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Abstract

Graphics processing units (GPUs) are of increasing interest

because they offer massive parallelism for high-throughput

computing. While GPUs promise high peak performance, their

challenge is a less-familiar programming model with more

complex and irregular performance trade-offs than traditional

CPUs or CMPs. In particular, modest changes in software or

hardware characteristics can lead to large or unpredictable

changes in performance. In response to these challenges,

our work proposes, evaluates, and offers usage examples of

Stargazer1, an automated GPU performance exploration frame-

work based on stepwise regression modeling. Stargazer sparsely

and randomly samples parameter values from a full GPU

design space and simulates these designs. Then, our automated

stepwise algorithm uses these sampled simulations to build

a performance estimator that identifies the most significant

architectural parameters and their interactions. The result is an

application-specific performance model which can accurately

predict program runtime for any point in the design space.

Because very few initial performance samples are required

relative to the extremely large design space, our method can

drastically reduce simulation time in GPU studies. For example,

we used Stargazer to explore a design space of nearly 1

million possibilities by sampling only 300 designs. For 11 GPU

applications, we were able to estimate their runtime with less

than 1.1% average error. In addition, we demonstrate several

usage scenarios of Stargazer.

1. Introduction

GPUs are increasingly being used as general-purpose parallel

computing platforms. While originally targeted at graphics

applications, these massively-parallel, throughput-oriented sys-

tems offer the potential for very high performance over a

range of applications. However, unlike traditional CPUs or

CMPs, GPUs offer a less-familiar programming model with

more complex and irregular performance trade-offs. Moderate

changes in software attributes (such as data layout and memory

reference patterns) or hardware characteristics (such as size

1. Stargazer stands for STAtistical Regression-based GPU Architecture ana-
lyZER. The name is inspired by how only a few stars can be used to represent
an entire constellation. This is similar to how our regression models offer
accurate estimates from a small sample of points in the design space.

of memory structures and interconnect bandwidth) can lead to

large or unpredictable performance changes [4, 18, 24, 28].

From a software perspective, the lack of resource abstraction

and virtualization forces GPU programmers—unlike program-

mers for general-purpose CPUs—to take hardware characteris-

tics into consideration even when writing GPU programs just

for correctness. Moreover, to optimize performance, programs

have to be tailored for specific GPU instances. It is usually

very challenging to create a single version of code that performs

well on several GPU implementations. Good GPU performance

estimation models have the potential to overcome these diffi-

culties by helping developers to predict and optimize program

performance and to port existing applications.

From a hardware perspective, the many dimensions of the

GPU design space and their intricate interactions make it diffi-

cult or time-consuming to predict and optimize the performance

of future GPUs under design. With architectural simulations

running five to six orders of magnitude more slowly than

programs on real hardware, each possible design point requires

days of simulation time for full-sized data sets. Exploring the

full cross-product of many design parameters requires a large

number of long-running simulations. Thus, like their software

counterparts, hardware designers can also benefit from GPU

performance estimators that accurately survey the design space

and reduce the number of points for which detailed evaluations

are required.

While previous computer architecture research has explored

using regression methods [11, 15–17] and machine learning

techniques [10, 12] to prune and better understand the design

space of general-purpose CPUs, their methods have limited

applicability due to the complexity of the GPU design space. In

particular, GPU architectural parameters and their interactions

exhibit strong and highly nonlinear influence on program run-

time, and the relative importance of these parameters is difficult

to predict due to unfamiliarity with the platform in the relatively

new GPU field. In response to these challenges, our work

proposes, evaluates, and offers usage examples of Stargazer,

an automated GPU design space exploration framework based

on stepwise regression modeling and tailored for the complex

GPU design space. Our work has several key novelties and

makes significant contributions.

First, we are the first to offer an automated design space

explorer geared toward the complex and nuanced GPU arena.



Our tool handles stronger and more complex application per-

formance dependence on GPU architectural parameters than

work geared at general-purpose CPUs. Second, unlike many

previous regression methods, our work is fully automated. By

this we mean that our stepwise regression method incremen-

tally evaluates the absolute and adjusted R2 values of design

parameters to determine which should be included into the

regression model. Furthermore, we also automate the use of

pairwise interactions between parameters. These interactions

are much stronger in the GPU design space than those in the

CPU field. This helps overcome insufficient design intuition in

the relatively new GPU field.

For the platforms evaluated in detail in this paper, we show

that GPU performance can be accurately modeled using a small

fraction of the entire simulation space. Starting from a 10-

dimensional design space of over 933K possible design points,

Stargazer can use 300 randomly-chosen points to build an

estimator equation that predicts performance with 1.1% average

error. From as few as 30–60 data points, it offers less than 5%

error for all but one application. This reduces simulation re-

quirements by 4–5 orders of magnitude compared to exhaustive

design exploration and saves considerably over more targeted,

non-exhaustive approaches as well. Our method also offers

GPU hardware and software designers useful intuition about

the systems they develop.

The rest of the paper is organized as follows. Section 2 re-

views prior work. Section 3 and Section 4 introduce background

material on regression theory and GPU architectures respec-

tively. Our automated regression-based method is presented in

Section 5. Section 6 describes our experimental methodology,

and Section 7 evaluates the method. Section 8 offers a few

scenarios in which Stargazer can be used. Finally, Section 9

concludes the paper.

2. Prior Work

2.1. GPU Performance and Power Analysis

As GPUs have become more widely used, several simulators

have been introduced to perform parameterized studies of the

GPU design space. These include GPGPU-Sim, the simulator

we use in this research [1]. Another earlier simulator, Qsilver,

also addressed basic GPU performance issues [26].

Some research aims to build analytical models for estimat-

ing GPU power and performance [6, 7]. If their models are

parameterized, they can be used to explore the GPU hardware

designs similarly as GPU simulators. However, neither GPU

simulators nor these analytical models offer a way to navigate

and interpret the complex parameterized GPU design space.

Where GPUs exist to be studied in real systems, perfor-

mance counters offer another approach for some evaluations. In

particular, hardware performance counters for some NVIDIA

GPUs are available through their Parallel NSight tool [19].

