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Abstract  
The performance of modern many-core platforms strongly de-
pends on the effectiveness of using their complex cache and 
memory structures. This indicates the need for a memory-centric 
approach to platform scheduling, in which it is the locations of 
memory blocks in caches rather than CPU idleness that deter-
mines where application processes are run. Using the term ‘mem-
ory region’ to denote the current set of physical memory pages 
actively used by an application, this paper presents and evaluates 
region-based scheduling methods for multicore platforms. This 
involves (i) continuously and at runtime identifying the memory 
regions used by executable entities, and their sizes, (ii) mapping 
these regions to caches to match performance goals, and (iii) 
maintaining region to cache mappings by ensuring that entities 
run on processors with direct access to the caches containing their 
regions. Region scheduling can implement policies that (i) offer 
improved performance to applications by ‘unifying’ the multiple 
caches present on the underlying physical machine and/or by 
‘balancing’ cache usage to take maximum advantage of available 
cache space, (ii) better isolate applications from each other, par-
ticularly when their performance is strongly affected by cache 
availability, and also (iii) take advantage of standard scheduling 
and CPU-based load balancing when regioning is ineffective. The 
paper describes region scheduling and its system-level implemen-
tation and evaluates its performance with micro-benchmarks and 
representative multi-core applications. Single applications see 
performance improvements of up to 15% with region scheduling, 
and we observe 40% latency improvements when a platform is 
shared by multiple applications. Superior isolation is shown to be 
particularly important for cache-sensitive or real-time codes. 

Categories and Subject Descriptors D.4.1 [Operating Sys-
tems]: Process Management – Scheduling 

General Terms Performance, Design, Experimentation 

Keywords Virtualization, Xen, Cache, Memory, Region, Server 
Consolidation 

1. Introduction 
For modern computer architectures, memory access times and 
caching effectiveness are key determinants of program and system 
performance. This is evident not only from a rich set of research 
on caches in computer architecture [12, 13, 14, 15, 18, 19, 20, 21, 
22, 23], but also from the wide variety of cache structures found 
on modern multi- and many-core platforms, ranging from single 
last level caches shared by from 2 (e.g., in Intel’s Dual-core Xeon 
chips) to 8 cores (e.g., in Intel’s Nehalem chips), to the distributed 
caches seen in the Larrabee chip [1]. 

Recognizing the importance of caching, modern methods for 
thread scheduling take into account cache affinity [9], avoid cache 
thrashing [10,11], and/or carefully select the threads that are 
permitted to share a common cache [2,3]. Leveraging such in-
sights and in expectation of the increased importance of memory 
structures to the performance of future multicore platforms, our 
research is exploring a new approach that departs from prior 
process- or thread-centric scheduling methods to instead, create a 
memory-centric scheduler that first allocates to caches the sets of 
pages used by executable entities and then schedules those entities 
to the processors that use those caches. The schedulable sets of 
memory pages are termed memory regions, defined as the sets of 
physical pages within address spaces that currently exhibit ‘good’ 
locality, which means that an executable entity spends significant 
time within each such page set – region – before changing its 
locality to reside elsewhere, i.e., in another region. 

Making regions first class entities states as an explicit goal the 
optimization of how memory is accessed, by controlling the map-
pings of regions to caches. Region-based scheduling: 

- tracks the regions (and their associated physical pages) being 
used by each executable entity; where 

- each entity can have multiple regions, but at any one time, a 
physical page resides in exactly one region; 

- regions are mapped onto caches by system-defined mapping 
policies; and 

- the system enforces the resulting cache-centric constraints on 
executable entities like processes. 

This paper presents a hypervisor-level implementation of re-
gion-based scheduling in which the VMM identifies and tracks 
the memory regions used in each address space, estimates work-
ing set sizes and consequent cache occupancies, and then maps 
regions onto caches. Mapping policies can minimize duplicate 
cache lines and/or cache contention or interference (e.g., to lower 
cache misses [32] or to improve isolation or reduce interference 
[26]), or they can balance cache usage across multiple processes. 
To attain these ends, three different scheduling policies are de-
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vised and evaluated in this paper: (1) cache-balancing, where the 
system ensures high aggregate performance for the current proc-
esses running on a multi-core platform, (2) cache unification, in 
which the different regions used by a process are distributed 
across multiple caches to maximize the performance of cache-
sensitive codes, and (3) cache partitioning, where software meth-
ods approximately partition the caches used by different processes 
to reduce interference or improve isolation. With region schedul-
ing, it is also possible to unfairly allocate caches across different 
processes, perhaps to provide additional cache space to those that 
need it, but other than to demonstrate improvements in isolation, 
we do not further experiment with such techniques in this paper. 

In order to make its performance advantages available to arbi-
trary applications and operating systems, region-based scheduling 
is implemented at hypervisor level, controlling VCPU to PCPU 
mappings and interacting with the hypervisor’s page table struc-
tures (using the Xen open source hypervisor [27]). An alternative 
operating system-level implementation would apply region sched-
uling methods to the processes and their address spaces manipu-
lated by OS schedulers and memory managers (i.e., via page 
tables). 

The outcome is a system with the following properties: 
- cache-awareness – the hypervisor understands the cache 

structure of the underlying machine, i.e., it knows which caches 
are associated with which P(hysical)CPUs; 

- runtime region tracking – low overhead runtime methods 
identify and track the memory regions used by the address spaces 
in virtual machines; 

- region-based scheduling – maps the V(irtual)CPUs used by a 
VM to PCPUs so as to match the VM’s region mappings to cach-
es; and performs runtime micro-scheduling, which forces a 
VCPU-PCPU switch to prevent the hardware from re-mapping a 
region when it is accessed from a PCPU associated with a differ-
ent cache. 

