� 1) is measured by the number of default sampling
intervals.
Furthermore, according to the definition of β(I), we have

β(I) = 1− P{
⋂

i∈[1,I]

(v(t1) + iδ � T )}

Because δ ∈ R is time-independent, we have

β(I) = 1−
∏

i∈[1,I]

(1− P (v(t1) + iδ > T )) (2)

According to Inequality 1, we have

β(I) � 1−
∏

i∈[1,I]

(T−v(t1)−iμ

iσ
)2

1 + (T−v(t1)−iμ

iσ
)2

(3)

Inequality 3 provides the method to estimate the probability
of mis-detecting a violation for a given sampling interval I .

1We capture the time-dependent factor with online statistics update which
is described in Section III-B.
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Figure 2. Violation Likelihood Based Adaptation

B. Violation Likelihood Based Adaptation

Figure 2 illustrates an example of violation likelihood
based dynamic sampling. The dynamic sampling algorithm
adjusts the sampling interval each time when it completes
a sampling operation. Once a sampled value is available, it
computes the upper bound of the mis-detection rate β(I)
according to inequality 3. We denote this upper bound
with β(I). As long as β(I) � β(I) � err where err is
the user-specified error allowance, the mis-detection rate is
acceptable. To reduce sampling cost, the algorithm checks
if β(I) � (1 − γ)err for p continuous times, where γ is a
constant ratio referred as the slack ratio. If true, the algo-
rithm increases the current sampling interval by 1 (1 default
sampling interval), i.e. I ← I +1. The slack ratio γ is used
to avoid risky interval increasing. Without γ, the algorithm
could increase the sampling interval even when β(I) = err,
which is almost certain to cause β(I + 1) > err. Through
empirical observation, we find that setting γ = 0.2, p = 20
is a good practice. The sampling algorithm starts with the
default sampling interval Id, which is also the smallest
possible interval. In addition, users can specify the maximum
sampling interval denoted as Im, and the dynamic sampling
algorithm would never use a sampling interval I > Im. If it
detects β(I) > err, it switches the sampling interval to the
default one immediately. This is to minimize the chance of
mis-detecting violations when the distribution of δ changes
abruptly.

Because we use the upper bound of violation likelihood
to adjust sampling intervals and the Chebyshev bound is
quite loose, the dynamic sampling scheme is conservative on
employing large sampling intervals unless the task has very
stable δ distribution or the monitored values are consistently
far away from the threshold. As sampling cost reduces sub-
linearly with increasing intervals (1 → 1

2 →
1
3 · · · ), being

conservative on using large intervals does not noticeably hurt
the cost reduction performance, but reduces the chance of
mis-detecting important changes between sampling.

Since computing inequality 3 relies on the mean and
the variance of δ, the algorithm also maintains these two
statistics based on observed sampled values. To update
these statistics efficiently, we employ an online updating
scheme[15]. Specifically, let n be the number of samples
used for computing the statistics of δ, μn−1 denote the
current mean of δ and μn denote the updated mean of δ.
When the sampling operation returns a new sampled value
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v(t), we first obtain δ = v(t)−v(t−1). We then update the
mean by μn = μn−1 +

δ−μn−1

n
. Similarly, let σn−1 be the

current variance of δ and σn be the updated variance of δ;

we update the variance by σ2
n =

(n−1)σ2

n−1
+(δ−μn)(δ−μn−1)

n
.

Both updating equations are derived from the definition of
mean and variance respectively. The use of online statistics
updating allows us to efficiently update μ and σ without
repeatedly scanning previous sampled values. Note that
sampling is often performed with sampling intervals larger
than the default one. In this case, we estimate δ̂ with
δ̂ = (v(t) − v(t − I))/I , where I is the current sampling
interval and v(t) is the sampled value at time t, and we use
δ̂ to update the statistics. Furthermore, to ensure the statis-
tics represent the most recent δ distribution, the algorithm
periodically restarts the statistics updating by setting n = 0
when n > 1000.