While these are useful for characterizing points from the GPU

design space that have already been instantiated as real GPU

systems, they do not allow one to change hardware parameters

to consider design points that have not yet been built.

2.2. CPU Design Space Exploration

While design space exploration for GPUs is fairly nascent,

prior work considering general-purpose CPUs is relevant. A

wide range of methods including machine learning and regres-

sion have been used to assist CPU design space exploration.

However, the differences between CPU and GPU design spaces

(Section 4.3) and/or limitations in these methods make them

inefficient or unsuitable for GPUs.

For example, Ipek et al. proposed a method based on artificial

neural networks [10]. While this method offers good speedup

and accuracy and can be automated, it has an intrinsic feedback

loop in which subsequent simulations are selected based on

results observed from prior design points. As such, this method

is difficult to parallelize, significantly increasing the training

time. In contrast, our method can gather a random sampling of

simulation points in parallel and then perform regression on

them to create an accurate model.

Lee and Brooks proposed a regression-based modeling ap-

proach to study the CMP design space [15]. Their approach is

similar to ours in using regression, and it also achieves good

model accuracy with a small number of sampled simulations.

However, it differs from ours in that it does not use stepwise

regression to select relevant parameters. Instead, users must rely

on domain-specific knowledge and considerable statistics expe-

rience to select parameters and interactions that are included in

the model. In the newer and less familiar GPU design space,

fewer users can depend on reliable domain knowledge.

Joseph et al. proposed a stepwise regression method to

automatically explore a CPU design space [11]. However, each

of their parameters can take only one of two possible values.

As such, their model is strictly linear in the parameters, taking

into account only first-order linear factors. It is unclear whether

their method will apply well to design spaces broader than

their chosen limited uniprocessor design space. In contrast, our

method is still linear, but uses splines so that each parameter can

take an arbitrary number of values expressing more complex

relationships.

3. Regression Theory

Statistical regression analysis is the study of techniques that

relate one dependent variable to a number of independent

variables. Among various forms of regression, linear regression

is the most commonly used due to its well-behaved and well-

studied properties [14].

y = β0 +

n∑

i=1

βixi +

n−1∑

i=1

n∑

j=i+1

βi,jxixj + ǫ (1)

Equation 1 shows a linear regression model. The xi terms

are the independent variables. Their changing values cause

the dependent variable, y, to vary as a response. The model

error ǫ is added to describe an individual sample’s deviation

from what the model predicts. Linear regression theory requires

the dependent variable y to be a linear combination of the

regression coefficients βi. In particular, though Equation 1 has



terms that are quadratic in independent variables xi, the model

remains linear as long as it is linear in βi.

The task of the regression is to determine the coefficients βi

from observed measurements of y and xi. Least square solvers

are usually used to accomplish this. In this paper, we focus on

GPU performance modeling, so y represents program runtime

and xi are architectural parameters such as GPU computing

resources and memory bandwidth (Section 6.1). Our method

is, however, flexible enough to handle more general studies.

For example, y can be any measurable hardware metric, such

as chip power consumption, while xi can represent algorithmic

choices in addition to architectural parameters.

To account for interplay between basic terms xi, we can in-

clude pairwise first-order interactions as the double summation

in Equation 1. The product xixj reflects the interaction between

xi and xj . However, the number of interaction terms grows

much faster than the number of basic terms. Automatically

determining which important pairwise interactions to include

is a key part of our stepwise regression process presented in

Section 5.

Variables in real problems often have nonlinear dependence

that cannot be accurately captured by Equation 1. To handle

these cases, transformations (fi and fj in Equation 2) are

applied to xi. Equation 2 is still a linear regression model

because y is still linear in the coefficients βi. As a result,

techniques in linear regression theory can still be applied to the

problem while nonlinearity in independent variables is handled.

y = β0 +

n∑

i=1

βifi(xi) +

n−1∑

i=1

n∑

j=i+1

βi,jfi(xi)fj(xj) + ǫ (2)

A common choice of f is to use piecewise polynomial functions

(splines) due to their flexibility in characterizing any continuous

function [20]. In addition to the choice of spline types (e.g.

cubic), there is also a choice regarding the number and positions

of knots for the spline. Section 5.3 has more details on the

particular splines we have chosen and their arguments.

After a model and its βi are proposed, the coefficient of

determination (R2) is a commonly-used statistical metric for

measuring the quality of a model [14]. R2 reflects how much

of the variance of the dependent variable can be explained by

changes in the independent variables. However, because R2

always increases when a new term is included in the model,

it does not fully show the accuracy benefit of that term. For

this reason, adjusted R2 is often used. Adjusted R2 measures

whether adding an additional parameter in the model brings

more benefit than a random variable would have brought [14].

Finally, when there are a large number of independent

variables, as is the case in the GPU design space, Equation 2

may have a large number of terms. A stepwise regression

method coupled with some measure of fit, such as Akaike

Information Criterion (AIC) [25] or adjusted R2, can be used

to judiciously reduce the number of terms by only selecting

those that are most useful for model accuracy. Section 5 gives

more details on our specific stepwise method tailored for GPU

design space exploration. In formal terminology, our method

Figure 1: GPU architecture overview

is a forward selection (i.e. start with an empty model and add

parameters to it), adjusted R2-based, stepwise linear regression

process which includes first-order interactions.

4. GPU Architectures and Programming

4.1. GPU Hardware Architecture Overview

GPU architectures obtain high computational throughput

from executing many identical operations simultaneously on

different data, typically in a SIMD fashion. Modern GPUs

further extend this functionality by replicating the basic SIMD

hardware so that multiple, independent SIMD calculations may

occur concurrently on different groups of data. While GPUs

from different vendors may vary in specifics, our approach

is generally applicable. For clarity and specificity, we use

NVIDIA terminology in this paper, but the approach can be

applied to GPUs from other vendors as well. Figure 1 shows a

typical GPU architecture based on NVIDIA GPUs.

The basic SIMD hardware component is called a core. Cores

contain multiple execution units, where each unit executes the

code for a single thread in parallel with other units. The number

of such units in a core is referred to as the core’s SIMD width.