Finally, region scheduling strictly improves upon existing 
cache-unaware scheduling methods like those used in Unix or 
implemented in current hypervisors. This is because their imple-
mentation ‘reverts’ to unaware methods whenever regioning is 
deemed ineffective. 

We evaluate the performance implications of region-based 
scheduling with representative multi-core and server applications. 
Experiments with the SPEC benchmark suite diagnose the poten-
tial utility and limitations of region scheduling, resulting in run-
time conditions based on which we determine when region sched-
uling should revert to Xen’s standard credit-based methods. Sig-
nificant performance improvements are seen for VMs running 
memory- and cache-intensive codes, in part by mapping their 
regions in ways that better leverage the combined cache sizes of 
multiple on-chip caches, termed cache unification. More predict-
able levels of performance due to improved isolation are observed 
for server applications with strong constraints, such as parallel 
codes using barriers [26] and the enterprise level VoIP codes [25] 
(e.g., achieving up to 40% response time improvement for the 
latter). 

We view region-based scheduling as a first step toward design-
ing schedulers that recognize the importance, if not predominance, 
of cache and memory structures for the performance of future 
multi-core applications. Complementing prior work on NUMA 
awareness in operating systems or hypervisors [28], region sched-
uling offers system-level methods that improve and control appli-
cation performance by explicitly managing their cache usage, 
without requiring additional hardware support [23] or inputs from 
applications [29]. Region scheduling can also be viewed as a first 
step toward systems that better support modern compiler runtimes 

that wish to explicitly manage the memory units – ‘places’ – used 
by applications [30]. 

In the remainder of this paper, Section 2 describes the software 
architecture underlying the region scheduling approach, called the 
region framework. Section 3’s analysis establishes the region 
tracking algorithm, and working set tracking is presented in Sec-
tion 4. Section 5 presents performance evaluations. Section 6 
details related work. In Section 7, conclusions summarize results 
and future work, including speculations on potential hardware 
support to reduce tracking costs. 

2. Regions 
This section explains regions and the page touch methods used to 
implement region tracking, micro-scheduling, and the mapping of 
regions to caches. 

2.1 Software Framework and Methods 

A region is a set of physical pages. Regions partition memory, 
since at any one time; each page can belong to only one region. A 
region is private when its pages are accessible from only one 
address space, with typical private regions being those that con-
tain heap or stack data. Shared regions, i.e., those shared among 
multiple address spaces, usually contain shared pages like code. 
Region scheduling addresses private regions, whereas shared 
regions are handled by standard caching hardware. 

Region-based scheduling explicitly places private regions into 
caches. Such mappings are maintained by having the scheduler 
restrict ‘from where’ the region’s pages can be accessed, in accor-
dance with the hardware-level association of caches with PCPUs. 
Access restrictions are based on specifications associated with 
page tables, which state, for instance, that the physical frame 
numbers in a region, say, 10, 11, and 12, shall be accessed only 
through PCPUs 0 or 2 (on our machine, both of these share access 
to the same cache). With such specifications, we must ensure that 
a region can only be accessed through the cache to which it has 
been mapped. This is done by raising ‘page touch’ faults when-
ever this restriction is violated. When a fault occurs, the thread or 
process attempting the access is moved to one of the allowable 
PCPUs (i.e., 0 or 2 in this example) -- termed micro-scheduling. 
Of course, regions may also be unmapped, and when such un-
mapped regions are accessed, beyond micro-scheduling, the addi-
tional option is to once again map the region to the cache used by 
the PCPU in question -- termed ‘opening’ the region. 

Via page touch faults and with micro-scheduling, one can en-
sure that the memory blocks in a region, e.g., pages 10, 11, and 12, 
exist only on cache 0, which is private to PCPUs 0 and 2. Note 
that this technique also minimizes the number of duplicate cache 
lines found in caches and in addition, it may potentially reduce 
cache coherency traffic and false sharing of cache lines. Further, 
an understanding of page to cache mappings provides approxi-
mate information about cache load, which region-based schedul-
ing uses to better utilize the cache resources present on multicore 
platforms, as discussed in more detail in Section 4.1. 

Figure 1(a) depicts a sample scenario in which the physical 
pages of an address space are located in different regions, private 
and shared ones. Each private region may be mapped to a single 
cache. A shared region typically exists in all caches -- termed 
global region -- an example being R7 in the figure. When there 
are a large number of global regions, there are fewer restrictions 
concerning how executable entities are run (since they can run 
anywhere). This means that in the extreme case of there being 
only global regions, the region framework layer is not active, and 
region scheduling reverts to standard methods, like the credit 
scheduler in our Xen implementation. Figure 1(b) illustrates this 
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by showing how region scheduling is implemented in a layer 
residing between the hardware and the standard VMM scheduler. 

Regions change over time, as address mappings (page table en-
tries) are created or destroyed and with changes in the behaviors 
of the executable entities using the address space. An address 
space’s dynamic size – its working set – is the sum of the dynamic 
sizes of its regions, and its cache load is the sum of the mapped 
regions’ sizes. Working set size is measured at runtime (see Sec-
tion 4). C2(11) in Figure 2 shows the working set size of C2 is 
measured 11, which is sum of those for R5,R6 and R7 (5,4,2 
respectively in Figure 1(a)). Regions, the address spaces in which 
they occur, and their mappings to caches are depicted in Figure 2, 
which shows that regions can differ in size, that VCPU to PCPU 
mappings are controlled to maintain region to cache mappings, 
and that a single address space can be mapped across multiple 
caches. The latter is particularly useful for memory- and cache-
intensive applications able to benefit from such cache unification. 

Figure 2 also shows how region scheduling ‘packs’ regions in-
to caches, where the two address spaces A1 and A2 run on cache 
C1, while A3 runs on C2 because its working set is larger. Cache 
load is shown in parentheses, the cache with a lower load being 
considered ‘emptier’ when regions are bin-packed into caches. 