The main cost of the dynamic sampling algorithm consists
of two parts, the sampling cost and the computation cost
of violation likelihood estimation. Sampling operations are
usually much more expensive than violation likelihood esti-
mation, as distributed sampling often involves scheduling of
sampling operations, executing local sampling instructions,
polling sampling data from the monitored system to the
monitor, sampling data persistence and etc. Our experiment
results show that the algorithm saves substantial monitoring
overhead for a wide rage of monitoring tasks.

IV. DISTRIBUTED SAMPLING COORDINATION

A distributed state monitoring task performs sampling
operations on multiple monitors to monitor the global state.
For dynamic sampling, it is important to maintain the
user-specified task-level accuracy while adjusting sampling
intervals on distributed monitors.

A. Task-Level Monitoring Accuracy

Recall that a distributed state monitoring task involves
multiple monitors and a coordinator. Each monitor performs
local sampling and checks if a local condition is violated. If
true, it reports the local violation to the coordinator which
then collects all monitored values from all monitors to check
if the global condition is violated.

The local violation reporting scheme between monitors
and the coordinator determines the relation between local
monitoring accuracy and global monitoring accuracy. When
a monitor mis-detects a local violation, the coordinator may
miss a global violation if the mis-detected local violation
is indeed part of a global violation. Let βi denote the mis-
detection rate of monitor i and βc denote the mis-detection
rate of the coordinator. Clearly, βc �

∑
i∈N βi where N is

the set of all monitors. Therefore, as long as we limit the sum
of monitor mis-detection rates to stay below the specified
error allowance err, we can achieve βc �

∑
i∈N βi � err.
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Figure 3. Distributed Sampling Coordination

B. Optimizing Monitoring Cost

For a given error allowance err, there are different ways
to distribute err among monitors, each of which may lead to
different monitoring cost. For example, suppose trace (e) and
(f) in Figure 1 show values monitored by monitor 1 and 2. As
(f) is more likely to cause violations than (e), when evenly
dividing err among monitor 1 and 2, one possible result is
that I1 = 4 (interval on monitor 1) and I2 = 1 (interval
on monitor 2). The total cost reduction is (1− 1/4) + (1−
1) = 3/4. When assigning more err to monitor 2 to absorb
frequent violations, we may get I1 = 3, I2 = 2 and the
corresponding cost reduction is 2/3 + 1/2 = 7/6 > 3/4.
Therefore, finding the optimal way to assign err is critical
to reduce monitoring cost.

Nevertheless, finding the optimal assignment is difficult.
Brute force search is impractical (O(nm) where m is the
number of monitors and n is the number of minimum
assignable units in err). Furthermore, the optimal assign-
ment may also change over time when characteristics of
monitored values on monitors vary. Therefore, we develop
an iterative scheme that gradually tunes the assignment
across monitors by moving error allowance from monitors
with low cost reduction yield (per assigned err) to those
with high cost reduction yield.

Figure 3 illustrates the process of distributed sampling
coordination. The coordinator first divides err evenly across
all monitors of a task. Each monitor then adjusts its local
sampling interval according to the adaptation scheme we
introduced in Section III to minimize local sampling cost.
Each monitor i locally maintains two statistics: 1) ri, po-
tential cost reduction if its interval increased by 1 which is
calculated as ri = 1− 1

Ii+1 ; 2) ei, error allowance needed to

increase its interval by 1 which is calculated as ei =
β(Ii)
1−γ

(derived from the adaptation rule in Section III-B).
Periodically, the coordinator collects both ri and ei from

each monitor i, and computes the cost reduction yield
yi = ri

ei
. We refer to this period as an updating period,

and both ri and ei are the average of values observed on
monitors within an updating period. yi essentially measures
the cost reduction yield per unit of error allowance. After it
obtains yi from all monitors, the coordinator performs the
following assignment err′i = err yi∑

i
yi

, where err′i is the
assignment for monitor i in the next iteration. Intuitively, this
updating scheme assigns more error allowance to monitors
with higher cost reduction yield. In the previous example,
I1 = 4 and I2 = 1 after the initial even distribution of error
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allowance. As long as e2 is not very large, the coordinator
would continuously assign more error allowance to monitor
2 until I2 = 2, which increases the overall cost reduction
yield.