The hardware groups threads executing the same code into sets

called warps and schedules the threads within a warp to execute

concurrently using all of the core’s SIMD units. Threads all

execute the same instruction using different data values from

different memory addresses, though cores contain mechanisms

to allow branch divergence within the warp [5].

A core contains resources shared by all threads executing

concurrently on it. Each core contains a limited number of

thread slots which limit the maximum number of concurrent

threads. Threads executing the same code are grouped by the

programmer into thread blocks; cores support a finite number

of these thread blocks. Each thread block contains one or

multiple warps. The hardware overlaps the computation and

communication phases of different warps to hide memory

latency. Cores also contain a variety of storage resources:

a register set shared by all threads and software-managed

shared memory shared among the core’s threads to enable

fast data access within a thread block. Other resources like

caches (instruction, data, constant, texture) and texture units

may also be shared by all threads scheduled on a core. The

finite amount of shared resources limits the number of threads

that can execute simultaneously on a core. In particular, the



smallest of four core resources—the number of thread slots,

the number of thread block slots, the register set size, and the

shared memory size—dictates the maximum number of thread

blocks that can execute concurrently on a core; we call this a

core’s (thread) block concurrency.

Each core also contains a set of Miss Status Holding

Registers (MSHRs) for tracking outstanding memory requests.

MSHRs and the associate mechanisms reduce the number of

memory requests sent out of the core in two ways. First,

memory requests from individual threads in the same warp can

be joined together into fewer wide memory requests via intra-

warp memory coalescing. Second, overlapping memory read

requests made by multiple warps executing on the same core

can be joined together via inter-warp memory coalescing.

As shown in Figure 1, modern GPUs contain an array of

these cores sharing other chip resources. An interconnection

network connects cores to a distributed set of second-level

caches and memory modules. Fixed groups of memory modules

share one memory controller that sits in front of them and

schedules memory requests. The DRAM scheduler queue size

in each memory module impacts the capacity to hold outstand-

ing memory requests.

4.2. Programming GPUs

As GPU use has increased, programming environments and

abstractions have been introduced. NVIDIA’s CUDA is a

common method for programming NVIDIA GPUs [23], and

OpenCL is an industry effort towards a more portable program-

ming environment [13]. Nonetheless, GPU programming still

requires understanding the underlying target hardware. In par-

ticular, the code typically indicates how to group computation

together on hardware and how to place and access data in the

system. In our work, the benchmarks are written using CUDA,

but the ideas apply to other environments.

To specify computation, programmers write kernels which

are invoked from the main program running on a host processor

and which execute on the GPU. The kernel specifies operations

to be performed from a single thread’s point of view. When

launching a kernel on a GPU, the code must specify the total

number of threads executing the kernel and how to group these

threads together. The code must specify the number of threads

in each thread block and the total number of thread blocks.

Threads within the same thread block execute together on a

core, sharing the core’s resources. They can share data via

the core’s shared memory and perform barrier synchronization

among themselves. Thread blocks from the same kernel can

execute on different cores, and multiple thread blocks may

execute on a single core. Programmers decide how many

threads should be contained in a thread block; this decision,

along with the number of registers and the amount of shared

memory needed by each thread block, determines the block

concurrency.

4.3. GPU Design Space Complexity

While design space explorers are generally useful, this is

particularly true in the GPU design space due to its unique
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Figure 2: Matrix multiply’s runtime variations in a 3 × 3 × 3
design space. Different block concurrency values significantly alter
the nonlinear surfaces formed by the runtime.

complexity. We use a simple program, matrix multiply2, to

highlight some aspects of this complexity.

Figure 2 shows a small 3 × 3 × 3 design space for the

matrix multiply program. Each of the 3 chosen parameters may

take 3 possible values, and the runtime (z-axis) of the matrix

multiply program is plotted as interpolated smooth surfaces.

The 3 chosen parameters are the SIMD width representing

a GPU’s computational power (x-axis), the interconnect flit

size representing a GPU’s memory bandwidth (y-axis), and the

block concurrency (#blk) representing a GPU’s amount of on-

chip resources (surface layers). The figure shows that even for

such a small design space and a simple program, the runtime

has a nonlinear and non-monotonic dependence on the varying

SIMD width and flit size when block concurrency is fixed.

Furthermore, changes in block concurrency cause the runtime to

respond even more unpredictably. Low block concurrency (e.g.

1) results in higher runtime because there is not enough work

to keep SIMD units busy. But high block concurrency (e.g. 16)

leads to even worse runtime in some parts of the design space,

which may be a result of memory congestion caused by the high

number of active threads. The optimal block concurrency highly

depends on the values of SIMD width and flit size, indicating

strong interactions between these 3 parameters.

There are two unique aspects of the complex GPU design

space. First, the lack of resource abstraction and virtualiza-

tion on GPUs results in highly hardware-dependent, nonlinear

program performance variations. GPU programmers are often

required to write and optimize programs for specific GPU hard-

ware. However, after a program is written and optimized, it may

not run well or even run at all on other GPUs in the same design

space. For example, in Figure 2, GPUs with different SIMD

width and flit size parameters demand the programmers to

carefully adjust matrix multiply’s block concurrency. However,

the block concurrency is at the same time limited by available

on-chip resources. Such hardware-dependent program tuning

is much more common in GPUs than CPUs, which are often

helped by the use of cache and memory hierarchy. A GPU

2. We modified matrix multiply from the NVIDIA CUDA SDK [22] to use
an 8× 8 thread block size instead of the default 16× 16 thread block size to
achieve a high block concurrency.



design space explorer must efficiently handle such sensitive

performance variations, and our tool leverages the expressive

power of splines to achieve that.

The second aspect of GPU design space complexity comes

from unfamiliarity with the platform. Whereas CPUs have been

under extensive study for decades, and many effects of their

architectural parameters are well known, it is often unclear

to GPU programmers which chip resources may be limiting

the performance of a particular application. Meanwhile, some

programs in our experiment suite also show unusual reliance

on some unexpected resources (e.g. nw’s runtime heavily

depends on the number of shared memory ports, as shown

in Section 7.1). Furthermore, the matrix multiply example

shows that GPU architectural parameters often have strong

interactions. It is non-trivial for GPU programmers to predict

and estimate such unexpected architectural bottlenecks. For

this reason, unlike some prior work which asked users to

select important parameters and interactions, our tool is fully

automated.

