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Abstract

Graphics processing units (GPUs) are of increasing interest
because they offer massive parallelism for high-throughput
computing. While GPUs promise high peak performance, their
challenge is a less-familiar programming model with more
complex and irregular performance trade-offs than traditional
CPUs or CMPs. In particular, modest changes in software or
hardware characteristics can lead to large or unpredictable
changes in performance. In response to these challenges,
our work proposes, evaluates, and offers usage examples of
Stargazer', an automated GPU performance exploration frame-
work based on stepwise regression modeling. Stargazer sparsely
and randomly samples parameter values from a full GPU
design space and simulates these designs. Then, our automated
stepwise algorithm uses these sampled simulations to build
a performance estimator that identifies the most significant
architectural parameters and their interactions. The result is an
application-specific performance model which can accurately
predict program runtime for any point in the design space.
Because very few initial performance samples are required
relative to the extremely large design space, our method can
drastically reduce simulation time in GPU studies. For example,
we used Stargazer to explore a design space of nearly 1
million possibilities by sampling only 300 designs. For 11 GPU
applications, we were able to estimate their runtime with less
than 1.1% average error. In addition, we demonstrate several
usage scenarios of Stargazer.

1. Introduction

GPUs are increasingly being used as general-purpose parallel
computing platforms. While originally targeted at graphics
applications, these massively-parallel, throughput-oriented sys-
tems offer the potential for very high performance over a
range of applications. However, unlike traditional CPUs or
CMPs, GPUs offer a less-familiar programming model with
more complex and irregular performance trade-offs. Moderate
changes in software attributes (such as data layout and memory
reference patterns) or hardware characteristics (such as size
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of memory structures and interconnect bandwidth) can lead to
large or unpredictable performance changes [4, 18,24,28].

From a software perspective, the lack of resource abstraction
and virtualization forces GPU programmers—unlike program-
mers for general-purpose CPUs—to take hardware characteris-
tics into consideration even when writing GPU programs just
for correctness. Moreover, to optimize performance, programs
have to be tailored for specific GPU instances. It is usually
very challenging to create a single version of code that performs
well on several GPU implementations. Good GPU performance
estimation models have the potential to overcome these diffi-
culties by helping developers to predict and optimize program
performance and to port existing applications.

From a hardware perspective, the many dimensions of the
GPU design space and their intricate interactions make it diffi-
cult or time-consuming to predict and optimize the performance
of future GPUs under design. With architectural simulations
running five to six orders of magnitude more slowly than
programs on real hardware, each possible design point requires
days of simulation time for full-sized data sets. Exploring the
full cross-product of many design parameters requires a large
number of long-running simulations. Thus, like their software
counterparts, hardware designers can also benefit from GPU
performance estimators that accurately survey the design space
and reduce the number of points for which detailed evaluations
are required.

While previous computer architecture research has explored
using regression methods [11, 15-17] and machine learning
techniques [10,12] to prune and better understand the design
space of general-purpose CPUs, their methods have limited
applicability due to the complexity of the GPU design space. In
particular, GPU architectural parameters and their interactions
exhibit strong and highly nonlinear influence on program run-
time, and the relative importance of these parameters is difficult
to predict due to unfamiliarity with the platform in the relatively
new GPU field. In response to these challenges, our work
proposes, evaluates, and offers usage examples of Stargazer,
an automated GPU design space exploration framework based
on stepwise regression modeling and tailored for the complex
GPU design space. Our work has several key novelties and
makes significant contributions.

First, we are the first to offer an automated design space
explorer geared toward the complex and nuanced GPU arena.



Our tool handles stronger and more complex application per-
formance dependence on GPU architectural parameters than
work geared at general-purpose CPUs. Second, unlike many
previous regression methods, our work is fully automated. By
this we mean that our stepwise regression method incremen-
tally evaluates the absolute and adjusted R? values of design
parameters to determine which should be included into the
regression model. Furthermore, we also automate the use of
pairwise interactions between parameters. These interactions
are much stronger in the GPU design space than those in the
CPU field. This helps overcome insufficient design intuition in
the relatively new GPU field.

For the platforms evaluated in detail in this paper, we show
that GPU performance can be accurately modeled using a small
fraction of the entire simulation space. Starting from a 10-
dimensional design space of over 933K possible design points,
Stargazer can use 300 randomly-chosen points to build an
estimator equation that predicts performance with 1.1% average
error. From as few as 30-60 data points, it offers less than 5%
error for all but one application. This reduces simulation re-
quirements by 4-5 orders of magnitude compared to exhaustive
design exploration and saves considerably over more targeted,
non-exhaustive approaches as well. Our method also offers
GPU hardware and software designers useful intuition about
the systems they develop.

The rest of the paper is organized as follows. Section 2 re-
views prior work. Section 3 and Section 4 introduce background
material on regression theory and GPU architectures respec-
tively. Our automated regression-based method is presented in
Section 5. Section 6 describes our experimental methodology,
and Section 7 evaluates the method. Section 8 offers a few
scenarios in which Stargazer can be used. Finally, Section 9
concludes the paper.

2. Prior Work

2.1. GPU Performance and Power Analysis

As GPUs have become more widely used, several simulators
have been introduced to perform parameterized studies of the
GPU design space. These include GPGPU-Sim, the simulator
we use in this research [1]. Another earlier simulator, Qsilver,
also addressed basic GPU performance issues [26].

Some research aims to build analytical models for estimat-
ing GPU power and performance [6,7]. If their models are
parameterized, they can be used to explore the GPU hardware
designs similarly as GPU simulators. However, neither GPU
simulators nor these analytical models offer a way to navigate
and interpret the complex parameterized GPU design space.

Where GPUs exist to be studied in real systems, perfor-
mance counters offer another approach for some evaluations. In
particular, hardware performance counters for some NVIDIA
GPUs are available through their Parallel NSight tool [19].
While these are useful for characterizing points from the GPU
design space that have already been instantiated as real GPU
systems, they do not allow one to change hardware parameters
to consider design points that have not yet been built.