Typically, the mis-detecting rate we derived in Section
III increases super-linearly with growing sampling inter-
val. As a result, yi decreases with increasing ei, and the
assignment eventually converges to a stable assignment
when the monitored data distribution across nodes does not
significantly change. Furthermore, the tuning scheme also
applies throttling to avoid unnecessary updating. It avoids
reallocating err to a monitor i if erri < err where constant
err is the minimum assignment. Furthermore, it does not
perform reallocation if max{yi/yj , ∀i, j} < 0.1. We set the
updating period to be every thousand Id and err to be err

100 .

V. EVALUATION

We deploy a prototype of Volley in a datacenter testbed
consisting of 800 virtual machines (VMs) and evaluate
Volley with real world network, system and application level
monitoring scenarios. We highlight some of the key results
below:

• The violation likelihood based adaptation technique
saves up to 90% sampling cost. The accuracy loss is
smaller or close to the user specified error allowances.

• The distributed sampling coordination technique opti-
mizes the error allowance allocation across monitors
and outperforms alternative schemes.

A. Experiment Setup

We setup a virtualized datacenter testbed containing 800
VMs in Emulab [16] to evaluate our approach. Figure 4
illustrates the high-level setup of the environment. It consists
of 20 physical servers, each equipped with a 2.4 GHz
64bit Quad Core Xeon E5530 processor, 12 GB RAM
and runs XEN-3.0.3 hypervisor. Each server has a single
privileged VM/domain called Domain 0 (Dom0) which is
responsible for managing the other unprivileged VMs/user
domains [17]. In addition, each server runs 40 VMs (besides
Dom0) configured with 1 virtual CPU and 256MB memory.
All VMs run 64bit CentOS 5.5. We implemented a virtual
network to allow packet forwarding among all 800 VMs
with XEN route scripts and iptables.

We implemented a prototype of Volley which consists of
three main components: agents, monitors and coordinators.
An agent runs within a VM and provides monitoring data.
Agents play an important role in emulating real world
monitoring environments. Depending on the type of moni-
toring, they either generate network traffic according to pre-
collected network traces or provide pre-collected monitoring
data to monitors when requested (described below). For each
VM, a monitor is created in Dom0. Monitors collect monitor-
ing data, process the data to check whether local violations
exist and report local violations to coordinators. In addition,
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Figure 4. Experiment Setup

they also perform local violation likelihood based sampling
adaptation described earlier. A coordinator is created for
every 5 physical servers. They process local violation reports
and trigger global polls if necessary. We also implemented
distributed sampling coordination on coordinators. We next
present details on monitoring tasks.

Network level monitoring tasks used in our experiments
try to detect distributed denial of service (DDoS) attacks
(Section II-A) in a virtualized datacenter. We perform traffic
monitoring on each server (Dom0), rather than network
switches and routers, because only Dom0 can observe com-
munications between VMs running on the same server. For
a task involving a set V of VMs , their corresponding
monitors perform sampling by collecting and processing
traffic associated with the VM v ∈ V (within a 15-second
interval) to compute the traffic difference ρv = Pi(v)−Po(v)
where Pi(v) and Po(v) are the incoming number of packets
with SYN flags set and the outgoing number of packets with
both SYN and ACK flags set respectively. The sampling is
implemented with tcpdump and bash scripts and the default
sampling interval is 15 seconds (capture continuously and re-
port every 15 seconds). When ρv exceeds the local threshold,
the monitor reports a local violation to its coordinator which
then communicates with monitors associated with other VMs
V − v to check if

∑
v∈V ρv > T .

