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Abstract—With the growing acceptance of cloud computing as
a viable computing paradigm, a number of research and real-life
dynamic cloud-scale resource allocation and management systems
have been developed over the last few years. An important
problem facing system developers is the evaluation of such
systems at scale. In this paper we present the design of a
distributed load generation framework, Xerxes, that can generate
appropriate resource load patterns across varying datacenter
scales, thereby representing various cloud load scenarios. Toward
this end, we first characterize the resource consumption of
four distributed cloud applications that represent some of the
most widely used classes of applications in the cloud. We then
demonstrate how, using Xerxes, these patterns can be directly
replayed at scale, potentially even beyond what is easily achiev-
able through application reconfiguration. Furthermore, Xerxes
allows for additional parameter manipulation and exploration
of a wide range of load scenarios. Finally, we demonstrate the
ability to use Xerxes with publicly available datacenter traces
which can be replayed across datacenters with different configu-
rations. Our experiments are conducted on a 700-node 2800-core
private cloud datacenter, virtualized with the VMware vSphere
virtualization stack. The benefits of such a microbenchmark for
cloud-scale experimentation include: (i) decoupling load scaling
from application logic, (ii) reslience to faults and failures, since
applications tend to crash altogether when some components fail,
particularly at scales, and (iii) ease of testing and the ability to
understand system behavior in a variety of actual or anticipated
scenarios.

I. INTRODUCTION

Cloud computing has become a popular computing paradigm
that allows end-users to dynamically scale up or down the
resources they use to run their applications. Typically, users
pay only for resources they actually use, resulting in large cost
savings compared to self-hosting applications on dedicated
hardware. This growing acceptance of cloud computing has
fueled two major trends: (a) a large number and a wide variety
of applications now run in the cloud [1] and, (b) researchers
and corporations alike are building dynamic resource allocation
systems to support these applications at all levels of the system
stack [2], [3], [4], [5], [6]. Good application level performance
depends on both the nimbleness and accuracy of the underlying
resource allocation system, and, the ability of the particular
application model to take advantage of scaling out in the cloud
without bottlenecks.

An important problem facing system developers is the
evaluation of these systems at large scale. The number of
servers in current generation datacenters number in their tens

of thousands [7], [8]. Not all applications scale to such levels
easily without hitting performance bottlenecks due to applica-
tion logic, framework or data access limitations [9]. Therefore
benchmarking is restricted primarily to embarassingly parallel
workloads. Even then, it is difficult to generate appropriate
inputs to these parallel applications that represent realistic
cloud scenarios.

An additional aspect that is implied in the selection of
workloads to evaluate cloud systems at scale, is their need to be
failure resilient. It is well known that failures are the norm in
large scale commodity server datacenters. Clearly, applications
that crash outright when one or more components fail are a
poor fit for the cloud paradigm, let alone a benchmark. But here
again it is important to note that even those applications that
do have fault tolerance built into them have varying degrees
of tolerance to failures. For example, the use of replicas,
say 'n’, in data storage systems allows for the tolerance of
upto (n -1) replica failures and no more before data becomes
inaccessible. At large scales, there is a higher probability of a
large number of failures, above and beyond an application’s
tolerance limit. The net effect of all of these factors is that it
is increasingly difficult to properly build and evaluate dynamic
resource allocation systems at scale, potentially leading to
narrow design assumptions, and optimizations that ultimately
lead to poor application performance during deployment.

In this paper we present the design and use of a new
distributed load generation framework, Xerxes, that decouples
the generation of load at scale from any application logic.
This allows the evaluation of the scalability of dynamic
allocation systems to load patterns of applications that may
not inherently scale themselves. In addition, Xerxes offers the
ability to generate load patterns at both individual node levels,
and collectively across a large number of machines. Various
interesting load patterns, including large volume spikes [10]
across a large number of machines, can be easily generated.
Finally, resource usage traces from real-life deployments can
also be adapted and replayed in datacenters of varying sizes.