2.2 Region Scheduling – Implementation 

Table 1 describes the data structure maintained for each region: (i) 

if private, it belongs to a certain address space; (ii) it has a refer-
ence count, which is used to deallocate a region when it is no 
longer used; (iii) it is mapped to some number of caches (typically, 
to only one); (iv) it has a reverse map to the page table so that 
region to page mappings are easily changed; (v) there is additional 
information to calculate its working set size; and (vi) there are 
also additional counters for bookkeeping. 

The reverse map is important because when a region is 
mapped to a cache, all page table entries to all pages in the region 
must be modified in order to ensure that only those address spaces 
running on the ‘right’ cores are permitted to access it. It is easy to 
maintain because Xen must already intercept all page table modi-
fications. For other address spaces, we simply clear the protection 
bit in the page table, thereby causing an access fault when any of 
them attempts to use the page. Such ‘page touches’ are not propa-
gated to guests, but are transparently handled by the region sched-
uling framework. Figure 3 depicts this. Note that without a reverse 
map, these actions would require an expensive complete page 
table scan. 

2.2.1 Page touch and cache switch 

As indicated in Section 2.1, upon page touch, the region scheduler 
has two options: (i) to allow the access, which requires mapping 
the touched region to the current cache, termed ‘opening’ the 
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Figure 2. How regions interact with caches and address spaces.
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Table 1. System-level representation of regions.
struct region_t { 
        struct page_dir *pgd;  // address space if private region 
        atomic_t vr_refcnt;   // reference count 
        struct list_head list[MAX_CACHE];  // mapping to caches 
        spinlock_t lock;    // lock 
        struct list_head rmaps_list;   // reverse maps 
        unsigned short int frame_count;  // static size 
        unsigned short int rmap_count;  // # of reverse map 
        unsigned short int flags;   // flags 
        unsigned short abit[MAX_CACHE][32];   // histogram 
}; 
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region; or (ii) to move the executable entity to the CPU whose 
cache is currently allocated to the region, termed micro-
scheduling. An entity is micro-scheduled in order to force it to run 
on a different cache. For such a cache switch, we inspect all of the 
regions used by that entity, set the protection bits for the mapped 
regions to the target cache – ‘opening’ the regions – and clear it 
for the other regions – ‘closing’ them. Figure 3 shows how page 
tables are manipulated for each cache switch. Global regions, 
which are already mapped into both caches, are skipped since 
there is no need to manipulate them. 

Page table manipulations are also used to collect information 
about an application’s behaviour in terms of memory accesses and 
to track its working set. By simply ‘closing’ a region, one can 
detect when a VCPU enters it, for instance, which we use to help 
assess working set size. By `closing’ regions that have not been 
accessed for a while, region management is optimized in terms of 
the number of open regions it must consider. 

2.2.2 Micro-scheduling and cache switches 

As evident from the description above, micro-scheduling involves 
cache switching. This could be expensive if it required the hyper-
visor to explicitly touch all of the address space’s private regions 
and their page table entries. We eliminate this overhead by main-
taining per-cache page tables. This is shown in Figure 4, where 
the hypervisor’s page tables A1C0 and A1C1 jointly have the 
same contents as the guest’s cache table A1; they differ only in 
the protection bits used to ensure that regions are open or closed 
with respect to certain caches. This also enables multiple threads 
in a process to run across caches. 

Beyond cache switching, the other costs of micro-scheduling 
concern VCPU/PCPU re-mappings. Figure 5 depicts a case in 
which one VCPU runs on four PCPUs, where the hexadecimal in 
each rectangle is the unique ID for each region used by the VCPU. 
In this hardware configuration, Cache 0 is shared by (or local to) 
PCPUs 0, 2, and Cache 1 is shared by (local to) PCPUs 1, 3. 
Cache 0 is allocated to Regions 0x1884f, 0xe4b6, and Cache 1 is 

allocated to Regions 0xcd4b, 0xd80e, and 0x12b44. For example, 
since Region 0x1884f is mapped only to Cache 0, when the 
VCPU tries to access this region, it is scheduled onto PCPU0 or 
PCPU2. Note that it is the standard scheduler (such as Xen’s 
credit scheduler) that determines which PCPUs are allocated to 
them. Micro-scheduling, then, simply makes sure that VCPUs 
always run on those PCPUs that are associated with the caches 
allocated to the regions they are currently accessing. Potential 
performance opportunities and liabilities derived from these con-
straints are discussed next. 

Figure 6 depicts a more complex case in which 4 VCPUs run 
on 4 PCPUs, where VCPUs access some regions only through 
PCPUs 0, 2 and others through PCPUs 1, 3. For example, the 
region 0x13d83 is mapped to Cache0, and 0x1225e is mapped to 
Cache1 (see Figure 7 for the associated region-to-cache mapping). 
We can see how the region framework balances cache loads from 
these figures. We discuss cache balancing in Section 4. 
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A potential side effect of cache balancing is that PCPUs may 
experience additional idle time. This is illustrated by the idle time 
observed on PCPU1 in Figure 6, which occurs because VCPUs 0, 
3, 2 are running on Cache 0 (PCPU0, 2) while only VCPU1 is 
running on Cache 1 (PCPU1, 3). In fact, VCPUs 0, 3 are compet-
ing for PCPU2, while PCPU1 is idle. This transient imbalance of 
VCPUs on two caches is due to restrictive region-to-cache map-
pings. Such an imbalance is desirable if VCPU1 greatly benefits 
from its exclusive access to its cache (e.g., for cache-intensive 
codes), but at the same time, it may increase the latencies experi-
enced by other VMs due to the effectively smaller cache sizes 
made available to them. The conflict is mitigated (1) when there 
are more VCPUs (due to VM-internal parallelism or consolidated 
VMs), so that it is likely that other VCPUs can be found to fill this 
gap, or (2) when there are more PCPUs per cache. Further, we use 
an additional method to prevent CPU idleness, in which instead of 
micro-scheduling VCPUs, we manage regions in order to handle 
this conflict between CPU and cache workload balancing. Results 
on such cache balancing appear in Section 5.3. Our final solution 
is to simply permit the region framework to make regions global 
(region opening) to prevent CPU idleness. Such degeneration to 
standard scheduling is useful for codes that do not depend much 
in performance on efficient cache use. 