2.2. CPU Design Space Exploration

While design space exploration for GPUs is fairly nascent,
prior work considering general-purpose CPUs is relevant. A
wide range of methods including machine learning and regres-
sion have been used to assist CPU design space exploration.
However, the differences between CPU and GPU design spaces
(Section 4.3) and/or limitations in these methods make them
inefficient or unsuitable for GPUs.

For example, Ipek et al. proposed a method based on artificial
neural networks [10]. While this method offers good speedup
and accuracy and can be automated, it has an intrinsic feedback
loop in which subsequent simulations are selected based on
results observed from prior design points. As such, this method
is difficult to parallelize, significantly increasing the training
time. In contrast, our method can gather a random sampling of
simulation points in parallel and then perform regression on
them to create an accurate model.

Lee and Brooks proposed a regression-based modeling ap-
proach to study the CMP design space [15]. Their approach is
similar to ours in using regression, and it also achieves good
model accuracy with a small number of sampled simulations.
However, it differs from ours in that it does not use stepwise
regression to select relevant parameters. Instead, users must rely
on domain-specific knowledge and considerable statistics expe-
rience to select parameters and interactions that are included in
the model. In the newer and less familiar GPU design space,
fewer users can depend on reliable domain knowledge.

Joseph et al. proposed a stepwise regression method to
automatically explore a CPU design space [11]. However, each
of their parameters can take only one of two possible values.
As such, their model is strictly linear in the parameters, taking
into account only first-order linear factors. It is unclear whether
their method will apply well to design spaces broader than
their chosen limited uniprocessor design space. In contrast, our
method is still linear, but uses splines so that each parameter can
take an arbitrary number of values expressing more complex
relationships.

3. Regression Theory

Statistical regression analysis is the study of techniques that
relate one dependent variable to a number of independent
variables. Among various forms of regression, linear regression
is the most commonly used due to its well-behaved and well-
studied properties [14].
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Equation 1 shows a linear regression model. The x; terms
are the independent variables. Their changing values cause
the dependent variable, y, to vary as a response. The model
error € is added to describe an individual sample’s deviation
from what the model predicts. Linear regression theory requires
the dependent variable y to be a linear combination of the
regression coefficients ;. In particular, though Equation 1 has



terms that are quadratic in independent variables x;, the model
remains linear as long as it is linear in ;.

The task of the regression is to determine the coefficients 3;
from observed measurements of y and z;. Least square solvers
are usually used to accomplish this. In this paper, we focus on
GPU performance modeling, so y represents program runtime
and x; are architectural parameters such as GPU computing
resources and memory bandwidth (Section 6.1). Our method
is, however, flexible enough to handle more general studies.
For example, y can be any measurable hardware metric, such
as chip power consumption, while z; can represent algorithmic
choices in addition to architectural parameters.

To account for interplay between basic terms z;, we can in-
clude pairwise first-order interactions as the double summation
in Equation 1. The product x;x; reflects the interaction between
x; and x;. However, the number of interaction terms grows
much faster than the number of basic terms. Automatically
determining which important pairwise interactions to include
is a key part of our stepwise regression process presented in
Section 5.

Variables in real problems often have nonlinear dependence
that cannot be accurately captured by Equation 1. To handle
these cases, transformations (f; and f; in Equation 2) are
applied to z;. Equation 2 is still a linear regression model
because y is still linear in the coefficients ;. As a result,
techniques in linear regression theory can still be applied to the
problem while nonlinearity in independent variables is handled.
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A common choice of f is to use piecewise polynomial functions
(splines) due to their flexibility in characterizing any continuous
function [20]. In addition to the choice of spline types (e.g.
cubic), there is also a choice regarding the number and positions
of knots for the spline. Section 5.3 has more details on the
particular splines we have chosen and their arguments.

After a model and its g; are proposed, the coefficient of
determination (R?) is a commonly-used statistical metric for
measuring the quality of a model [14]. R? reflects how much
of the variance of the dependent variable can be explained by
changes in the independent variables. However, because R?
always increases when a new term is included in the model,
it does not fully show the accuracy benefit of that term. For
this reason, adjusted R? is often used. Adjusted R? measures
whether adding an additional parameter in the model brings
more benefit than a random variable would have brought [14].

Finally, when there are a large number of independent
variables, as is the case in the GPU design space, Equation 2
may have a large number of terms. A stepwise regression
method coupled with some measure of fit, such as Akaike
Information Criterion (AIC) [25] or adjusted R?, can be used
to judiciously reduce the number of terms by only selecting
those that are most useful for model accuracy. Section 5 gives
more details on our specific stepwise method tailored for GPU
design space exploration. In formal terminology, our method
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Figure 1: GPU architecture overview

is a forward selection (i.e. start with an empty model and add
parameters to it), adjusted R2-based, stepwise linear regression
process which includes first-order interactions.

4. GPU Architectures and Programming
4.1. GPU Hardware Architecture Overview

GPU architectures obtain high computational throughput
from executing many identical operations simultaneously on
different data, typically in a SIMD fashion. Modern GPUs
further extend this functionality by replicating the basic SIMD
hardware so that multiple, independent SIMD calculations may
occur concurrently on different groups of data. While GPUs
from different vendors may vary in specifics, our approach
is generally applicable. For clarity and specificity, we use
NVIDIA terminology in this paper, but the approach can be
applied to GPUs from other vendors as well. Figure 1 shows a
typical GPU architecture based on NVIDIA GPUs.

The basic SIMD hardware component is called a core. Cores
contain multiple execution units, where each unit executes the
code for a single thread in parallel with other units. The number
of such units in a core is referred to as the core’s SIMD width.
The hardware groups threads executing the same code into sets
called warps and schedules the threads within a warp to execute
concurrently using all of the core’s SIMD units. Threads all
execute the same instruction using different data values from
different memory addresses, though cores contain mechanisms
to allow branch divergence within the warp [5].