We port real world traffic observed on Internet2 net-
work [18], a large-scale data-intensive production network,
into our testbed. The traces are in netflow v5 format and
contain approximately 42,278,745 packet flows collected
from the Internet2 backbone network. A flow in the trace
records the source and destination IP addresses as well as the
traffic information (total bytes, number of packets, protocol,
etc.) for a flow of observed packets. We uniformly map
addresses observed in netflow logs into VMs in our testbed.
If a packet sent from address A to B is recorded in the logs,
VM X (where A is mapped to) also sends a packet to VM
Y (where B is mapped to). We set SYN and ACK flags
with a fixed probability p = 0.1 to each packet a VM sends.
Note that ρ is not affected by the value of p as p has the
same effect to both Pi and Po. In addition, let F denote
the number of packets in a recorded flow. We also scale
down the traffic volume to a realistic level by generating only
F/n packets for this flow where n is the average number of
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(a) Network Level Monitoring

���
��

���
���
���
���
���
	

��
	�

��
��

�

�	

�

�

��
��

�	
�	

��
��

��
	�


�
��


���
�	

��	(#&%���"%�!
���(#&%���"%�!
��
(#&%���"%�!
���(#&%���"%�!
	��(#&%���"%�!
���(#&%���"%�!
��
(#&%���"%�!#

�
��	
���
���
��

���
���
���
���
���
	

����	 ����� ����
 ����� ���	� ����� ����


�

�

��

�

�	
��

��
��


�	
�


�
��

��
�	

�
���

	�
��

���
	�


�
��


���
�	

���
�	���
�����

��	(#&%���"%�!
���(#&%���"%�!
��
(#&%���"%�!
���(#&%���"%�!
	��(#&%���"%�!
���(#&%���"%�!
��
(#&%���"%�!#

(b) System Level Monitoring
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(c) Application Level Monitoring

Figure 5. Monitoring Overhead Saving under Different Error Allowance and State Alert Rates

addresses mapped to a VM.
System level monitoring tasks track the state of OS level

performance metrics on VMs running in our testbed. A
system level task triggers a state alert when the average
value of a certain metric exceeds a given threshold, e.g.
an alert is generated when the average memory utilization
on VM-1 to VM-10 exceeds 80%. To create VMs in a
production environment, we port a performance dataset[19]
collected from hundreds of computing nodes to our VMs.
This dataset contains performance values on 66 system met-
rics including available CPU, free memory, virtual memory
statistics(vmstat), disk usage, network usage, etc. To perform
sampling, a monitor queries its assigned VM for a certain
performance metric value and the agent running inside the
VM responds with the value recorded in the dataset. The
default sampling interval is 5 seconds.

Application level monitoring tasks watch the throughput
state of web applications deployed in datacenters. For exam-
ple, Amazon EC2 can dynamically add new server instances
to a web application when the monitored throughput exceeds
a certain level[10]. We port traces of HTTP requests (>
1 billion) collected from a website hosted by a set of
30 distributed web servers[20]. Similar to system level
monitoring, agents running on VMs respond with web server
access logs (since last sampling point) in the dataset when
queried by monitors so that they mimic VMs running a web
application. The default sampling interval is 1 second.

Thresholds. Monitoring datasets used in our experiment
are not labeled for identifying state violations. Hence, for a
state monitoring task on metric m, we assign its monitoring
threshold by taking (100−k)-th percentile of m’s values. For
example, when k = 1, a network-level task reports DDoS
alerts if ρ > Q(ρ, 99) where Q(ρ, 99) is the 99th percentile
of ρ observed through the lifetime of the task. Similarly,
when k = 10, a system-level task report state alerts if
memory utilization μ > Q(μ, 90). We believe this is a
reasonable way to create state monitoring tasks as many state
monitoring tasks try to detect a small percentage of violation
events. We also vary the value of selectivity parameter k to
evaluate the impact of selectivity in tasks.