 

3. Regioning 
This section explains region identification and tracking. At two 
extreme ends, all (private) physical pages in an address space 
could be placed (1) into a single region (too coarse-grained) or (2) 
into many single-page regions (too fine-grained). The first says 
that only entire address spaces can be mapped onto caches, 
whereas the second states that we have little information regard-
ing its locality. To determine page-to-region associations, there-
fore, requires runtime methods that analyze the benefits and over-
heads of region formation and management, and of the micro-
scheduling actions necessary to enforce region to cache mappings. 
This section identifies such regioning conditions and uses them to 
construct regioning algorithm. 

3.1 Cache Unification 

A simple single-threaded micro-benchmark, termed ‘memlat’ 
(memory latency) based on [4], is used to assess the potential 
utility of cache unification. This memlat has two identically sized 
regions, which it traverses randomly for some given number of 
memory references and across a given number of pages, termed 
region ‘access time’, before its execution switches to the other 
region, which results in a consequent value of region ‘idle time’ 
(see Figure 8). 

In the experiment, instead of confining the memlat’s regions 
and thus, its execution to one cache, we map its two regions to 
two different caches and micro-schedule it across the associated 
PCPUs, then compare it to the cache confining case. This is done 
for two different generations of machines (Clovertown and West-
mere -- see Section 5 for additional detail) 

Figure 9 shows the normalized performance of the two region 
memlat when caches are unified, where values greater than 1 
denote improved performance compared to the case of cache 
confinement. The x axis is working set sizes (2*2MB means two 
2MB regions), and the y axis is access time in the number of 
elements touched before a region switch occurs. In this section, 
‘access time’ is expressed in memory access count rather than 
actual time. The figure shows that improved performance appears 
in the center, not at the edges of the graphs. 

There are several interesting insights from these simple ex-
periments. First, substantial opportunities exist for gaining 
performance improvements from using cache unification, up to 
45% for Clovertown and over 300% for Westmere. This is despite 
significant numbers of micro-scheduling actions in Figure 9, with 
rates ranging from 295 to 2240 per second for successful cache-
unification near the center for Clovertown, and with rates ranging 
from 180 to 5100 per second for Westmere. Second, Westmere 
has a greater range in which improvements are seen (>1), and this 
is because of its relatively lower cost of micro-scheduling (see 
Section 5.1). This reflects the fact that computer architects have 
taken great pains to reduce the overheads of context switching on 
modern CPUs. Also, third, we can see that the microscheduling 
rate increases as region size and access time decrease. 

Second, on Clovertown, performance improvements are mar-
ginal when access times are high (>= 2^16) because in those cases, 
there are relatively few micro-scheduling actions that permit 
applications to benefit from cache unification. Third, as expected, 
when access times are too short (<=2^12), the large number of 
micro-scheduling actions create overheads that outweigh the 
utility of cache unification. The outcome is Condition 1, which 
states that access time must be in some platform-specific range 
(i.e., these normative experiments have to be performed for each 
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platform used) in order for region-based scheduling to benefit 
from cache unification. 

Conditions 2 and 3 concern cache working set sizes (recall that 
a cache working set is defined as the sum of the sizes of all of the 
regions being used). First, there are negative effects when work-
ing sets are too small (<=2*1.8MB for Clovertown, <=2*4MB for 
Westmere), because placing working sets that would fit into a 
single cache into two different caches simply causes the added 
overheads of micro-scheduling. Second, when a working set is so 
large that it does not fit into the unified two caches, then again, 
there are no benefits from region scheduling, since there would be 
cache misses both with region scheduling (and the additional 
overheads associated with it) and without region scheduling. 
Condition 2, then, states that the total working set size must be 
larger than that of a single cache, and Condition 3 states that each 
working set must fit into the unified space provided by both cach-
es. Conditions 1-3 are shown pictorially in Figure 10. As stated 
earlier, actual benefits and costs vary across platforms, but from 
the Westmere vs. Clovertown results shown here, it appears that 
future platforms will likely further tilt the playing field toward our 
more explicit methods for cache management. 

3.2 Bottom-up Regioning 

We are now ready to explain how regioning is performed. Re-
gions are captured at runtime. There are two extremes: (1) ‘ran-
dom regioning’ where physical pages are placed into regions 
randomly, which would cause high rates of micro-scheduling, and 
(2) single regioning, where all pages are placed into a single 
region, thereby effectively disabling region-based scheduling and 
entirely avoiding micro-scheduling overheads. Between these two 
extremes, we use Conditions 1-3 formulated above to assess the 
utility of regioning, and we identify and track regions using a 
sampling-based clustering technique, a bottom-up approach based 
on the notions of access and idle times.  

Each address space runs for 1% of its time in regioning mode 
(see Figure 11), in which initially, there are only single-page 
regions that are then repeatedly merged to form suitably sized 
regions to contain application locality. In addition, at the end of 
each regioning phase, some regions are torn down in order to 
prevent them from becoming too large and/or to capture substan-
tial changes in application behavior (e.g., phase changes). Finally, 
for accuracy, regioning performed across interrupt handlers and 
system timers is adjusted to correctly consider such system activi-
ties. 