A core contains resources shared by all threads executing
concurrently on it. Each core contains a limited number of
thread slots which limit the maximum number of concurrent
threads. Threads executing the same code are grouped by the
programmer into thread blocks; cores support a finite number
of these thread blocks. Each thread block contains one or
multiple warps. The hardware overlaps the computation and
communication phases of different warps to hide memory
latency. Cores also contain a variety of storage resources:
a register set shared by all threads and software-managed
shared memory shared among the core’s threads to enable
fast data access within a thread block. Other resources like
caches (instruction, data, constant, texture) and texture units
may also be shared by all threads scheduled on a core. The
finite amount of shared resources limits the number of threads
that can execute simultaneously on a core. In particular, the



smallest of four core resources—the number of thread slots,
the number of thread block slots, the register set size, and the
shared memory size—dictates the maximum number of thread
blocks that can execute concurrently on a core; we call this a
core’s (thread) block concurrency.

Each core also contains a set of Miss Status Holding
Registers (MSHRs) for tracking outstanding memory requests.
MSHRs and the associate mechanisms reduce the number of
memory requests sent out of the core in two ways. First,
memory requests from individual threads in the same warp can
be joined together into fewer wide memory requests via intra-
warp memory coalescing. Second, overlapping memory read
requests made by multiple warps executing on the same core
can be joined together via inter-warp memory coalescing.

As shown in Figure 1, modern GPUs contain an array of
these cores sharing other chip resources. An interconnection
network connects cores to a distributed set of second-level
caches and memory modules. Fixed groups of memory modules
share one memory controller that sits in front of them and
schedules memory requests. The DRAM scheduler queue size
in each memory module impacts the capacity to hold outstand-
ing memory requests.

4.2. Programming GPUs

As GPU use has increased, programming environments and
abstractions have been introduced. NVIDIA’'s CUDA is a
common method for programming NVIDIA GPUs [23], and
OpenCL is an industry effort towards a more portable program-
ming environment [13]. Nonetheless, GPU programming still
requires understanding the underlying target hardware. In par-
ticular, the code typically indicates how to group computation
together on hardware and how to place and access data in the
system. In our work, the benchmarks are written using CUDA,
but the ideas apply to other environments.

To specify computation, programmers write kernels which
are invoked from the main program running on a host processor
and which execute on the GPU. The kernel specifies operations
to be performed from a single thread’s point of view. When
launching a kernel on a GPU, the code must specify the total
number of threads executing the kernel and how to group these
threads together. The code must specify the number of threads
in each thread block and the total number of thread blocks.
Threads within the same thread block execute together on a
core, sharing the core’s resources. They can share data via
the core’s shared memory and perform barrier synchronization
among themselves. Thread blocks from the same kernel can
execute on different cores, and multiple thread blocks may
execute on a single core. Programmers decide how many
threads should be contained in a thread block; this decision,
along with the number of registers and the amount of shared
memory needed by each thread block, determines the block
concurrency.

4.3. GPU Design Space Complexity

While design space explorers are generally useful, this is
particularly true in the GPU design space due to its unique
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Figure 2: Matrix multiply’s runtime variations in a 3 X 3 X 3
design space. Different block concurrency values significantly alter
the nonlinear surfaces formed by the runtime.

complexity. We use a simple program, matrix multiply?, to
highlight some aspects of this complexity.

Figure 2 shows a small 3 x 3 x 3 design space for the
matrix multiply program. Each of the 3 chosen parameters may
take 3 possible values, and the runtime (z-axis) of the matrix
multiply program is plotted as interpolated smooth surfaces.
The 3 chosen parameters are the SIMD width representing
a GPU’s computational power (x-axis), the interconnect flit
size representing a GPU’s memory bandwidth (y-axis), and the
block concurrency (#b1k) representing a GPU’s amount of on-
chip resources (surface layers). The figure shows that even for
such a small design space and a simple program, the runtime
has a nonlinear and non-monotonic dependence on the varying
SIMD width and flit size when block concurrency is fixed.
Furthermore, changes in block concurrency cause the runtime to
respond even more unpredictably. Low block concurrency (e.g.
1) results in higher runtime because there is not enough work
to keep SIMD units busy. But high block concurrency (e.g. 16)
leads to even worse runtime in some parts of the design space,
which may be a result of memory congestion caused by the high
number of active threads. The optimal block concurrency highly
depends on the values of SIMD width and flit size, indicating
strong interactions between these 3 parameters.

There are two unique aspects of the complex GPU design
space. First, the lack of resource abstraction and virtualiza-
tion on GPUs results in highly hardware-dependent, nonlinear
program performance variations. GPU programmers are often
required to write and optimize programs for specific GPU hard-
ware. However, after a program is written and optimized, it may
not run well or even run at all on other GPUs in the same design
space. For example, in Figure 2, GPUs with different SIMD
width and flit size parameters demand the programmers to
carefully adjust matrix multiply’s block concurrency. However,
the block concurrency is at the same time limited by available
on-chip resources. Such hardware-dependent program tuning
is much more common in GPUs than CPUs, which are often
helped by the use of cache and memory hierarchy. A GPU

2. We modified matrix multiply from the NVIDIA CUDA SDK [22] to use
an 8 x 8 thread block size instead of the default 16 x 16 thread block size to
achieve a high block concurrency.



design space explorer must efficiently handle such sensitive
performance variations, and our tool leverages the expressive
power of splines to achieve that.

The second aspect of GPU design space complexity comes
from unfamiliarity with the platform. Whereas CPUs have been
under extensive study for decades, and many effects of their
architectural parameters are well known, it is often unclear
to GPU programmers which chip resources may be limiting
the performance of a particular application. Meanwhile, some
programs in our experiment suite also show unusual reliance
on some unexpected resources (e.g. nw’s runtime heavily
depends on the number of shared memory ports, as shown
in Section 7.1). Furthermore, the matrix multiply example
shows that GPU architectural parameters often have strong
interactions. It is non-trivial for GPU programmers to predict
and estimate such unexpected architectural bottlenecks. For
this reason, unlike some prior work which asked users to
select important parameters and interactions, our tool is fully
automated.