B. Results

Monitoring Efficiency. Figure 5(a) illustrates the results
for our network monitoring experiments where each task

checks whether the traffic difference ρ on a single VM
exceeds a threshold set by the aforementioned selectivity
k (we illustrate results on distributed monitoring tasks
(multiple VMs) later in Figure 8). We are interested in the
ratio of sampling operations (y-axis) performed by Volley
over those performed by periodical sampling (with interval
Id). We vary both the error allowance (x-axis) and the alert
selectivity k in monitoring tasks (series) to test their impact
on monitoring efficiency. Recall that the error allowance
specifies the maximum percentage of state alerts allowed
to be missed. An error allowance of 1% means that the user
can tolerate at most 1% of state alerts not being detected.
We see that dynamic sampling reduces monitoring overhead
by 40%-90%. Clearly, the larger the error allowance, the
more sampling operations Volley can save by reducing
monitoring frequency. The alert state selectivity k also plays
an important role, e.g. varying k from 6.4% to 0.1% can
lead to 40% cost reduction. Recall that k = 6.4 means that
6.4% of monitored values would trigger state alerts. This
is because lower k leads to fewer state alerts and higher
thresholds in monitoring tasks, which allows Volley to use
longer monitoring intervals when previous observed values
are far away from the threshold (low violation likelihood).
Since real world tasks often have small k, e.g. a task with
a 15-second monitoring interval, generating one alert event
per hour leads to a k = 1/240 ≈ 0.0042. We expect Volley
to save considerable overhead for many monitoring tasks.

Figure 5(b) shows the results for system level monitoring,
where each monitoring task checks if the value of a single
metric on a certain VM violates a threshold chosen by
the aforementioned selectivity k. The results suggest that
Volley also effectively reduces the monitoring overhead,
with relatively smaller cost saving ratios compared with the
network monitoring case. This is because changes in traffic
are often less than changes in system metric values (e.g.
CPU utilization). This is especially true for network traffic
observed at night.

We show the results of application level monitoring in
Figure 5(c) where each task checks whether the access rate
of a certain object, e.g. a video or a web page, on a certain
VM exceeds the k-determined threshold by analyzing the
recent access logs on the VM. We observe similar cost
savings in this figure. The high cost reduction achieved
in the application level monitoring is due to the bursty
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Figure 6. CPU Utilization
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Figure 7. Actual Mis-Detection Rates
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Figure 8. Distributed Coordination

nature of accesses. It allows our adaptation to use large
monitoring intervals during off-peak times. We believe that
our techniques can provide substantial benefits when this
type of change pattern occurs in many other applications
(e.g. e-business websites) where diurnal effects and bursty
request arrival are common.

Figure 6 uses box plots to illustrate the distribution
of Dom0 CPU resource consumption (percentage) caused
by network-level monitoring tasks with increasing error
allowance. The upper and lower bound of boxes mark the
0.75 and 0.25 quantile. The line inside the box indicates
the median. The whiskers are lines extending from each end
of the box to show the extent of the rest of the utilization
data. CPU resources are primarily consumed by packet
collection and deep packet inspection, and the variation in
utilization is caused by network traffic changes. When the
error allowance is 0, our violation-likelihood based sampling
is essentially periodical sampling and introduces fairly high
CPU utilization (20-34%) which is prohibitively high for
Dom0. This is because Dom0 needs to access hardware
on behalf of all user VMs, and IO intensive user VMs
may consume lots of Dom0 CPU cycles. When Dom0
is saturated with monitoring and IO overhead, all VMs
running on the same server experience seriously degraded
IO performance[17]. With increasing error allowance, our
approach quickly reduces the CPU utilization by at least a
half (up to 80%) and substantially improves the efficiency
and scalability of monitoring.

Although system/application level monitoring tasks incur
less overhead compared with the network monitoring case,
Volley can still save significant monitoring cost when such
tasks are performed by monitoring services that charge
users based on sampling frequency[10]. Furthermore, the
aggregated cost of these tasks is still considerable for data-
center monitoring. Reducing sampling cost not only relieves
resource contention between application and infrastructure
management, but also improves the datacenter management
scalability[7].