Xerxes is composed as a collection of four independent
load generators — one each for CPU, memory, storage and
network resources — deployed on independent physical or
virtual machines in the datacenter. The load generators in the
individual datacenter nodes are designed to not require any
coordination during the course of an experiment to generate an
overall load pattern across many machines. This gives Xerxes



the ability to tolerate multiple node failures, thereby improving
the robustness of the experimentation process beyond what is
achievable with applications which are typically much less
tolerant to failures. The accuracy of the generated load pattern
at scale decreases linearly with the number of component node
failures.

In summary, the technical contributions of this paper are
the design and development of Xerxes — a microbenchmark
for cloud-scale experimentation, and the demonstration of its
utility for different load generation scenarios, based on load
patterns extracted from realistic cloud applications or real-life
cloud datacenter traces, on a 700-node 2800-core datacenter
facility. The benefits of such a microbenchmark include: (i)
simplified experimentation at scales due to decoupling of load
scaling from application logic, (ii) improved reslience to faults
and failures, since applications tend to crash altogether when
some components fail, particularly at scales, and (iii) ease
of testing and the ability to understand system behavior in a
variety of actual or anticipated scenarios.

The remainder of the paper is structured as follows. First, we
present four commonly used classes of cloud applications and a
characterization of their resource consumption across multiple
resource types. The architecture, design and implementation
of the Xerxes framework are described in Section III. Section
IV shows two example load generation scenarios: one that
replays a publicly available datacenter resource usage trace
and another that replays the extrapolated load patterns derived
from the workload characterization discussed in Section II.
Our experiments are conducted on a 700-node 2800-core
private cloud datacenter, virtualized with the VMware vSphere
virtualization stack.

II. WORKLOAD CHARACTERIZATION
A. Workloads

Our workload suite comprises of a set of applications
representative of the most popular application classes in current
cloud platforms [11], configured to run inside virtual machines
(VMs) in our virtualized datacenter:

Data Analytics: The map-reduce framework and its open
source implementation, Hadoop [12], have emerged as the de-
facto standard for analyzing large datasets in parallel fashion
in the cloud. Web search is an important example of this class
of applications where data from the plethora of online websites
(or local webpages, for private installations) are crawled and
indexed on an on going basis in massive datacenters. We
replicate this job in our datacenter using the Nutch [13] search
engine that is used to crawl an internal mirrored deployment
of the popular Wikipedia.org website containing millions of
pages of articles. The local deployment allows us to avoid
WAN traffic that would skew the workload characterization
results.

Data Serving: Key-value stores allow users to store repli-
cated data in a schema-less fashion with relaxed consistency
models, and rely on efficient indexes to quickly locate data.
As a result, some of the Internet’s largest applications running
in cloud deployments, such as Facebook Photo Store, Google
App Engine, Amazon S3, etc. use these stores to serve vast

amounts of data to millions of users. For our characterization
we use the Voldemort [14] key-value store, known for its use at
LinkedIn, and drive load to it using the Yahoo Cloud Serving
Benchmark [15]. Our workload profile consists of 2 million
operations (50% reads and 50% writes) with record request
popularity following a zipfian distribution. Each record is 64KB
in size.

Web Services: N-tier web applications (usually n=3) form
the basis for some of the largest online services. In the
cloud, a typical web service is composed of a LAMP (Linux,
Apache, MySQL, Php) stack, either on a single server or with
components split across multiple servers, and a load balancer.
The number of instances of any of the three tier nodes (web,
application or database) can be scaled out or scaled down in
response to varying load [9]. However, the use of a standard
SQL database limits the scalability of the data tier mostly
due to the overhead of providing ACID properties. For our
characterization, we built a 3-tier, airline reservation benchmark
that uses Apache Geronimo for the web server, a Tomcat
query processing engine for the middle-tier and a HBase
backend instead of a SQL-database, capable of achieving good
horizontal scalability. We obtained airline fare data from one
of our industry partners, Travelport Inc., as well as request
traces numbering in their tens of thousands from a real-life
deployment. We modified the httperf tool [16] to generate
load by replaying these traces for around an hour using three
threads with each thread’s requests exponentially distributed
with a mean inter-arrival time of 1 second.