5. Stargazer: A Stepwise Regression Method for
GPU Design Space Exploration

5.1. Phase 1: Sampled Simulation Runs

Algorithm 1 Pseudocode of the stepwise regression method

Require: Parameters Pi, P, ..., Pp.
Require: Ranges of values Si, S, ..., Snh.
Require: The design space with |S1| X |S2| X ... X |Sy| points.
Randomly sample k£ points from the design space
Simulate or measure each of these k£ samples
Model M = (), the remaining variable set T' = {P1, P», ..., Pn}
For each P; in T": Form tentative model M; with a single term P;
Among all M;: Find the one with the highest R?, assign it to M,
and remove corresponding P; from T
M now stores the initial single-term model
while 7" is not empty do
For each P; in T: Form tentative model M; equal to M with an
additional basic term P;
Among all M;: Find the one with the highest adjusted R>
if (this model’s adjusted R?) — (R? of M) > 6 then
Assign this model to M, remove corresponding P; from T’
R = {P,,| Py, is already in M and P,, # P;}
while R is not empty do
For each P, in R: Form tentative model M} equal to M
with an additional interaction term P; : Py
Among all M find the one with the highest adjusted R?
if (this model’s adjusted R?) — (R? of M) > ¢ then
Assign M}, to M, remove corresponding P from R
else
Break the while loop
end if
end while
else
Break the while loop
end if
end while
Return M as the final model

Algorithm 1 gives an overview of our stepwise regression
method for GPU performance estimation. We begin by iden-

tifying the parameter space of interest for this design. Each
design issue or parameter of interest (F;) can be considered
one dimension in the design space. For each dimension, a set
of possible parameter value settings (.5;) is identified. These
choices could be evenly-spaced points between minimum and
maximum values, progressions that rely on doubling values,
user-specified values, etc.

All the possible parameter values on all the possible dimen-
sions can be thought of as a multi-dimensional enumeration of
possible design points. For the GPUs we have considered, it
is common for ten or more parameters or dimensions to be of
interest, each of which may have many possible value settings.
As a result, an exhaustive simulation-based design study might
require millions of points to be simulated.

Stargazer instead samples points from the full design space.
We sample randomly and uniformly from the full space until a
desired number of points has been collected. The user of our
method can specify this either as a total number of points to
simulate, as a fraction of the total design space to simulate, or
as a fraction of each dimension to simulate. In our experiments
discussed in Section 7, fewer than 300 simulations (0.03% of
the space) are enough for excellent accuracy.

For each sampled point, the user runs a simulation or
measurement through their evaluation tool. In our case, we
use GPGPU-Sim [1], but any simulator is appropriate. In
addition, if the parameters under study can be modified during
real-system runs (e.g. configurable memory sizes, numbers
of cores used, or other algorithmic choices), then Stargazer
can use results from real-machine runs instead of simulations.
Our method is orthogonal to this choice. The performance
measurements resulting from the simulation or measurement
runs are stored for use by the subsequent steps of the regression
method.

5.2. Phase 2: Applying Stepwise Algorithm

Once a set of performance measurements is available for a
very lightly-sampled view of the design space, the statistical
analysis determines which design parameters are most influen-
tial to program/system performance and how they interact. This
process repetitively selects the next most significant parameter,
adjusts the model to include it, and then considers whether its
“interaction terms” are useful.

In particular, we start with a number of models, each
comprising only one of the studied parameters. We compute the
R? of these models as a gauge of each individual parameter’s
contribution to application performance variations. Parameters
that have bigger impact on application performance will pro-
duce single-term models that have higher R?. We choose the
parameter offering the largest R? and use it as the initial
parameter for the regression model. Using this single parameter,
we develop a performance estimation equation based on natural
cubic splines (Section 5.3).

Once the first parameter has been chosen, we consider
the next most important parameter based on adjusted R2.
Specifically, we augment the currently-obtained intermediate
regression model with each of the remaining parameters and



calculate the adjusted R? of each of these proposed models. The
highest adjusted R? indicates the most useful next parameter
among those yet unchosen. If the difference between this
parameter’s adjusted R? and the R? of the pre-augmentation
model is above a specified threshold 6, we pick this parameter
as the next basic term to be incorporated into the cubic spline
regression model. The currently-obtained intermediate model is
changed to this augmented model and R? is updated.

Every time a new parameter is added to the model, we must
also consider its interaction with parameters that have been
chosen earlier. In particular, we consider interaction factors
that indicate how the newly added parameter cross-correlates
with each of the already chosen parameters to contribute to
performance. In our approach, we consider only pairwise inter-
actions. While three-way (and beyond) interaction factors are
also possible, they have not been significant in our experience,
and consequently our default method does not include them.
For each interaction factor, we compare its adjusted R? to a
threshold value ¢ to determine whether to include it. Every
time an interaction is added, the R? and adjusted R? of the
enhanced models are recomputed until no more interactions
are above-threshold.

This process of adding parameters is applied repeatedly until
either all parameters are included in the model or no remaining
parameter can improve the model quality by more than the
threshold 6. At this point, the regression model is returned as
the result of this algorithm.

5.3. Use of Cubic Splines

Our regression-based performance estimation method devel-
ops parameterized performance estimation equations, as given
in Equation 2, based on natural cubic splines. Cubic splines
are flexible enough to express common functions encountered
in practical problems, and natural cubic splines have improved
behavior at the edges of the explored design space [20].

A cubic spline needs two arguments: the number of knots
and the knot positions [27]. Using more knots strengthens
the spline’s ability to approximate complex functions, but
also increases the risk of overfitting. We found that 1 to
3 knots work well for our studied value ranges. For knot
positions, one common practice is to place knots at quartiles
of the observed data. In our experiments, we make knots
evenly spaced between the minimum and maximum value of
any parameter. Because our design points are randomly and
uniformly sampled, our approach is asymptotically equivalent
to the fixed quartile approach when the number of samples is
large enough (roughly 20). For very small sample sizes, our
approach is more numerically stable because it prevents two
knots from being placed at the same location.