5. Stargazer: A Stepwise Regression Method for

GPU Design Space Exploration

5.1. Phase 1: Sampled Simulation Runs

Algorithm 1 Pseudocode of the stepwise regression method

Require: Parameters P1, P2, . . . , Pn.
Require: Ranges of values S1, S2, . . . , Sn.
Require: The design space with |S1| × |S2| × . . .× |Sn| points.

Randomly sample k points from the design space
Simulate or measure each of these k samples
Model M = ∅, the remaining variable set T = {P1, P2, . . . , Pn}
For each Pi in T : Form tentative model Mi with a single term Pi

Among all Mi: Find the one with the highest R2, assign it to M ,
and remove corresponding Pi from T
M now stores the initial single-term model
while T is not empty do

For each Pj in T : Form tentative model Mj equal to M with an
additional basic term Pj

Among all Mj : Find the one with the highest adjusted R2

if (this model’s adjusted R2)− (R2 of M) > θ then
Assign this model to M , remove corresponding Pj from T
R = {Pm|Pm is already in M and Pm 6= Pj}
while R is not empty do

For each Pk in R: Form tentative model Mk equal to M
with an additional interaction term Pj : Pk

Among all Mk: find the one with the highest adjusted R2

if (this model’s adjusted R2)− (R2 of M) > φ then
Assign Mk to M , remove corresponding Pk from R

else
Break the while loop

end if
end while

else
Break the while loop

end if
end while
Return M as the final model

Algorithm 1 gives an overview of our stepwise regression

method for GPU performance estimation. We begin by iden-

tifying the parameter space of interest for this design. Each

design issue or parameter of interest (Pi) can be considered

one dimension in the design space. For each dimension, a set

of possible parameter value settings (Si) is identified. These

choices could be evenly-spaced points between minimum and

maximum values, progressions that rely on doubling values,

user-specified values, etc.

All the possible parameter values on all the possible dimen-

sions can be thought of as a multi-dimensional enumeration of

possible design points. For the GPUs we have considered, it

is common for ten or more parameters or dimensions to be of

interest, each of which may have many possible value settings.

As a result, an exhaustive simulation-based design study might

require millions of points to be simulated.

Stargazer instead samples points from the full design space.

We sample randomly and uniformly from the full space until a

desired number of points has been collected. The user of our

method can specify this either as a total number of points to

simulate, as a fraction of the total design space to simulate, or

as a fraction of each dimension to simulate. In our experiments

discussed in Section 7, fewer than 300 simulations (0.03% of

the space) are enough for excellent accuracy.

For each sampled point, the user runs a simulation or

measurement through their evaluation tool. In our case, we

use GPGPU-Sim [1], but any simulator is appropriate. In

addition, if the parameters under study can be modified during

real-system runs (e.g. configurable memory sizes, numbers

of cores used, or other algorithmic choices), then Stargazer

can use results from real-machine runs instead of simulations.

Our method is orthogonal to this choice. The performance

measurements resulting from the simulation or measurement

runs are stored for use by the subsequent steps of the regression

method.

5.2. Phase 2: Applying Stepwise Algorithm

Once a set of performance measurements is available for a

very lightly-sampled view of the design space, the statistical

analysis determines which design parameters are most influen-

tial to program/system performance and how they interact. This

process repetitively selects the next most significant parameter,

adjusts the model to include it, and then considers whether its

“interaction terms” are useful.

In particular, we start with a number of models, each

comprising only one of the studied parameters. We compute the

R2 of these models as a gauge of each individual parameter’s

contribution to application performance variations. Parameters

that have bigger impact on application performance will pro-

duce single-term models that have higher R2. We choose the

parameter offering the largest R2 and use it as the initial

parameter for the regression model. Using this single parameter,

we develop a performance estimation equation based on natural

cubic splines (Section 5.3).

Once the first parameter has been chosen, we consider

the next most important parameter based on adjusted R2.

Specifically, we augment the currently-obtained intermediate

regression model with each of the remaining parameters and



calculate the adjustedR2 of each of these proposed models. The

highest adjusted R2 indicates the most useful next parameter

among those yet unchosen. If the difference between this

parameter’s adjusted R2 and the R2 of the pre-augmentation

model is above a specified threshold θ, we pick this parameter

as the next basic term to be incorporated into the cubic spline

regression model. The currently-obtained intermediate model is

changed to this augmented model and R2 is updated.

Every time a new parameter is added to the model, we must

also consider its interaction with parameters that have been

chosen earlier. In particular, we consider interaction factors

that indicate how the newly added parameter cross-correlates

with each of the already chosen parameters to contribute to

performance. In our approach, we consider only pairwise inter-

actions. While three-way (and beyond) interaction factors are

also possible, they have not been significant in our experience,

and consequently our default method does not include them.

For each interaction factor, we compare its adjusted R2 to a

threshold value φ to determine whether to include it. Every

time an interaction is added, the R2 and adjusted R2 of the

enhanced models are recomputed until no more interactions

are above-threshold.

This process of adding parameters is applied repeatedly until

either all parameters are included in the model or no remaining

parameter can improve the model quality by more than the

threshold θ. At this point, the regression model is returned as

the result of this algorithm.

5.3. Use of Cubic Splines

Our regression-based performance estimation method devel-

ops parameterized performance estimation equations, as given

in Equation 2, based on natural cubic splines. Cubic splines

are flexible enough to express common functions encountered

in practical problems, and natural cubic splines have improved

behavior at the edges of the explored design space [20].

A cubic spline needs two arguments: the number of knots

and the knot positions [27]. Using more knots strengthens

the spline’s ability to approximate complex functions, but

also increases the risk of overfitting. We found that 1 to

3 knots work well for our studied value ranges. For knot

positions, one common practice is to place knots at quartiles

of the observed data. In our experiments, we make knots

evenly spaced between the minimum and maximum value of

any parameter. Because our design points are randomly and

uniformly sampled, our approach is asymptotically equivalent

to the fixed quartile approach when the number of samples is

large enough (roughly 20). For very small sample sizes, our

approach is more numerically stable because it prevents two

knots from being placed at the same location.