High Performance Computing: Running large-scale high
performance jobs used to be limited to the large national
laboratories and big corporations in the past, due to the massive
capital investment required to build an HPC cluster. But the
availability of large amount of rent-by-the-hour disposable
compute nodes provided by cloud computing has made it
possible to provide the resources required by these types
of applications to a richer user base [17]. Even though the
majority of compute resources available in the cloud don’t
typically offer HPC performance, there are growing trends in
both improving cloud infrastructures [18] and adapting HPC
frameworks for the cloud [19]. We use programs from the
LAPACK [20] package to solve a system of simultaneous
linear equations as a representative workload in this space.

B. Resource Usage Characterization

Figure 1 shows the CPU, memory, network and storage
usages of the four target applications. Each application is
composed of 5 VMs and the utilization values reported are
the aggregate usage of all of the VMs of a given application.
We have omitted the network receive result, because the VMs
only communicate with VMs from the same application (i.e.,
aggregate transmit = aggregate receive), and the storage reads,
since all applications showed very little read activity.

It can be seen that the Nutch application is fairly resource
intensive across all resource types, and that the usage pattern
is bursty. In terms of dynamically allocating resources, this
presents an interesting tradeoff between dedicating resources
to handle the spikes (over provisioning) vs. allocating resources
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Fig. 1: Aggregate Resource Utilizations of Workloads. Key: nt
= Nutch, wb = 3-tier web, vy = Voldemort, Ip = LAPACK.
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Fig. 2: Xerxes architecture.

to handle either the average load or a higher percentile
(under provisioning). The 3-tier web benchmark has a higher
CPU and memory requirement than communication or storage
resources. This is because the network requests/responses are
small in size and so is each HBase record on each VM’s
local disk. It can also be noted that the CPU and memory
requirements steadily increase during the experiment as the
application becomes more and more backlogged with requests.
The LAPACK high performance computing benchmark has
a steady, high CPU requirement and a moderate, somewhat
bursty, network requirement. We assume that the spikes in
aggregate network traffic correspond to collective operations.
Finally, the Voldemort data serving benchmark appears to only
require a small but fairly steady amount of memory resource
for its operation. This is due to the fact that we configure the
benchmark to store data in-memory and also due to the fact
that our record size was only 64KB.

We will show in Section IV how this characterization
information about the resource requirements of applications,
and the different usage patterns, can be extrapolated and
replayed across a larger set of machines.

III. XERXES DESIGN

We next present the design and implementation details of the
Xerxes load generation framework. Figure 2 shows the overall

framework architecture. Xerxes consists of a single master node
and multiple worker nodes - one per server under evaluation.
The master node takes load generation specifications, converts
them to individual worker node specifications that when
executed together produces a global, large scale aggregate
load pattern. The individual node specifications are generated
by the NodeSpec Generator Module shown in the figure,
and their execution is orchestrated by the Launcher Module
through the Linux cron facility. The load specifications to the
master can be either in the form of (a) real-life datacenter
traces specifying resource usages at various timestamps or
(b) statiscal distributions, such as normal distribution with a
specified mean and deviation values, for example. In addition,
these specifications can be at a per-server level or per-logical-
job level, that maps to multiple servers, to generate a global
resource usage pattern. The base specifications are extrapolated
(in the current implementation, only proportionally) when
the number of target servers is greater than the number of
specification objects in the benchmark input, or, combined via
aggregation in the opposite case. Further, it is also possible
to add usage volume spikes to the base load specifications
by specifying the spike parameters as characterized by Bodik
et. al. [10]: time-spike-start, time-peak-start, time-peak-end,
time-spike-end, spike-magnitude-multiplier.

In order to orchestrate a global resource usage pattern, the
master runs an NTP server that the worker nodes need to
synchronize with periodically (typically in days on modern
machines), so that their individual timeofday values are not
hugely divergent. However, once the simulation starts, the
worker nodes need no further coordination with the master and
use local high precision timers to transition between multiple
load phases.