5.4. Variations of the Stepwise Method

Users can customize our regression method in multiple
ways to make it better suit their applications. Two important
variations of the method are the metric by which additional
terms are chosen and the 6 and ¢ threshold values. We used
adjusted R? as our metric to measure the quality of proposed

augmented models. Adjusted R? is simple to compute and
understand, and it works well in our studies. AIC and t-tests
are two other commonly used metrics [14,25]. AIC strikes a
balance between model complexity and model fit, while the t-
test uses null hypothesis to test additional terms. The choice
of metrics is decoupled from the Stargazer framework itself,
so users can choose metrics specific to their applications while
keeping the framework unchanged.

Mathematically, # and ¢ could always be zero because
any non-zero adjusted R? suggests that the additional term
is helpful and should be included in the model. However, in
reality, we often want to exclude terms that are only marginally
useful, to limit the final model’s complexity. We can end the
regression process when the number of terms has reached a pre-
specified value, but it is difficult to pick one such value for all
programs because complex programs usually intrinsically need
more terms than simpler programs. Setting a target R? value
to reach has a similar problem, because programs have varying
final R? values based on how amenable they are to regression
modeling. Our solution to this problem is to set § and ¢ to a
small nonzero value (e.g. 0.01 is experimentally found to be
a reasonable choice) such that the algorithm terminates when
the R? value converges to its final value. At that point, either
no terms remain, or none of the remaining terms can bring
significant improvements to the model.

5.5. Example of Stepwise Regression: matMul

As an example to help readers understand how our algorithm
works, the regression method is applied to the matrix multiply
sample program mentioned in Section 4.3 when the entire
design space of Section 6.1 is evaluated. The intermediate and
final results are presented in Table 1, which demonstrates how
each parameter or interaction term is picked or discarded as
the regression process proceeds through an actual use of the
algorithm. For brevity, we used § = 0.003 and ¢ = 0 in this
example to control the number of terms in the final model.

In Table 1, the regression process proceeds from top to
bottom. Bold numbers and terms indicate additions to the
model. A pairwise interaction term between two factors a and
b is shown as a:b. On the first row, we compute R? of models
with single parameters. Because #blk has the highest R?
(0.719), it is chosen as the first parameter. We then compute
adjusted R? of the models that combine #blk with each
remaining parameter. Because simd shows the largest adjusted
R? (0.851), it is chosen as the next parameter. The R? of the
current model is recalculated (0.853). At this point, we evaluate
adding the interaction of simd with each parameter already
existing in the model; in this case, that is only the interaction
simd: #blk. Since the interaction term’s adjusted R? (0.967)
increases more than ¢ compared to R? of the current model,
that term is included and R? of the current model is recalculated
(0.968). The process continues until no more terms can bring
an increase of more than @ to the R? of the model. The final
model (last row in Table 1) includes 5 splines, 3 of which are
basic terms (#blk, simd, and intra), and the other 2 are
pairwise interactions (simd:#blk and intra:#blk).
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Current model includes: #blk, simd, simd: #blk, intra, RZ = 0.9727

Adjusted R? of intra: | 0.9730 |

[ 0.9728 | |

Current model includes: #blk, simd, simd: #blk, intra, intra:#blk, R = 0.9745

Adjusted R? of intra:

[ 09737 ] [

Current model includes: #b1k, simd, simd: #blk, intra, intra:#blk, R = 0.9745

Adjusted RZ

[ 0.9729 [ 0.9728 [ 0.9769 | 0.9729 |

[ 0.9728 [ 0.9748 | [ 0.9729

Final model includes: #blk, simd, simd: #blk, intra, intra:#blk, R° = 0.9745

Table 1: Regression analysis of the matrix multiply program

6. Experimental Methodology
6.1. Simulator and Design Space Parameters

A cycle-level GPU simulator, GPGPU-Sim [1], is chosen
for the experiments. However, because our regression method
does not depend on specific features of the simulator, Stargazer
is applicable to any chosen GPU simulator or measurement
approach. As our studied design space, Table 2 lists 10 ar-
chitectural parameters and their value ranges, for a total of
933,120 possible points. Parameters that are held unchanged in
the experiments are listed in Table 3, taken from an NVIDIA
Quadro FX 5800 GPU. It is worth pointing out that each of the
933,120 points is one unique GPU design, so our experiments
have covered a very large number of GPUs, most of which
differ drastically from the baseline configuration.

The #blk parameter is the block concurrency, i.e. the
number of thread blocks concurrently running on one core. We
include it in our experiments because when a GPU program is
given, #blk is limited only by a few on-chip resources, and
hence it is a parameter reflecting the combined effect of these
architectural resources. In GPGPU-Sim, #blk is determined
by the smallest of four per-core resources: the shared memory
size, the register file size, the maximum number of concurrent
threads, and the maximum number of concurrent thread blocks.
To achieve a given #b1lk for a design point, we choose values
for these four parameters accordingly. We are able to combine
these four resources into block concurrency and simplify the
regression model because in this paper, we are optimizing
application runtime, which does not distinguish GPU design
points that result in the same block concurrency for a given
application. In future studies, when other cost models such as
power and area are adopted, we may need to use the original
resources instead of block concurrency. In GPGPU-Sim, both
shared memory and constant caches are multi-ported, and hence
we also vary the number of ports of these memories. More
ports generally result in fewer stalled cycles when SIMD units
access memory content with bank conflicts. Finally, int ra and
inter represent the simulated GPU’s capabilities to perform
intra- and inter-warp memory request coalescing. The values
indicate how many requests may be coalesced into one request.