5.4. Variations of the Stepwise Method

Users can customize our regression method in multiple

ways to make it better suit their applications. Two important

variations of the method are the metric by which additional

terms are chosen and the θ and φ threshold values. We used

adjusted R2 as our metric to measure the quality of proposed

augmented models. Adjusted R2 is simple to compute and

understand, and it works well in our studies. AIC and t-tests

are two other commonly used metrics [14, 25]. AIC strikes a

balance between model complexity and model fit, while the t-

test uses null hypothesis to test additional terms. The choice

of metrics is decoupled from the Stargazer framework itself,

so users can choose metrics specific to their applications while

keeping the framework unchanged.

Mathematically, θ and φ could always be zero because

any non-zero adjusted R2 suggests that the additional term

is helpful and should be included in the model. However, in

reality, we often want to exclude terms that are only marginally

useful, to limit the final model’s complexity. We can end the

regression process when the number of terms has reached a pre-

specified value, but it is difficult to pick one such value for all

programs because complex programs usually intrinsically need

more terms than simpler programs. Setting a target R2 value

to reach has a similar problem, because programs have varying

final R2 values based on how amenable they are to regression

modeling. Our solution to this problem is to set θ and φ to a

small nonzero value (e.g. 0.01 is experimentally found to be

a reasonable choice) such that the algorithm terminates when

the R2 value converges to its final value. At that point, either

no terms remain, or none of the remaining terms can bring

significant improvements to the model.

5.5. Example of Stepwise Regression: matMul

As an example to help readers understand how our algorithm

works, the regression method is applied to the matrix multiply

sample program mentioned in Section 4.3 when the entire

design space of Section 6.1 is evaluated. The intermediate and

final results are presented in Table 1, which demonstrates how

each parameter or interaction term is picked or discarded as

the regression process proceeds through an actual use of the

algorithm. For brevity, we used θ = 0.003 and φ = 0 in this

example to control the number of terms in the final model.

In Table 1, the regression process proceeds from top to

bottom. Bold numbers and terms indicate additions to the

model. A pairwise interaction term between two factors a and

b is shown as a:b. On the first row, we compute R2 of models

with single parameters. Because #blk has the highest R2

(0.719), it is chosen as the first parameter. We then compute

adjusted R2 of the models that combine #blk with each

remaining parameter. Because simd shows the largest adjusted

R2 (0.851), it is chosen as the next parameter. The R2 of the

current model is recalculated (0.853). At this point, we evaluate

adding the interaction of simd with each parameter already

existing in the model; in this case, that is only the interaction

simd:#blk. Since the interaction term’s adjusted R2 (0.967)

increases more than φ compared to R2 of the current model,

that term is included andR2 of the current model is recalculated

(0.968). The process continues until no more terms can bring

an increase of more than θ to the R2 of the model. The final

model (last row in Table 1) includes 5 splines, 3 of which are

basic terms (#blk, simd, and intra), and the other 2 are

pairwise interactions (simd:#blk and intra:#blk).



#blk c$ t$ smp ccp simd mshr dramq intra inter

R
2 0.719 0.023 0.004 0.004 0.004 0.154 0.001 0.009 0.014 0.002

Current model includes: #blk, R2 = 0.719

Adjusted R2 0.717 0.718 0.719 0.716 0.851 0.716 0.719 0.718 0.718

Current model includes: #blk, simd, R2
= 0.853

Adjusted R
2 of simd: 0.967

Current model includes: #blk, simd, simd:#blk, R2 = 0.968

Adjusted R2 0.967 0.967 0.971 0.967 0.967 0.969 0.972 0.967

Current model includes: #blk, simd, simd:#blk, intra, R2
= 0.9727

Adjusted R
2 of intra: 0.9730 0.9728

Current model includes: #blk, simd, simd:#blk, intra, intra:#blk, R2 = 0.9745

Adjusted R2 of intra: 0.9737

Current model includes: #blk, simd, simd:#blk, intra, intra:#blk, R2
= 0.9745

Adjusted R2 0.9729 0.9728 0.9769 0.9729 0.9728 0.9748 0.9729

Final model includes: #blk, simd, simd:#blk, intra, intra:#blk, R2 = 0.9745

Table 1: Regression analysis of the matrix multiply program

6. Experimental Methodology

6.1. Simulator and Design Space Parameters

A cycle-level GPU simulator, GPGPU-Sim [1], is chosen

for the experiments. However, because our regression method

does not depend on specific features of the simulator, Stargazer

is applicable to any chosen GPU simulator or measurement

approach. As our studied design space, Table 2 lists 10 ar-

chitectural parameters and their value ranges, for a total of

933,120 possible points. Parameters that are held unchanged in

the experiments are listed in Table 3, taken from an NVIDIA

Quadro FX 5800 GPU. It is worth pointing out that each of the

933,120 points is one unique GPU design, so our experiments

have covered a very large number of GPUs, most of which

differ drastically from the baseline configuration.

The #blk parameter is the block concurrency, i.e. the

number of thread blocks concurrently running on one core. We

include it in our experiments because when a GPU program is

given, #blk is limited only by a few on-chip resources, and

hence it is a parameter reflecting the combined effect of these

architectural resources. In GPGPU-Sim, #blk is determined

by the smallest of four per-core resources: the shared memory

size, the register file size, the maximum number of concurrent

threads, and the maximum number of concurrent thread blocks.

To achieve a given #blk for a design point, we choose values

for these four parameters accordingly. We are able to combine

these four resources into block concurrency and simplify the

regression model because in this paper, we are optimizing

application runtime, which does not distinguish GPU design

points that result in the same block concurrency for a given

application. In future studies, when other cost models such as

power and area are adopted, we may need to use the original

resources instead of block concurrency. In GPGPU-Sim, both

shared memory and constant caches are multi-ported, and hence

we also vary the number of ports of these memories. More

ports generally result in fewer stalled cycles when SIMD units

access memory content with bank conflicts. Finally, intra and

inter represent the simulated GPU’s capabilities to perform

intra- and inter-warp memory request coalescing. The values

indicate how many requests may be coalesced into one request.

