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Abstract—Interactive use of cloud services is of keen interest
to science end users, including for storing and accessing shared
data sets. This paper evaluates the viability of interactively
using two important cloud services offered by Amazon: SQS
(Simple Queue Service) and S3 (Simple Storage Service).
Specifically, we first measure the send-to-receive message la-
tencies of SQS and then determine and devise rate controls
to obtain suitable latencies and latency variations. Second,
for S3, when transferring data into the cloud, we determine
that increased parallelism in TransferManager can significantly
improve upload performance, achieving up to 4 times improve-
ments with careful elimination of upload bottlenecks.

Keywords-Cloud computing, Amazon Web Services, Simple
queue services, Simple storage services

I. INTRODUCTION

Public compute clouds are becoming an attractive alterna-
tive to private in-house infrastructures for hosting services
for a range of businesses. This is driven by factors that
include cost effectiveness, availability, scalability, ease of
maintenance, and, most importantly, elasticity.

However, to migrate business-critical services, it is im-
portant to fully understand the behavior of potential in-the-
cloud service deployments, in part to better assess associated
cost/benefits. In order to compare the service behavior in the
cloud to that of internal private infrastructure, one option
is to first fully implement the service given specific public
cloud APIs, and to then perform detailed benchmarking
and performance studies. A more efficient alternative is to
first better understand the performance and behavior of the
various cloud-provided service building blocks and their
basic operations being used.

This paper provides detailed performance analyses of
some of the building blocks and services offered by the
popular and widely used Amazon cloud infrastructure. One
such building block is a message queuing service. Public
cloud providers offer message queuing APIs, like Amazon’s
Simple Queue Service (SQS), for connecting loosely cou-
pled service components. In the case of Amazon’s SQS,
this is intended to be a highly reliable and scalable service
that enables asynchronous message-based communication
between the distributed components of an application [1].
However, there have been repeated concerns regarding the
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performance of SQS on the Amazon developers forum [2],
which have hindered the migration of legacy services to pub-
lic clouds. To better understand these concerns, we evaluate
the SQS send-to-receive message latencies with a latency
measurement tool specifically designed for Amazon SQS,
and we demonstrate that while the current default perfor-
mance levels of SQS may not be adequate for certain types
of applications, significant improvements can be achieved
by incorporating application-level rate-control methods to
minimize the possibility of congestion-related bandwidth
collapse. A secondary insight from these experiments reveals
significant — 3x — performance asymmetry among the zones
in the East and West regions. These insights can help
developers determine how to best deploy their applications
and achieve best behavior from the SQS service.

A widely known issue with using external clouds is
the performance of data upload services, which move data
from private infrastructures to public cloud sites, to make it
easy to share data and more importantly, to leverage cloud
elasticity to process it with varying degrees of parallelism
— depending on data sizes and application needs. Concrete
examples are ‘big data’ analysis applications, such as those
performing time-consuming web analytics. For such appli-
cations, while communication among the nodes within the
cloud data center are efficient and thus, permit substantial
scaling in terms of parallelism in data processing, data
uploading can be a severe bottleneck. To address this issue,
Amazon provides several upload alternatives, among which
the TransferManager library, which utilizes multi-part data
upload to S3, is most efficient for large data transfers. We
evaluate the behavior of the TransferManager, and show
that with minimal modifications to the TransferManager and
optimizations of the client’s environment, we can achieve up
to 6 times performance improvement.

In the remainder of this paper we present the performance
analysis of the aforementioned AWS services and describe
techniques useful for achieving their desired/improved be-
havior. Specifically, Section II focuses on the SQS messag-
ing service, and Section III on the data transfer mechanisms
for upload into S3. Related work and concluding remarks
appear at the end.
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II. SQS MESSAGE LATENCY

We first evaluate Amazon’s SQS (Simple Queue Service)
— a highly reliable and scalable message queuing service
that enables asynchronous message-based communication
between the distributed components of larger-scale applica-
tions [1]. Cloud developers rely on this messaging service to
build application workflows and couple EC2 or application
components that rely on other elements of the Amazon Web
Services infrastructure (AWS). In spite of claims of SQS
reliability and scalability, repeated concerns have been raised
on Amazon’s developers forum regarding potentially very
high send-to-receive message latencies. Toward this end,
the performance analysis presented in this paper is aimed
at understanding the behavior of the Amazon SQS service
and its suitability for interactive web applications.