Figure 12 depicts a scenario in which multiple smaller regions 
with longer vs. shorter inter-region idle times are merged into a 
smaller number of larger regions. This is done as follows. First, 
during the regioning phase, all region switches are detected be-
cause initially, all regions are closed (except for global regions). 
This means that entering a region causes a page touch that is 
visible to the system. This makes it possible to construct a stack of 
regions based on the (prev_region  next_region) occurrences. 
Second, when a new region is entered, the previous region is 
closed, so that only one region (the current region) is open at any 
given time. This makes it easy to measure the access and idle 
times for all regions. 

Idle times correspond to the LRU distance between regions. 
Therefore, a long idle time indicates a locality change, whereas a 
short idle time between two regions is a strong indicator for merg-
ing them, both of which are shown in Figure 12. Using a threshold 
‘q’ to determine short idle times based on the memlat measure-
ments explained earlier, we merge regions when idle time is less 
than q and take no action otherwise. Note that a low threshold 
results in fine (small) regions, while a high threshold creates 
coarse (bigger) regions. 

All regions are opened to resume normal execution after the 
regioning phase has completed. This entering/exiting of the re-
gioning phase could be expensive, however, because all regions in 
the address space should be closed/opened when this occurs. This 
is optimized by introducing per-mode page tables in ways similar 
to what is discussed in Section 2.2.2. As a result, the regioning 
phase can be entered by simply switching to separate regioning-
phase page table that already has closed entries. 

3.3 Region Types 

There are several types of regions. Initially, all regions are ‘seed’ 
regions. When locality is captured in the regioning phase, they 
become regular regions and once mapped to some cache, they are 
termed ‘local’ regions. As stated earlier, there are also ‘global’ 
regions not subject to region scheduling. 

Differentiating global from other regions is done as follows. At 
each page-touch from a seed region, the new page is determined 
as ‘code’ if the faulting address equals the eip (program counter) 
register. If the faulting address is near the stack pointer, it is de-
termined to be a ‘stack’ page. Both code and stack pages are 
classified into ‘global’ regions, and thus, do not further participate 
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in the regioning process. The type transitions shown in Figure 13 
apply to all other pages. In summary, the process in Table 2 is 
used for regioning. 

We have not yet explained when large regions are destroyed 
(by turning them into seed regions). This is done in conjunction 
with cache allocation to regions. Specifically, cache allocation is 
performed after regioning is completed, by picking a regular 
region and making it into a local region (i.e., mapping the region 
to some cache). Next, we select the largest local region deter-
mined in the regioning phase (which is marked in that phase, so 
this is an O(1) operation), and denote it as a seed region, thereby 
initiating the process of tearing it down. We never consecutively 
tear down the same region, however. In this fashion, we incre-
mentally build (and tear down) regions in response to observed 
program behavior. Finally, a region may shrink during a run when 
an abnormally high microscheduling rate is detected, by excluding 
from the region the page that causes it. 

Regioning is independently conducted for each core, the cur-
rent policy doing it at every 1 second of CPU time for each ad-
dress space. Thus, long-lived processes will experience more 
regioning actions, whereas short-lived ones may not experience 
any regioning at all (i.e., if they live less than 1sec). For multi-
threaded applications sharing an address space, each of the differ-
ent threads (i.e., the cores on which they run) enter the regioning 
phase at a different time, thereby avoiding concurrent use of the 
shared page table. 

3.4 Global Regions 

Inappropriate placement of shared pages and stack pages can 
cause unnecessary micro-scheduling overheads. An example is to 
map the glibc code onto only one cache, which would cause virtu-
ally all processes to frequently micro-schedule to glibc’s cache. 
To address this issue, we declare all code pages (and similarly, the 

stack pages) to be ‘global’, which causes some level of cache line 
duplication. The resulting overheads in terms of cache space 
usage are moderate, however, as shown by the measurements in 
Figure 14 assessing the portion of shared pages in the SPEC 
benchmark suite. The figure shows the percentage of observed 
shared pages at runtime, both actually accessed (dynamic) per-
centage and the static percentage seen in page tables. 

4. Working Set Tracking 
Working set sizes are determined dynamically, using the access 
bits (A-bits) in page table entries. Specifically, every 100ms (as 
virtual time for each address space), the page table is scanned, and 
the access-bit history is recorded in a 32bit word. Only currently 
open regions are scanned to minimize overhead. For the example 
shown in Figure 3, if it is running on C2, only the part of the page 
table corresponding to R6 and R7 would be scanned, for instance. 
The access bits gathered over time form an access bit history (i.e., 
3.2 seconds worth of access history) for each page. This is also 
termed the page’s ‘access pattern’ recorded as region histograms 
based on their pages’ access histories. 

Figure 15 shows region R20’s details. From its 10 pages’ ac-
cess histories, it builds a histogram by counting the number of 1’s, 
and it calculates its working set size ‘y’ using a heuristic moving 
average function F below that takes the histogram as its input. The 
weights are determined experimentally. 

31 25 19 13

26 20 14 8

3 1 1( ) ( ) ( ) ( )
4 2 4i i i i

y H i H i H i H i
= = = =

= + + +∑ ∑ ∑ ∑
 

Consistent with this function, we define cache load as the sum 
of the dynamic sizes of mapped regions. Interpreting this value as 
cache occupancy, the cache balancer uses it to determine cache 
imbalance; a simple greedy algorithm periodically balances cache 
usage in conjunction with the regioning process. 

Since access bits are gathered every 100ms, and a 32bit word 
is used to store its history, roughly the past 3.2 seconds are re-
flected in the working set sizes used for region scheduling. Figure 
16 shows the evolution of cache working set sizes observed over 
time for select benchmark codes, which the cache balancer would 
use. 