6.2. Benchmarks

Programs from both the GPGPU-Sim benchmark suite [1]

and the Rodinia benchmark suite [3] are used for the exper-

iments. Due to the lengthy simulation time on a cycle-level

simulator, we only pick programs that can finish in a reasonable

amount of time on GPGPU-Sim (Table 4). We use 300 samples

from each application to build the regression model and use

a different set of 200 samples to verify the accuracy of the

model. When a program has multiple kernel functions (such as

backprop, bfs, and nw), we total the runtime of all kernel

executions. Note that each of the two benchmark suites has a

distinct breadth-first search program. We use capitalization to

distinguish them (i.e. BFS versus bfs).

7. Accuracy of the Stepwise Regression Method

7.1. Evaluating Regression Steps by Model R2

R2 reflects how well a regression model explains the varia-

tion in the dependent variable. As such, it is a useful metric for

measuring the quality of the models we create. As each term is

added to the model, one can recompute R2 to discern improve-

ments in quality of the model. For all the studied benchmarks,

Figure 3 plots the changes in R2 for each added parameter,

representing the contributions to the model quality from each

factor. In most applications, SIMD width is the dominant factor,

contributing on average 0.78 to R2. This is consistent with

the fact that GPU applications are usually computationally

intensive. Thus the amount of on-chip computing capability (i.e.

SIMD width) is likely to be crucial for most GPU programs.

While SIMD width is often dominant, this is not always

the case, and our regression approach is effective at finding

other scenarios. For example, consider nw and matMul. nw

is included in the Rodinia benchmark suite to represent pro-

grams which cannot fully utilize the wide SIMD pipelines

of GPUs [3]; each thread block of nw has only 16 threads.

Stargazer correctly highlights this program property and deter-

mines that nw is affected more by the number of shared memory

ports; most other parameters are irrelevant. For matMul, the

implementation we use has a small thread block size (8 × 8
threads), and consequently the program is severely memory-

bound when block concurrency is low. Thus, simd only shows



Param Unit Values #Points Comments

#blk blocks/core 1, 2, 4, 8, 16 5 Block concurrency

c$ KB 1, 2, 4, 8, 16, 32 6 Constant cache size

t$ KB 1, 2, 4, 8, 16, 32 6 Texture cache size

smp count 1, 2, 4, 8 4 # shared memory ports

ccp count 1, 2, 4, 8 4 # constant cache ports

simd count 8, 16, 32 3 SIMD width

mshr count/thread 1, 2, 3 3 # MSHRs

dramq count 16, 32, 64 3 DRAM scheduler queue size

intra count 1, 2, 4, 8 4 Intra-warp memory coalesce

inter count 2, 4, 6 3 Inter-warp memory coalesce

Total 933,120

Table 2: Variable parameter values of the studied design space

Parameters Value

# Cores 30

Core clock frequency 325 MHz

L1 data cache None

L2 data cache None

Interconnect topology butterfly

Interconnect flit size 32 bytes

# DRAM controllers 8

# DRAM chips per con-
troller

2

DRAM clock frequency 800 MHz

DRAM type GDDR3

Table 3: Unchanged parameters

Suite Applications Problem Size
Threads Inst

Description
per Block Count

GPGPU-Sim

AES 256KB image 256 28M 128-bit AES encryption algorithm
BFS 65536 nodes 512 17M Breadth-first search on a graph
CP 256×256 grid 128 126M Calculate Coulombic potential in molecular dynamics
LPS 100×100×100 grid 128 82M 3D Laplace equation solver
RAY 256x256 image 128 71M Graphics rendering of lighting effects
STO 192KB input file 128 134M Sliding-window-based MD5 calculation

Rodinia

backprop 65536 nodes 512 193M Training weights in a layered neural network
bfs 65536 nodes 512 28M Breadth-first search on a graph

hotspot 500×500 points 256 80M Processor thermal simulation on a 2D grid
nw 256×256 points 16 3.4M Parallel Needleman-Wunsch algorithm for DNA sequencing

Example matMul 256×256 matrices 64 78M Matrix multiply sample in CUDA SDK

Table 4: Benchmark programs and their characteristics
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(a) simd is the dominant factor.
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(b) Zoom in on other factors when fixing simd to 32.

simd
#blk
simd:#blk
dramq
smp
intra
ccp
#blk:dramq
#blk:intra

Figure 3: Each factor’s contribution to R2 of the model as regression proceeds

up as the second most important factor.

Besides SIMD width, block concurrency is often the next

important factor for programs. In addition to matMul, BFS is

highly dependent on #blk. Like matMul, it has high memory

bandwidth demands [1]. Hence it needs more thread blocks to

hide global memory load latency.

To further examine how application runtime depends on other

parameters, we take a subset of the simulation data with SIMD

width fixed at 32, and apply the same regression method. Fig-

ure 3b shows that different applications have diverse additional

performance factors. Although block concurrency is important

to most programs (contributing 0.696 to R2 on average), AES

and nw strongly depend on smp (0.244 and 0.996 respectively)

while BFS and bfs are affected by dramq (0.261 and 0.620

respectively) due to high global memory traffic.

Finally, we note that the interaction factors identified by our

method in Figure 3 all involve #blk. This is because the spe-

cific resource demands of each application affect runtime more

prominently when block concurrency is low, hence the strong

interactions between #blk and these parameters. Furthermore,

examining these interactions helps reveal the particular re-

sources needed by each application (such as intra for CP and

dramq for a few benchmarks) when block concurrency cannot

hide global memory latency well. In summary, our automated

regression method helps build useful intuition about important

parameters and their interactions.
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Figure 4: AES’s runtime dependence on block concurrency before and
after simulation tail handling is applied

7.2. Handling Short Simulation Runs

Although over all applications the average R2 is 0.976,

Figure 3 shows that AES’s R2 is the lowest. To investigate

the reason, we did a separate set of experiments and found

that this lack of fit is mainly due to the smaller input data sets

leading to shorter simulation runs of this program.