6.2. Benchmarks

Programs from both the GPGPU-Sim benchmark suite [1]
and the Rodinia benchmark suite [3] are used for the exper-
iments. Due to the lengthy simulation time on a cycle-level
simulator, we only pick programs that can finish in a reasonable
amount of time on GPGPU-Sim (Table 4). We use 300 samples
from each application to build the regression model and use
a different set of 200 samples to verify the accuracy of the
model. When a program has multiple kernel functions (such as
backprop, bfs, and nw), we total the runtime of all kernel
executions. Note that each of the two benchmark suites has a
distinct breadth-first search program. We use capitalization to
distinguish them (i.e. BF'S versus bfs).

7. Accuracy of the Stepwise Regression Method
7.1. Evaluating Regression Steps by Model R?

R? reflects how well a regression model explains the varia-
tion in the dependent variable. As such, it is a useful metric for
measuring the quality of the models we create. As each term is
added to the model, one can recompute R? to discern improve-
ments in quality of the model. For all the studied benchmarks,
Figure 3 plots the changes in R? for each added parameter,
representing the contributions to the model quality from each
factor. In most applications, SIMD width is the dominant factor,
contributing on average 0.78 to R?. This is consistent with
the fact that GPU applications are usually computationally
intensive. Thus the amount of on-chip computing capability (i.e.
SIMD width) is likely to be crucial for most GPU programs.

While SIMD width is often dominant, this is not always
the case, and our regression approach is effective at finding
other scenarios. For example, consider nw and matMul. nw
is included in the Rodinia benchmark suite to represent pro-
grams which cannot fully utilize the wide SIMD pipelines
of GPUs [3]; each thread block of nw has only 16 threads.
Stargazer correctly highlights this program property and deter-
mines that nw is affected more by the number of shared memory
ports; most other parameters are irrelevant. For matMul, the
implementation we use has a small thread block size (8 x 8
threads), and consequently the program is severely memory-
bound when block concurrency is low. Thus, simd only shows



Unit

Comments

[ Param ] | Values | #Points | | Parameters | Value |
#blk blocks/core 1,2,4,8, 16 5 Block concurrency # Cores 30
c$ KB 1,2,4,8, 16, 32 6 Constant cache size Core clock frequency 325 MHz
t$ KB 1,2, 4,8, 16, 32 6 Texture cache size L1 data cache None
smp count 1,2,4,8 4 # shared memory ports L2 data cache None
ccp count 1,2,4,8 4 # constant cache ports Tnterconnect topology butterfly
simd count 8, 16, 32 3 SIMD width Interconnect flit size 32 bytes
mshr count/thread | 1, 2, 3 3 # MSHRs # DRAM controllers 3
dramg count 16, 32, 64 3 DRAM scheduler queue size # DRAM chips per con- 2
intra count 1,2,4,8 4 Intra-warp memory coalesce troller
inter count 2,4,6 3 Inter-warp memory coalesce DRAM clock frequency 300 MHz
[ Total ] | | 933,120 | | DRAM type GDDR3
Table 2: Variable parameter values of the studied design space Table 3: Unchanged parameters
Suite Applications Problem Size p:?rlgiigcsk CI:)ISIH Description
AES 256KB image 256 28M 128-bit AES encryption algorithm
BF'S 65536 nodes 512 17 Breadth-first search on a graph
GPGPU-Sim CP 256256 grid 128 126M | Calculate Coulombic potential in molecular dynamics
LPS 100x100x 100 grid 128 82M 3D Laplace equation solver
RAY 256x256 image 128 1M Graphics rendering of lighting effects
STO 192KB input file 128 134M | Sliding-window-based MD5 calculation
backprop 65536 nodes 512 193M | Training weights in a layered neural network
Rodinia bfs 65536 nodes 512 28M Breadth-first search on a graph
hotspot 500x500 points 256 80M | Processor thermal simulation on a 2D grid
nw 256256 points 16 3.4M | Parallel Needleman-Wunsch algorithm for DNA sequencing
Example matMul 256256 matrices 64 8M Matrix multiply sample in CUDA SDK

Table 4: Benchmark programs and their characteristics
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Figure 3: Each factor’s contribution to R? of the model as regression proceeds

up as the second most important factor.

Besides SIMD width, block concurrency is often the next
important factor for programs. In addition to matMul, BFS is
highly dependent on #blk. Like matMul, it has high memory
bandwidth demands [1]. Hence it needs more thread blocks to
hide global memory load latency.

To further examine how application runtime depends on other
parameters, we take a subset of the simulation data with SIMD
width fixed at 32, and apply the same regression method. Fig-
ure 3b shows that different applications have diverse additional
performance factors. Although block concurrency is important
to most programs (contributing 0.696 to R? on average), AES
and nw strongly depend on smp (0.244 and 0.996 respectively)

while BF'S and bfs are affected by dramg (0.261 and 0.620
respectively) due to high global memory traffic.

Finally, we note that the interaction factors identified by our
method in Figure 3 all involve #b1lk. This is because the spe-
cific resource demands of each application affect runtime more
prominently when block concurrency is low, hence the strong
interactions between #b1lk and these parameters. Furthermore,
examining these interactions helps reveal the particular re-
sources needed by each application (such as intra for CP and
dramg for a few benchmarks) when block concurrency cannot
hide global memory latency well. In summary, our automated
regression method helps build useful intuition about important
parameters and their interactions.
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Figure 4: AES’s runtime dependence on block concurrency before and
after simulation tail handling is applied

7.2. Handling Short Simulation Runs

Although over all applications the average R? is 0.976,
Figure 3 shows that AES’s R? is the lowest. To investigate
the reason, we did a separate set of experiments and found
that this lack of fit is mainly due to the smaller input data sets
leading to shorter simulation runs of this program.