5. Experimental Evaluation 
Region scheduling is evaluated on two generations of Intel plat-
forms. The first, labelled ‘Clovertown’ in all figures below, is an 
older machine with Intel quad-core Xeon X5365@3.00GHz cores 
with 1GB RAM. The caches are an 8-way L1 cache (32K Da-
ta+32K Instruction) and a 16-way 2x4MB L2 cache. The cache 
line size is 64bytes. The second, labelled ‘Westmere’ in all figures 
below is a newer machine with two Intel six-core Xeon 
X5660@2.80GHz sockets with 12GB RAM. The caches are a 4-

Table 2. Regioning process. 
(1) Start regioning (close all regions except global regions) 
(2) Regioning phase (merging) 
(3) End regioning (open all regions) 
(4) Cache balancer does cache allocation, cache balancing. 
(5) Teardown (pick largest local region from regioning phase and make it 
into a seed region.) 
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way 32KB L1I, 8-way 32KB L1D, 8-way 256KB L2, and shared 
16-way 12288KB L3. 

5.1 Overhead 

Regions are enforced by the hardware MMU. Once page protec-
tion bits are set during opening/closing regions, no additional 
runtime overheads are incurred during execution for enforcing 
regions. Full TLB flushes are avoided by using optimized instruc-
tions like ‘invlpg’. 

Four major overhead sources are the do_clock(), usched(), 
switch_cache(), and regioning() calls, which perform page table 
scanning, microscheduling, page table updates, and regioning 
respectively. Using the two-region memlat with a small working 
set size, we conduct an extreme case experiment to assess these 
overheads, by choosing working sets that perfectly fit into the two 
different machine’s caches, thereby eliminating all potential bene-
fits derived from micro-scheduling. When not using the ‘per-
cache page table’ optimization, total overhead is measured to be 
roughly 5.5% with 700 microscheduling per second. Performing 
the do_clock() call ten times and making one regioning() call 
results in less than 1% overhead, but the switch_cache() call 
constitutes over 90% of total overhead, which is effectively elimi-
nated using said optimization. This results in constant-time micro-
scheduling, its composite time comprised of page fault, context 
switch, runqueue manipulation, IPI, and TLB flush. Micro-
scheduling is measured as 47600 cycles (i.e., 15.86 us, 1.5% for 
1000 uschedule actions) for Clovertown, and 17800 cycles (i.e. 
6.357 us, 0.6% for 1000 uschedule) for Westmere. Do_clock()  
has some overheads depending on page table size, but it is several 
milliseconds in most cases (less than 1%). Regioning overheads 
benefit from the optimization that uses per-mode page tables, 
where an upper bound on these costs is defined by the sampling 
rate p. Naturally, overheads are even lower, close to two TLB 
flushes, for codes that operate with stable regions, like libquantum. 
That overall overhead is measured to be less than 3%, typically 
2% on both machines. 

5.2 Microbenchmarks 

To reduce cache contention, the cache balancer dynamically re-
maps regions based on cache loads. For example, on machine 
Clovertown, when running two processes of 4MB working set 

size and two processes of 16KB working set size, with region 
scheduling, the cache balancer ensures that the cache is shared by 
the pair of 4MB+16KB processes. This improves performance by 
more than 50% for all processes compared to a region unaware 
mapping in which two 4MB processes share a cache. Similar 
results are observed on machine Westmere, using 12MB and 
512KB working set sizes, respectively. 

Figure 17 shows simple experiments on both machines, in 
which we run two 4MB memlats + 16KB memlat + a SPEC 
benchmark on the machine Clovertown, and two 12MB memlats 
+ 512KB memlat + a SPEC benchmark on the machine Westmere. 
Depending on scheduling, the SPEC benchmark experiences 
different levels of cache contention. The cache balancer improves 
performance by correctly pairing processes onto caches and miti-
gating cache contention. The figure shows that there is substantial 
potential for performance improvement for all SPEC benchmarks. 
Or stated negatively, without cache balancing, SPEC programs 
experience significant levels of disturbance by the presence of 
other cache-intensive codes. 

Conversely, performance can be improved for cache-intensive 
codes by giving them access to multiple caches, termed cache 
unification. The initial effects of cache unification on cache loads 
for the simple memlat micro-benchmark on machine Clovertown 
are shown in Figure 18. 

The first half of the figure shows unbalanced cache loads, and 
the second half shows balanced loads plus micro-scheduling. 
Similar results are obtained on machine Westmere and for brevity, 
are not shown here. We evaluate the performance implications of 
such actions in more detail below. 
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Figure 17. Speedup with cache balancing.
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5.3 SPEC Benchmarks 

Figure 19 depicts measured results for experiments that assess 
the memory access pattern of the SPEC 2006 benchmark, which is 
obtained by collecting their access bit history over a test run (see 
Figure 15). From these runs, it is clear that libquantum and povray 
have simple access patterns, resulting in very stable regions, 
whereas sphinx and namd regions are more dynamic. This is 
verified by Figure 20, showing just a few regions in each cache 
for the first two, and a much larger number of regions for the 
latter two. Results obtained on machine Westmere are consistent, 
except that it tends to have bigger region sizes due to its higher 
performance (not reported for brevity). 

Considering the access patterns depicted in Figure 19, these 
measurements show that the regioning methods correctly identify 
the memory region-based execution behavior of these codes, 
where e.g., libquantum and povray have few regions while namd 
and sphinx have many regions. 

Another set of results in Figure 20 (the graphs on the right) de-
pict the cache load (sum of region sizes for each cache) imposed 
by these codes. First, note that in the case of namd and sphinx, 
cache balancing succeeds in balancing both caches. This is in part 
because the number of regions for these codes is relatively large, 
which then permits the cache balancer to advantageously pack 
these regions into caches. In contrast, libquantum and povray 
show poor cache balancing, in part due to their small numbers of 

regions. Second, and as shown in Figure 21, successful cache 
balancing always improves performance, with an almost 15% gain 
for the Sphinx benchmark. 