Figure 4 presents the simulation results of AES, with #blk

varying from 1 to 16. (Other parameters are fixed at the default

values.) The solid line in Figure 4a plots the original simulated

runtime of the AES program. The runtime increases in a non-

monotonic fashion from 1 to 8, before dropping down and

leveling off. This is contrary to the intuition that increasing

block concurrency should decrease runtime. This behavior is

due to the work scheduling algorithm used in GPGPU-Sim, and

has been detailed in prior work [1]. In short, at the end of each

simulation run, with little work left to process, only a fraction

of cores are still doing computation, but the reported simulation

time is the point at which all cores finish their work. The

small data sets often used for simulation runs are particularly

vulnerable to this “tail effect” because so little steady-state

execution time exists before the kernel ends. Furthermore, the

work distribution at the end of simulation runs is also highly

sensitive to changes in block concurrency, which explains the

observed runtime curve.

The dashed line in Figure 4a shows our regression model’s

prediction of the runtime for this case. One can see a large error

near where #blk is 8. Our approach is useful in highlighting

when such effects are occurring, but we can also reduce these

effects using the technique below.

To reduce the work scheduling “tail effect”—particularly on

small data sets—we process AES’s simulation data to “trim the

tail”. Essentially, instead of using the full simulation time until

the last of the work is finished, we weight the tail time by the

number of cores that the tail work actually employs. The bottom

graph in Figure 4 shows the result of this adjustment. The

solid line indicates simulation results adjusted in this way, and

the dashed line represents our regression model’s predictions

when it is given the adjusted input training data. With this

adjustment, the runtime curve is nearly level from #blk values

1 to 8, before the tail-adjusted runtime decreases for #blk

beyond 8. After the adjustment, the regression model much

more closely reflects the measured data. As a result, the R2 of

AES increases from 0.902 to 0.999. For the remainder of the

paper, we will refer to the adjusted AES data as AES-adj

and report its results separately where relevant. The lesson

learned is that accuracy metrics such as R2 can be effective

signals of issues like this. Meanwhile, even with the relatively

short simulation runs of some current GPU benchmarks on

GPGPU-Sim, in general our regression method still models

program performance accurately, including for unprocessed

AES (Section 7.3). Our method is adaptive enough to handle

both short and long simulation runs.

7.3. Relative Runtime Prediction Error

A regression model estimates and interpolates unmeasured

data points based on the collected sample set. Statistically, R2

represents how well a regression model fits the observed data,

but it does not directly report how accurate the predictions of

unseen samples will likely be. Thus, for some users, relative

prediction error may be a more intuitive accuracy metric. We

evaluate our method with respect to this metric by answering

the following questions: 1) How well does the runtime esti-

mated by our model equation match the actual runtime given by

simulation or measurements? 2) How many simulation samples

are needed to properly train the model?

To analyze the relative error of predictions made by the

regression model, we use the following approach. For each

application, its simulation data repository has 500 randomly

chosen design points and their simulation results. We first

establish the model by randomly choosing N samples (N =
30, 60, 90, ..., 300 ) from the repository and running stepwise

regression to generate a model equation. We then use the

resulting model equation to predict the runtime of 200 design

points also randomly chosen from the repository. These 200

samples are guaranteed to be different from those used for

building the model. Estimated runtimes for these 200 test points

are compared with measured simulated runtimes for the same

points and relative errors are calculated. The sample-train-test

process is repeated 5 times for each application, though the

same 500-sample repository is used. The mean error we collect

is the mean across all runs. The maximum error we report is

the true maximum, not a maximum after averaging.
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Figure 5: Prediction accuracy vs. training sample size. Numbers in the parentheses indicate the number of splines used for basic terms and
interaction terms in the 300-sample models.

Figure 5 plots the runtime prediction errors our model

experienced for each of the applications in our benchmark suite.

The left graph shows the mean error, and the right graph shows

the maximum observed error for the model across the 200× 5
test points. The x-axis varies from 30 to 300 and represents the

number of randomly-chosen simulation points in our training

sample set.

We start by considering the accuracies achieved with 300

sample points. Recall that a training set of 300 points is already

a considerable reduction from the original 933 K points in the

exhaustive design space. For this approach with 300 random

training samples, the average prediction error of our method on

the 200 unseen samples is remarkable: below 3.8%. AES has the

highest mean relative error of 3.8%; its 98th percentile error is

21.7% and the maximum error is 31.1%. (However, AES-adj

is much lower due to the tail adjustment.) Other benchmarks

generally show mean errors below 2.3%, 75th percentile errors

below 4.4%, and maximum errors below 15%.

Prediction accuracy depends heavily on program character-

istics. Programs that exhibit more complex behavior and use

more features of the GPU, such as AES, are inherently more

difficult to predict than programs that rely on fewer architectural

parameters, such as nw. In addition to these intrinsic structural

differences, we note that the relatively short simulation times

affect prediction accuracy adversely and significantly in certain

benchmark programs including AES and matMul.

Having established that 300 sample points offer excellent

accuracy for our application suite, the remaining question is

how few samples the regression method should use to still

achieve acceptable accuracy. Figure 5 shows how average error

(5a) and maximum error (5b) are affected by the number

of simulations used to train the model. For all applications

except for the original AES, as few as 30–60 sample points are

sufficient for mean accuracy of 5% or better. While maximum

errors spike upward for small sample sets, it quickly drops to

acceptable levels at 100 sample points and beyond.

To some degree, the question of how many sample points

is sufficient is related to the questions of how complex the

application is and how many terms the stepwise regression

model must include. For this reason, each application is labeled

in the legend of Figure 5 with an annotation of the form

(param, pair). In this annotation, param is the number of

splines used for individual parameter terms in each appliction’s

regression model and pair is the number of additional terms

used to reflect pairwise interactions between parameters. The

total number of terms in the regression equation is equal to the

sum of these two. We report these (param, pair) results for

the maximum accuracy case (300 sample points) with θ and φ

set to 0. (The earlier matrix multiply example in Table 1 used

a larger θ value which leads to fewer terms to simplify the

presentation.)