The worker nodes are composed of four individual load
generators: one each for CPU, memory, network and storage
resources. The worker node gets individual load specifications
(or none, as required) for each generator at the start of the
simulation from the master, which it then executes in isolation
utill completion. The worker load specifications for CPU and
memory resources consist of many load phases, one per line,
of the form:

< period — secs,load — percentage >

< period — secs, load — percentage >

For each phase in the specification above, the CPU load
generator generates [oad — percentage by alternating between
performing numerical computation over an integer array’s
elements and sleeping (using Linux nanosleep) at microsecond
granularity, many times over until period — secs seconds
have elapsed. For example, using a 100 microsecond period
and a desired load of 50% would mean that the generator
simply computes for 50 microseconds and sleeps for the
remaining 50. The CPU generator periodically calibrates itself
to determine the number of computations required for a span of
1 microsecond in order to operate in a virtualized environment
where the amount of available CPU resource varies with levels
of consolidation. The generator can also be configured to do a



fixed amount of work instead. However, from our practical
experience on virtualized systems this mode of operation
results in decreased accuracy in global load pattern generation.

The memory load generator works similarly to the cpu
generator in terms of transition between phases, but interprets
the load — percentage as a fraction of a large pre-configured
memory size (could potentially be the total available worker
node memory size) specified in megabytes. It allocates an
integer array buffer of size corresponding to the fraction
specified for a particular phase, and performs either random
access or linear access of the elements of the array as required
for period — secs seconds.

In our current Xerxes prototype the master node components,
except the NTP server, are implemented in Python. We use the
NTP server available through the Ubuntu software repository.
The CPU and memory load generators are written in C
for Linux kernel versions 2.6.19 and above where the high-
resolution timer API is available. We are currently in the
process of developing the network and storage load generators.
The network generator is written from scratch in C using
the Linux sockets API allowing control over message sizes,
data rates and multiple communication end points. As part of
future work, we would like to explore different communication
patterns representative of ones seen in real world applications
(e.g., broadcast, collective communication, etc.). As for the
storage load generator we plan to customize the open source
fio [21] I/O tool to fit the overall Xerxes framework.

The following section presents several examples of how the
Xerxes framework can be used to create a variety of CPU and
memory resource usage patterns in the datacenter.

IV. LOAD GENERATION SCENARIOS

We run Xerxes on a 700 node private cloud constructed
on a datacenter on campus using the VMware vSphere [22]
virtualization platform. Each server has 2 dual core AMD
Opteron 270 processors, a total memory of 4GB and two
NICs capable of 1Gbps and 5Gbps respectively. The hosts
are all connected to each other and a central storage array
of 4.2TB total capacity via a Force 10 E1200 switch over
a flat IP space. The worker nodes are Ubuntu Linux 9.10
virtual machines, each configured with 4 vcpus and 1GB
of memory, stored on the central storage array. The master
node is run on a separate physical server running Ubuntu
Linux 9.10 as well. Our monitoring infrastructure is built using
the VMware vSphere Java SDK [23] that allows us to fetch
resource utilizations samples per-VM once every 20 seconds
at small scales and once every 5 minutes at larger scales.

A. Replaying Datacenter Traces

Recently, Google Inc. released a large scale, anonymized
production workload trace from one of its clusters [24], [25],
containing data worth over 6 hours with samples taken once
every five minutes. Their workload consists of 4 large jobs
that each contain a multitude of sub tasks that map to their
cluster machines in an unknown way'. Each row in the trace

'We use the trace version 1 where this information was unavailable. A
subsequent update from Google provides more detailed information.

taskgroups ™, " taskgroups

"

worker nodes
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worker nodes

Fig. 3: Mapping Google Trace to Xerxes Model.
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Fig. 4: Job-wise Resource Utilizations for Google Traces.

presents the resource usage of a single task, belonging to one
of the four jobs, at a given timestamp.