The outcome from these experiments is that regioning and 
cache balancing result in performance improvements even when 
the number of micro-scheduling actions is high. In fact and as 
shown in Figure 22, improved performance is seen even for very 
large numbers of micro-scheduling actions, e.g., the 10% im-
provement seen for namd on machine Clovertown is attained with 
up to 2000 micro-scheduling actions per second! Further, West-
mere shows better performance due to its cheaper micro-
scheduling. The measured cache misses in Figure 21 demonstrate 
why this is the case. In many workloads, such as omnetpp, sphinx, 
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h264ref, the measured cache miss rates are lower with region-
based scheduling. 

The fact that performance benefits are seen even with high mi-
cro-scheduling rates (up to 2000 context switches per second) is a 
key result of this research. This demonstrates that given the rela-
tively low cost context switching on modern architectures, there is 
an almost overwhelming importance of caching to program per-
formance. We view results like these as an important motivation 
for carrying out and continuing our research into memory- and 
cache-centric methods for processor scheduling. 

We also note that these SPEC-based results are consistent with 
the memlat-based ones shown in Section 3.1, thereby demonstrat-
ing that the potential behaviors we diagnosed with the memlat 
micro-benchmark are realistic in that they occur in actual codes. 
From the memlat-based diagnostic measurements, we also note 
that unduly high micro-scheduling rates can reduce or eliminate 
the potential performance gains derived from cache unification. 
This places constraints on the granularities of regions and region 
mappings that must be observed and taken into account by region 
scheduling. 

Finally, the results in Figure 23 confirm that the bottom-up ap-
proach to regioning used in our research is viable. First, since we 
start with many small regions, initially, there are many merge 
actions, but second, there is sufficient stability that the number of 
merges quickly subsides, along with the number of re-regioning 
actions, as evident from the number of global regions seen in 
these codes. We deduce that memory regions are sufficiently 

stable to warrant their runtime detection and use, even without 
special hardware support for doing so. 

5.4 Media Benchmark 

Region scheduling can help improve performance, as shown in 
Section 5.3, but it can also improve other important metrics, such 
as noise [26] for parallel codes or timing perturbation for real-time 
applications. We demonstrate the latter on machine Clovertown 
by measuring the response times seen for high performance IP 
telephony software, Asterisk [25]. 

Asterisk is a complete IP PBX, comprised of a voice commu-
nication server featuring voice mail, conference calling, interac-
tive voice response, etc. It supports VoIP protocols such as SIP, 
MGCP, and H.323. It acts as a signalling server (SIP server) and a 
media server. When it handles signalling, it deals with call set-
up/teardown, etc. When it is used as a media server, it takes a 
voice stream, processes it (including transcoding, if needed), and 
then sends the stream to the recipient. This real-time media server 
requires low latencies to process voice streams, and it requires 
that those latencies remain within certain upper bounds to protect 
voice quality. 

Using the SIPp traffic generator for the SIP protocol, we run 
experiments exercising the system at 10 calls per second with 
RTP traffic. Signalling is initiated from SIPp, and an 8 second 
pcap file (RTP stream of G.711 encoded) is sent to the media 
server after call establishment. The call hold time is 10 seconds. 
The parameters above imply that there are at most 200 RTP 
streams flowing into the media server at any point of time (100 
streams from the caller and 100 streams from the callee). 

5.5 Cache Sharing 

To demonstrate the utility of cache balancing, the VOIP experi-
ment uses unfair policies that offer additional cache space to a 
preferred virtual machine. This is particularly important, of course, 
when there are multiple applications that share access to the plat-
form’s CPU and cache/memory resources. 

Figure 24 shows the media server’s improved response time on 
machine Clovertown when it is the only application running (de-
noted ‘no consolidation’), when no region scheduling is used 
(denoted ‘consolidated-credit’), or when region scheduling is 
employed and the media server is the preferred VM (denoted 
‘consolidated-region’). Results show that the server’s response 
times are much more consistent for the region-based vs. credit-
based scheduling approaches, and both are worse, of course, than 
the non-shared scenario. The figure shows the cumulative number 
of calls with various durations observed during the runs, with a 
‘flat’ line being ‘best’. We also note that the overall average 
response time is 7.765ms for no-consolidation, 19.415ms for 
consolidated-region, and 32.535ms for consolidated-credit, re-
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Figure 23.  Regioning details (Clovertown).
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Figure 22. Micro-scheduling rates on Clovertown.

0

200

400

600

800

1000

1200

# 
of
 c
al
ls

Response time

no‐consolidation
consolidated‐region
consolidated‐credit

 ‐14
‐12
‐10
‐8
‐6
‐4
‐2
0

lib
qu

an
tu
m

om
ne

tp
p

na
m
d

h2
64

re
f

sp
hi
nx

hm
m
er

po
vr
ay

go
bm

k

Pe
rc
en

t  

 
(a) Response time  (b) SPEC cost 
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spectively. The almost 40% improvement in the average response 
time seen for the server comes at a moderate cost for the other 
applications running on the platform, with an up to 15% detriment 
observed for the sphinx code. Degradation occurs because the 
cache balancer is instructed to provide additional cache to the 
media server, which is known to be cache-sensitive. 