Figure 4 presents the simulation results of AES, with #blk
varying from 1 to 16. (Other parameters are fixed at the default
values.) The solid line in Figure 4a plots the original simulated
runtime of the AES program. The runtime increases in a non-
monotonic fashion from 1 to 8, before dropping down and
leveling off. This is contrary to the intuition that increasing
block concurrency should decrease runtime. This behavior is
due to the work scheduling algorithm used in GPGPU-Sim, and
has been detailed in prior work [1]. In short, at the end of each
simulation run, with little work left to process, only a fraction
of cores are still doing computation, but the reported simulation
time is the point at which all cores finish their work. The
small data sets often used for simulation runs are particularly
vulnerable to this “tail effect” because so little steady-state
execution time exists before the kernel ends. Furthermore, the
work distribution at the end of simulation runs is also highly
sensitive to changes in block concurrency, which explains the
observed runtime curve.

The dashed line in Figure 4a shows our regression model’s
prediction of the runtime for this case. One can see a large error

near where #blk is 8. Our approach is useful in highlighting
when such effects are occurring, but we can also reduce these
effects using the technique below.

To reduce the work scheduling “tail effect”—particularly on
small data sets—we process AES’s simulation data to “trim the
tail”. Essentially, instead of using the full simulation time until
the last of the work is finished, we weight the tail time by the
number of cores that the tail work actually employs. The bottom
graph in Figure 4 shows the result of this adjustment. The
solid line indicates simulation results adjusted in this way, and
the dashed line represents our regression model’s predictions
when it is given the adjusted input training data. With this
adjustment, the runtime curve is nearly level from #b1lk values
1 to 8, before the tail-adjusted runtime decreases for #blk
beyond 8. After the adjustment, the regression model much
more closely reflects the measured data. As a result, the R? of
AES increases from 0.902 to 0.999. For the remainder of the
paper, we will refer to the adjusted AES data as AES-adj
and report its results separately where relevant. The lesson
learned is that accuracy metrics such as R? can be effective
signals of issues like this. Meanwhile, even with the relatively
short simulation runs of some current GPU benchmarks on
GPGPU-Sim, in general our regression method still models
program performance accurately, including for unprocessed
AES (Section 7.3). Our method is adaptive enough to handle
both short and long simulation runs.

7.3. Relative Runtime Prediction Error

A regression model estimates and interpolates unmeasured
data points based on the collected sample set. Statistically, R?
represents how well a regression model fits the observed data,
but it does not directly report how accurate the predictions of
unseen samples will likely be. Thus, for some users, relative
prediction error may be a more intuitive accuracy metric. We
evaluate our method with respect to this metric by answering
the following questions: 1) How well does the runtime esti-
mated by our model equation match the actual runtime given by
simulation or measurements? 2) How many simulation samples
are needed to properly train the model?

To analyze the relative error of predictions made by the
regression model, we use the following approach. For each
application, its simulation data repository has 500 randomly
chosen design points and their simulation results. We first
establish the model by randomly choosing N samples (N =
30,60, 90, ...,300 ) from the repository and running stepwise
regression to generate a model equation. We then use the
resulting model equation to predict the runtime of 200 design
points also randomly chosen from the repository. These 200
samples are guaranteed to be different from those used for
building the model. Estimated runtimes for these 200 test points
are compared with measured simulated runtimes for the same
points and relative errors are calculated. The sample-train-test
process is repeated 5 times for each application, though the
same 500-sample repository is used. The mean error we collect
is the mean across all runs. The maximum error we report is
the true maximum, not a maximum after averaging.
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Figure 5: Prediction accuracy vs. training sample size. Numbers in the parentheses indicate the number of splines used for basic terms and

interaction terms in the 300-sample models.

Figure 5 plots the runtime prediction errors our model
experienced for each of the applications in our benchmark suite.
The left graph shows the mean error, and the right graph shows
the maximum observed error for the model across the 200 x 5
test points. The x-axis varies from 30 to 300 and represents the
number of randomly-chosen simulation points in our training
sample set.

We start by considering the accuracies achieved with 300
sample points. Recall that a training set of 300 points is already
a considerable reduction from the original 933 K points in the
exhaustive design space. For this approach with 300 random
training samples, the average prediction error of our method on
the 200 unseen samples is remarkable: below 3.8%. AES has the
highest mean relative error of 3.8%; its 98th percentile error is
21.7% and the maximum error is 31.1%. (However, AES—-ad j
is much lower due to the tail adjustment.) Other benchmarks
generally show mean errors below 2.3%, 75th percentile errors
below 4.4%, and maximum errors below 15%.

Prediction accuracy depends heavily on program character-
istics. Programs that exhibit more complex behavior and use
more features of the GPU, such as AES, are inherently more
difficult to predict than programs that rely on fewer architectural
parameters, such as nw. In addition to these intrinsic structural
differences, we note that the relatively short simulation times
affect prediction accuracy adversely and significantly in certain
benchmark programs including AES and matMul.

Having established that 300 sample points offer excellent
accuracy for our application suite, the remaining question is
how few samples the regression method should use to still
achieve acceptable accuracy. Figure 5 shows how average error
(5a) and maximum error (5b) are affected by the number
of simulations used to train the model. For all applications
except for the original AES, as few as 30-60 sample points are
sufficient for mean accuracy of 5% or better. While maximum
errors spike upward for small sample sets, it quickly drops to
acceptable levels at 100 sample points and beyond.

To some degree, the question of how many sample points
is sufficient is related to the questions of how complex the
application is and how many terms the stepwise regression

model must include. For this reason, each application is labeled
in the legend of Figure 5 with an annotation of the form
(param, pair). In this annotation, param is the number of
splines used for individual parameter terms in each appliction’s
regression model and pair is the number of additional terms
used to reflect pairwise interactions between parameters. The
total number of terms in the regression equation is equal to the
sum of these two. We report these (param, pair) results for
the maximum accuracy case (300 sample points) with 6 and ¢
set to 0. (The earlier matrix multiply example in Table 1 used
a larger 6 value which leads to fewer terms to simplify the
presentation.)