The CPU usage is expressed as normalized value of the
average number of cores used by the task and the memory
usage is expressed as the normalized value of the average
memory used by the task over the last 5 minute interval. This
provides us sufficient information to replay the resource usage
pattern of the four major jobs in the trace on 1600 VMs running
on 512 of the 700 servers in our private cloud. For the sake of
simplicity our global load specification evenly partitions the
VMs into four sets of 400 VMs where each set is to replay
the CPU and memory usage of a unique job.

The number of unique tasks for each job at each timestamp
varies over time, with numbers in the tens of thousands,
on average. The NodeSpec Generator at the master evenly
partitions tasks of a job, at a timestamp, into 400 taskgroups,
one taskgroup each for each worker VM as illustrated in Figure
3. We simply re-normalize the resource usage of each task
group to a percentage value (assuming a base maximum value)
and generate the entire single worker load specification as a
series of utilizations to be generated every 5 minutes working
up to around 5 hours. Thus each worker node has a different
load pattern corresponding to its taskgroup but they together
produce the overall global job patterns required.

Figures 4a and 4b show the CPU utilization per job com-
puted from the trace and measured from an actual benchmark
run, respectively. Given the scale of the experiment, it can be
seen that the overall job load patterns are reproduced fairly
accurately in the experimental run. Note that we did observe
worker node failures during the course of the experiment and
also that there are limits to the granularity of our monitoring
setup measuring the utilization in the infrastructure.
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Similarly, Figures 4c and 4d show the memory utilization
per job computed from the trace and measured from an
actual benchmark run, respectively. Our datacenter monitoring
module measures the memory utilization of entire VMs: this
includes the load generator’s memory consumption and the
VM guest OS utilization resulting in the reported experimental
samples being higher than the ones computed from the trace.
From our practical observations running the memory load
generator, we observed that it is hard to generate accurate
memory loads for VMs that have a small amount of configured
memory due to the higher fraction of the base memory usage
by the guest OS and any other services compared to VMs with
large amount of memory (e.g., base = 400MB of 1GB vs. base
= 400MB of 10GB).

B. Replaying Patterns Extracted from Workloads

In this scenario, our goal is to take each application’s CPU
and memory usage profile from Section II, and, extrapolate
it such that it can run on 400VMs hosted on 128 machines.
Recollect that each application profiled has resource usage
information of each of its 5 VMs at a 20 second granularity.
In our load specification, we simply map the resource usage of
each single VM belonging to a given application to 20 VMs
in our target simulation to come to a total of 400 VMs. Each
application profile will be simulated by 100VMs now. Note
that Xerxes has and can be extended to support more complex
mappings as well. In addition, to demonstrate the ability of
the Xerxes framework to simulate large spikes in the cloud,
we added a volume spike to the CPU profile of the Nutch
application in the specification. The spike lasts from 60 minutes
into the simulation until 120 minutes, and approximately triples
the overall workload volume.

Figure 5 shows the results of this scenario. It can be seen that
even with the coarse monitoring granularity, the overall CPU
usage of each application’s VMs is similar to that characterized
before. The Nutch profile shows the volume spike, across 100
VMs, as added by Xerxes. However, as with the previous
scenario the memory monitoring data is less accurate for the
same reasons as above. We are working on ways to collect
and store at scale, the set of active pages being touched for
each VM directly from the hypervisor.

V. CONCLUSIONS

In this paper we argued for the decoupling of scalable
load generation from application logic in order to aid re-
searchers/developers test their cloud systems at large scale,

which ultimately prevents narrow system design assumptions
that ignores the issues seen at scale. We demonstrated the
use of a distributed load generation framework, on a 700
node private cloud virtualized with the VMware vSphere
virtualization stack, that can: (i) replay real-life datacenter
traces, (ii) extrapolate and replay workload characterization
data and, (iii) simulate resource usage volume spikes across a
large number of machines. In the future we plan on completing
the network and storage load generation components, and,
add new interesting features to extrapolate resource data. We
also plan on using Xerxes to generate diverse load scenarios
to understand the effectiveness of different load and power
management methods at scale.
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