5.6 Reducing Noise for Parallel Codes 

We next explore the use of region scheduling to protect parallel 
codes (e.g., OpenMP codes) running on a shared platform from 
each other and/or from the effects other codes on the same plat-
form may impose on them. This is particularly important as we 
move toward many-core systems where the platforms on which 
parallel simulation computations take place will be shared with 
other applications (as in consolidated and cloud computing sys-
tems) or will be shared with additional codes that analyze simula-
tion output data as it is being produced [35]. One could, of course, 
strictly partition nodes and their caches, but an approach like 
region scheduling that explicitly understands memory usage and 
can better isolate codes from each other, as evident from the 
results shown in the previous section, should result in improved 
levels of node utilization and permit richer and more finer-grain 
ways of using and sharing the node resources of future machines. 

We use two virtual machines – one virtual machine running a 
ray tracing parallel workload (PAR VM) and other a SPEC om-
netpp workload (SPEC VM). Figure 25(a) shows the measured 
(worst) elapsed time and (average) CPU time for each virtual 
machine. In case of raytrace, elapsed time increases as more 
workload is added to the SPEC VM. However, its CPU time stays 
constant. This is because this parallel code does not reuse its data, 
so is not impacted by cache contention. Meanwhile, the om-
netpp’s performance suffers from sharing cache with PAR VM. 
Region scheduling improves the SPEC VM’s performance by 
mostly isolating PAR VM onto one cache while SPEC VM runs 
on the other cache. Figure 25(b) shows their average cache misses. 
In general, with region scheduling, we observe 8.39% less cache 
misses in Figure 25(b). 

6. Related Work 
The importance of efficient cache usage is well known [12, 13, 14, 
and 15]. There are hardware approaches to cache partition (e.g., 
based on utility metrics [23] or spill/receive [24]) and software-
based methods. The ones proposed in [16, 17] are similar to those 
used in our work, but these simulation-based results are focused 
on NUCA caches [12], whereas we contribute a general frame-
work for and implementation of policies for cache management 
for realistic multi-cache, multi-core platforms. 

Other cache-aware schedulers [5, 8] use thread migration and 
matching, and [6, 7] use page coloring or guided page allocation 
to partition shared caches, whereas we use page-table-based page-
level affinity and microscheduling. Since our methods are imple-
mented at hypervisor level, they can be used without modifying 
operating systems. Further, we go beyond earlier results to deal 
with multiple rather than the single caches addressed in prior work, 
and for such multiple caches, we go beyond cache partitioning to 
also support cache unification.  Finally, we can estimate cache 
loads, since we track region working sets [10, 11]. 

Recent work at MIT has commonalities with our work, using a 
synthetic directory workload [31] as a demonstration. In that 
research, ideas similar to ours [32, 33, 34] are implemented in 
hardware, using instruction-level execution migration. We differ 
in that we extend the idea to cover all of a system’s memory, and 
we do so in the VMM in order to make the functionality accessi-

ble to arbitrary unmodified applications and systems, without 
requiring any hardware changes. 

Affinity scheduling [9] constitutes early work motivating the 
importance of caching for high performance codes. Our work can 
be thought as a next step in such work – page-level affinity. We 
have identified and demonstrated how this page-level affinity 
could be used. 

The term ‘region scheduling’ also appears in [36], but that 
work has nothing in common with what is presented in this paper. 

7. Conclusions And Future Work 
This paper introduces a memory-centric approach to managing the 
resources of multi-core platforms, motivated by the ever-
increasing importance of memory and cache resources (and their 
efficient use) in multi-core architectures. Indeed, we show results 
where improved performance is gained due to superior cache 
usage even at the cost of relatively high rates of context switching 
(e.g., up to 2000 micro-scheduling actions per second). Intuitively, 
this is because it is preferable to move the computational entity to 
where its memory is vs. moving the memory (i.e., cache lines) to 
where the entity currently runs. 

To realize cache-centric scheduling, we introduce the novel 
notion of memory regions and then develop system-level support 
for dynamically determining these regions for mapping them to 
caches so as to optimize program performance. The resulting 
region framework is realized as a software layer in the Xen hy-
pervisor, and beyond determining and mapping memory regions 
to caches, its additional task is to ensure that the entities touching 
memory regions are run so that region-to-cache mappings are 
preserved, i.e., a process is run only on a core associated with the 
cache in which its region is currently mapped. 

Region scheduling could benefit from additional hardware 
support. For instance, execution migration by hardware [32, 33, 
34] could reduce micro-scheduling overheads to only 100 cycles 
[34], thereby further broadening the usefulness of region-
scheduling to applications. Further, there may be hardware-level 
opportunities to exploit the information about the behavior of an 
address space in terms of its region accesses and working set size. 
A particular opportunity is to use such inputs to affect the cache 
eviction policy used by hardware, i.e., to select victims for evic-
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tion. For example, once a region is unmapped from a cache, exist-
ing cache lines from the regions are ideal victims because they 
will not be accessed through that cache until opening region. 

Other options include (i) not to evict cache lines from shared 
pages, such as those containing library codes, or (ii) to exploit the 
memory reference patterns detected by region scheduling to 
choose as victim’s one-time data, e.g., one-time data such as the 
inputs or outputs produced by codes. Finally, (iii) rather than 
pursuing hardware methods for cache partitioning, one could 
exploit region scheduling for soft cache partitioning. Such parti-
tioning can be used to give unfair advantages to certain codes, or 
even to dynamically resize codes’ cache sizes to adjust them to 
their current working set sizes. On asymmetric multi-core archi-
tectures, this would make it possible, for instance, to isolate small 
workloads onto a smaller cache while giving most other cache 
capacity larger workloads. 

This paper clearly demonstrates the promise of memory-
centric scheduling, but there are several limitations in the current 
region framework: (i) to understand parallelism in multithreaded 
applications remains future work; (ii) if no region is detected, 
there are costs but not benefits – this should be addressed; (iii) the 
OS kernels in guest operating systems remain undifferentiated 
‘global regions’ – this is being remedied in our current work. 
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