Monitoring Accuracy. Figure 7 shows the actual mis-
detection rate (y-axis) of alerts for the system-level moni-
toring experiments. We see that the actual mis-detection rate
is lower than the specified error allowance in most cases.
Among different state monitoring tasks, those with high alert
selectivity often have relatively large mis-detection rates.

There are two reasons. First, high selectivity leads to few
alerts which reduces the denominator in the mis-detection
rate. Second, high selectivity also makes Volley prefer low
frequency which increases the chance of missing alerts. We
do not show the results on network and application level
monitoring as the results are similar.

Distributed Sampling Coordination. Figure 8 illustrates
the performance of different error allowance distribution
schemes in network monitoring tasks. To vary the cost
reduction yield on monitors, we change the local violation
rates by varying the local thresholds. Initially, we assign a
local threshold to each monitor so that all monitors have the
same local violation rate. We then gradually change the local
violation rate distribution to a Zipf distribution[21] which
is commonly used to approximate skewed distributions in
many situations. The x-axis shows the skewness of the
distribution, and the distribution is uniform when skewness
is 0. The y-axis shows the the ratio between the total number
of sampling performed by one scheme and that performed
by a periodical sampling scheme with the default sampling
frequency. We compare the performance of our iterative
tuning scheme (adapt) described in Section IV with an alter-
native scheme (even) which always divides the global error
allowance evenly among monitors. The cost reduction of the
even scheme gradually degrades with increasing skewness
of the local violation rate distribution. This is because when
the cost reduction yields on monitors are not the same, the
even scheme cannot maximize the cost reduction yield over
all monitors. The adaptive scheme reduces cost significantly
more as it continuously allocates error allowance to monitors
with high yields. Since a few monitors account for most local
violations under a skewed Zipf distribution, the adaptive
scheme can move error allowance from these monitors to
those with higher cost reduction yield.

VI. RELATED WORK

Most existing works in distributed state monitoring [3],
[5], [22] study the problem of employing distributed con-
straints to minimize communication cost of distributed state
monitoring. While these works study the communication-
efficient detection of state violations in a distributed manner
based on the assumption that monitoring data is always
available (with no cost), we study a lower level problem on
collecting monitoring data. We investigate the fundamental
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relation between sampling intervals and accuracy, and pro-
pose violation likelihood based dynamic sampling schemes
to enable efficient monitoring with controlled accuracy.

A number of existing works in sensor networks use corre-
lation to minimize energy consumption on sensor nodes[23],
[24]. Our work differs from these works in several aspects.
First, these works[23] often leverage the broadcast feature
of sensor networks, while our system architecture is very
different from sensor networks and does not have broadcast
features. Second, we aim at reducing sampling cost while
these works focus on reducing communication cost to pre-
serve energy. Third, while sensor networks usually run a sin-
gle or a few tasks, we have to consider multi-task correlation
in large-scale distributed environments. Finally, some works
(e.g. [24]) make assumptions on value distributions, while
our approach makes no such assumptions. Some scenarios
such as network monitoring employ random sampling to
collect a partial snapshot for state monitoring (e.g., a random
subset of packets [1]). Volley is complementary to random
sampling as it can be used together with random sampling
to offer additional cost savings by scheduling sampling
operations.

VII. CONCLUSIONS AND FUTURE WORK

We have presented Volley, a violation likelihood based
efficient state monitoring approach that operates at both
single-node and multi-node levels to explore task-level er-
ror allowance and inter-task state correlation to minimize
monitoring cost through accuracy-driven dynamic sampling.
Volley works best when inter-sampling monitoring value
changes have relatively stable distributions or when anoma-
lies tend to cause continuous global violations. While Volley
safeguards monitoring error in a best-effort manner, our
experiment results show that it introduces few mis-detections
in several real world monitoring tasks due to its con-
servative adaptation (Chebyshev’s inequality and additive-
increase/multiplicative-decrease-like adaptation scheme). As
part of our ongoing work, we are studying techniques to
support advanced state monitoring forms (e.g. tasks with
aggregation time window).
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