Applications such as CP have very few included terms in the
final regression model. For these, a small number of randomly-
sampled designs nicely cover possible parameter value com-
binations of interest. As a result, the error is quite low even
for very small sample counts. On the other hand, applications
such as AES depend on more parameters and therefore require
substantially more samples to cover enough area of the design
space the parameters span. The other benchmarks lie between
these two extremes. One can use trends from Figure 5 to
obtain a trade-off between simulation time and model accuracy.
Section 8.1 explains this trade-off further.

7.4. Comparison Against a Fixed-Factor Method

Finally, we compare our method’s accuracy against simpler
methods that use a fixed number of factors. These methods
might be similar to the intuition and educated guesses that
experienced designers use in more familiar design spaces. The
simpler, fixed-factor method uses the top three factors observed
in most of the program regression results in Section 7.1:
simd, #blk, and simd: #blk. Figure 6 shows the average
relative error comparison between a fixed-factor approach and
our automated approach. The figure shows that the automated
method is never worse than the fixed-factor method. This is
because the former usually includes more terms, except for
programs (such as CP) which have no more than three terms
in their regression results. In these cases the automated method
is at least as good as the fixed-factor method.

Note that we are giving an advantage to the fixed-factor
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Figure 6: Automated method vs. fixed 3-factor method

method because we use the fop three factors in Figure 6. This
essentially assumes the hardware designer always knows what
the top factors are. In the case of more complex design spaces
or less experienced designers, an automated approach is more
likely to lead to effective and accurate design space pruning.

8. Case Studies of Using Stargazer
8.1. Reducing Simulation Time by Pruning Design Space

The primary usage scenario of Stargazer is to reduce simula-
tion requirements while also guiding architects towards accurate
and informed pruning of the GPU design space. For example,
assume a GPU architect is tasked with exploring the design
space in Table 2. Exhaustively simulating nearly 1 million
points in the design space is undoubtedly impractical. Instead,
the architect can use our tool to rapidly capture the general
structure of the design space by sampling and simulating a
much smaller number of designs. In particular, Figure 5 shows
the trade-off between accuracy and training time (simulation
samples). If the architect chooses an expected mean error of
5% or less, all but one of our applications require only 30 or 60
design points to be simulated. (AES is the outlier, though AES
with tail reduction has much lower errors.) This is a significant
reduction (roughly 15000x) in potential simulation require-
ments. Furthermore, because there is no learning/feedback loop
that guides sample selection in our method, simulated points
can be chosen at random from the space of possibilities, and
the simulations can all be run in parallel. Once the regression
model is obtained, one can evaluate other design points using
just lookups into the regression equation.

Most researchers do not exhaustively simulate all possible
points, but instead simulate explorations along “important axes”
while centering their evaluations around a likely design point.
Selecting a design’s “center point” and “important” axes, how-
ever, requires intuition and often some amount of trial-and-
error. Our approach improves the automation by which such
architectural traits can be determined.

If equation-based evaluations of unsimulated points is in-
sufficient, one could still use the regression model to identify
the important axes and “interesting” parts of the design space.
After that, further simulations can be targeted at the regions
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Figure 7: LPS’s runtime is more sensitive to block concurrency than
RAY’s runtime, and thus LPS is more memory-bound than RAY.

highlighted by the regression model to give the most insight
and accuracy from a limited number of simulation cycles.

8.2. Application Characteristics and Benchmark Diversity

Designers or users of a benchmark suite often want to assess
the diversity of the included benchmark programs [2,8,9]. One
way to characterize benchmark diversity is to compare regres-
sion models obtained from each application across the whole
suite. Figure 3 shows how each application’s performance is
affected by various GPU architectural parameters when SIMD
width is fixed. The unique characteristics of programs like
nw are immediately noticeable. Benchmark designers often
include a few such programs to enhance benchmark diversity.
In addition, both breadth-first search programs heavily depend
on the dramqg factor, suggesting that these two programs have
high global memory needs. Meanwhile, AES, LPS, STO, and
hotspot all have noticeable dependence on smp, while AES
additionally relies on ccp. These components are consistent
with each application’s known behavior. In summary, regression
methods make a benchmark suite’s attributes easier to compare.

As another example, consider how GPU programs rely on
high block concurrency to hide memory latency [21]. By
analyzing the slope of an application’s runtime versus #blk
curve, one can detect how severely an application is limited
by global memory bandwidth. A compute-bound application
needs fewer thread blocks to achieve peak performance, while a
memory-bound application needs more. Stargazer can estimate
the runtime versus #ob1k curve for this use.

Using the regression models of LPS and RAY as examples,
we vary #blk from I to 16 and keep the remaining param-
eters fixed. This curve, shown in Figure 7, is essentially the
spline generated for the #blk term of the model. The graph
shows that LPS’s runtime depends more on block concurrency
because LPS does very little computation while streaming the
3-layer cube over the global memory. RAY’s runtime depends
less on block concurrency because it does heavy computation
to calculate light reflection and shadows. The model clearly
highlights LPS is more memory-bound than RAY.



9. Conclusions

This paper has proposed and evaluated an automated step-
wise regression method for design space exploration in GPUs.
Relative to prior work in CPU design space pruning, our
work offers useful novelties in terms of handling a large
number of variables and interactions. This allows us to au-
tomatically and efficiently explore the complex characteristics
of the GPU design space. Relative to prior work in GPU
performance evaluation, this work offers experiences from our
regression method that show how it could be used to understand
benchmark diversity, hardware bottlenecks and trade-offs, and
other important scenarios. Extremely sparse samples of the
design space (300 out of 933K points) can offer performance
estimation equations with very good accuracy (1.1% average
error). This can lead to 15000 x reduction in simulation time re-
quirements relative to exhaustive approaches and also improves
significantly compared to more tailored approaches involving
parameter variations around a possible design point.

As GPU designs incorporate new and diverse features, it will
be important for hardware and software designers to quickly
develop intuition regarding how they influence performance.
Considerable challenges lie in anticipating inflection points
and parameter interactions in complex designs. We see our
automated regression method as an important step in facilitating
such design space exploration.
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