Applications such as CP have very few included terms in the

final regression model. For these, a small number of randomly-

sampled designs nicely cover possible parameter value com-

binations of interest. As a result, the error is quite low even

for very small sample counts. On the other hand, applications

such as AES depend on more parameters and therefore require

substantially more samples to cover enough area of the design

space the parameters span. The other benchmarks lie between

these two extremes. One can use trends from Figure 5 to

obtain a trade-off between simulation time and model accuracy.

Section 8.1 explains this trade-off further.

7.4. Comparison Against a Fixed-Factor Method

Finally, we compare our method’s accuracy against simpler

methods that use a fixed number of factors. These methods

might be similar to the intuition and educated guesses that

experienced designers use in more familiar design spaces. The

simpler, fixed-factor method uses the top three factors observed

in most of the program regression results in Section 7.1:

simd, #blk, and simd:#blk. Figure 6 shows the average

relative error comparison between a fixed-factor approach and

our automated approach. The figure shows that the automated

method is never worse than the fixed-factor method. This is

because the former usually includes more terms, except for

programs (such as CP) which have no more than three terms

in their regression results. In these cases the automated method

is at least as good as the fixed-factor method.

Note that we are giving an advantage to the fixed-factor
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Figure 6: Automated method vs. fixed 3-factor method

method because we use the top three factors in Figure 6. This

essentially assumes the hardware designer always knows what

the top factors are. In the case of more complex design spaces

or less experienced designers, an automated approach is more

likely to lead to effective and accurate design space pruning.

8. Case Studies of Using Stargazer

8.1. Reducing Simulation Time by Pruning Design Space

The primary usage scenario of Stargazer is to reduce simula-

tion requirements while also guiding architects towards accurate

and informed pruning of the GPU design space. For example,

assume a GPU architect is tasked with exploring the design

space in Table 2. Exhaustively simulating nearly 1 million

points in the design space is undoubtedly impractical. Instead,

the architect can use our tool to rapidly capture the general

structure of the design space by sampling and simulating a

much smaller number of designs. In particular, Figure 5 shows

the trade-off between accuracy and training time (simulation

samples). If the architect chooses an expected mean error of

5% or less, all but one of our applications require only 30 or 60

design points to be simulated. (AES is the outlier, though AES

with tail reduction has much lower errors.) This is a significant

reduction (roughly 15000×) in potential simulation require-

ments. Furthermore, because there is no learning/feedback loop

that guides sample selection in our method, simulated points

can be chosen at random from the space of possibilities, and

the simulations can all be run in parallel. Once the regression

model is obtained, one can evaluate other design points using

just lookups into the regression equation.

Most researchers do not exhaustively simulate all possible

points, but instead simulate explorations along “important axes”

while centering their evaluations around a likely design point.

Selecting a design’s “center point” and “important” axes, how-

ever, requires intuition and often some amount of trial-and-

error. Our approach improves the automation by which such

architectural traits can be determined.

If equation-based evaluations of unsimulated points is in-

sufficient, one could still use the regression model to identify

the important axes and “interesting” parts of the design space.

After that, further simulations can be targeted at the regions
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Figure 7: LPS’s runtime is more sensitive to block concurrency than
RAY’s runtime, and thus LPS is more memory-bound than RAY.

highlighted by the regression model to give the most insight

and accuracy from a limited number of simulation cycles.

8.2. Application Characteristics and Benchmark Diversity

Designers or users of a benchmark suite often want to assess

the diversity of the included benchmark programs [2,8,9]. One

way to characterize benchmark diversity is to compare regres-

sion models obtained from each application across the whole

suite. Figure 3 shows how each application’s performance is

affected by various GPU architectural parameters when SIMD

width is fixed. The unique characteristics of programs like

nw are immediately noticeable. Benchmark designers often

include a few such programs to enhance benchmark diversity.

In addition, both breadth-first search programs heavily depend

on the dramq factor, suggesting that these two programs have

high global memory needs. Meanwhile, AES, LPS, STO, and

hotspot all have noticeable dependence on smp, while AES

additionally relies on ccp. These components are consistent

with each application’s known behavior. In summary, regression

methods make a benchmark suite’s attributes easier to compare.

As another example, consider how GPU programs rely on

high block concurrency to hide memory latency [21]. By

analyzing the slope of an application’s runtime versus #blk

curve, one can detect how severely an application is limited

by global memory bandwidth. A compute-bound application

needs fewer thread blocks to achieve peak performance, while a

memory-bound application needs more. Stargazer can estimate

the runtime versus #blk curve for this use.

Using the regression models of LPS and RAY as examples,

we vary #blk from 1 to 16 and keep the remaining param-

eters fixed. This curve, shown in Figure 7, is essentially the

spline generated for the #blk term of the model. The graph

shows that LPS’s runtime depends more on block concurrency

because LPS does very little computation while streaming the

3-layer cube over the global memory. RAY’s runtime depends

less on block concurrency because it does heavy computation

to calculate light reflection and shadows. The model clearly

highlights LPS is more memory-bound than RAY.



9. Conclusions

This paper has proposed and evaluated an automated step-

wise regression method for design space exploration in GPUs.

Relative to prior work in CPU design space pruning, our

work offers useful novelties in terms of handling a large

number of variables and interactions. This allows us to au-

tomatically and efficiently explore the complex characteristics

of the GPU design space. Relative to prior work in GPU

performance evaluation, this work offers experiences from our

regression method that show how it could be used to understand

benchmark diversity, hardware bottlenecks and trade-offs, and

other important scenarios. Extremely sparse samples of the

design space (300 out of 933K points) can offer performance

estimation equations with very good accuracy (1.1% average

error). This can lead to 15000× reduction in simulation time re-

quirements relative to exhaustive approaches and also improves

significantly compared to more tailored approaches involving

parameter variations around a possible design point.

As GPU designs incorporate new and diverse features, it will

be important for hardware and software designers to quickly

develop intuition regarding how they influence performance.

Considerable challenges lie in anticipating inflection points

and parameter interactions in complex designs. We see our

automated regression method as an important step in facilitating

such design space exploration.
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