In order to evaluate SQS, we first develop a simple
latency measurement tool. Its initial naive implementation
is designed to send, receive, and delete messages as fast as
possible, which we term a ‘blast’ measurement. Figure 1
shows the architecture of this measurement tool. It consists
of three threads — sender, receiver, and deleter — in a
Java process and two shared data structures among them
— message map and delete queue. The sender and receiver
continuously make send and receive requests to the SQS
server and the deleter makes delete requests when message
arrive in the delete queue. The message map keeps track of
sent-but-not-received messages, and is used to keep track
of the number of messages in the SQS server and to
detect duplicated messages delivered to the receiver. The
delete queue is a FIFO queue that keeps received messages
until they are deleted. The application is deployed in an
EC2 instance in the Amazon Cloud infrastructure, thus the
network latency to the SQS server is assumed to be minimal,
i.e., not exposed to external latency overheads.

Each message generated by the latency-measurement ap-
plication contains a 37-byte body, which consists of a session
identifier, a unique sequence number, current date and time,
and send time in milliseconds. The session identifier is an
11-byte string that uniquely identifies an experiment, which
is used to guarantee that potentially delayed messages from
other (prior) experiments are not delivered to the current
one. The send time is used for both measuring the send-
to-receive latency and for ordering messages in the delete
queue of the rate-controlled experiment described later in
this section.

Figure 2 shows the measurement results gathered during
one run of the latency measurement application. In this
case, during the first 35 minutes, the latencies are mostly
less than 1 second, with a 10-second running average of
mostly less than 100 ms. From around 35 minutes, latencies
start to increase, and after 1 hour and 35 minutes, the
application becomes unresponsive. Careful inspection of the
system and application logs reveals that the received-but-
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Figure 1. SQS latency measurement application architecture in blast mode.
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Figure 2. Message latencies in blast mode, measured from an EC2 micro
instance. AWS Java SDK version 1.2.9 is used.

not-yet-deleted messages start to accumulate in the delete
queue after 35 minutes. The behavior’s occurrence is con-
sistent even though it is unpredictable when the message
accumulation starts occurring in the delete queue and when
the application ultimately becomes non-responsive. It also
depends on factors such as message sizes, current system
loads, etc.

The reason for the message accumulation in the delete
queue is the SQS built-in reliability mechanism. SQS defines
a 30-second default message visibility window, and mes-
sages not explicitly deleted in this interval will be re-sent.
These duplicate messages in turn cause further congestion
and message accumulation in the delete queue, first slowing
down message deletion, and ultimately causing full band-
width collapse. Eventually the measurement application uses
up all main memory, causing the Linux kernel to execute out-
of-memory killer and select the JVM that the application is
running in as a victim.

The above observations illustrate that although SQS pro-
vides a useful reliability mechanisms, it does not incorpo-
rate any congestion management techniques. In the blast
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Figure 4. Message latencies from the rate-controlled measurement.

experiment, the overloading of the SQS server is caused
by the unbalanced request rates of the sender, receiver and
deleter application components. In order to deal with this and
to provide better congestion management, we next employ
application-level rate controls on each component of the
measurement application.

Figure 3 shows the architecture of the rate-controlled mea-
surement application. The specific rate control mechanism
used in our measurement application is summarized in the
steps listed below.

o Sender sends messages only when there are less than
10 messages in the SQS server. It keeps the number of
messages in the server no larger than 10, which is the
maximum number of messages imposed by the SQS
server that a client can get with one request.

Receiver makes a request only when there are messages
in the server. This prevents unnecessary polling of
messages.

o Deleter waits for a message to be deleted in the same
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manner as in the blast version.

Sender sends messages only if the oldest message in
the delete queue is no older than 15 seconds, which is
arbitrarily chosen to be half of the 30-second default
message visibility window. This prevents the delete
queue from becoming too big, which may cause dupli-
cated messages if messages are not deleted in a timely
fashion.

Note that our main goal here is to demonstrate the
importance of using a rate control mechanism to improve the
behavior of the SQS service, and the actual implementation
of such a mechanism will differ for different applications. A
potential future extension of the SQS API may incorporate
features better suited for implementation of rate-control
mechanisms in distributed application, such as querying the
buffer space availability or the oldest message in the delete
queue.

The measurements gathered with the modified application
are shown in Figure 4. The graph illustrates that using rate-
control eliminates the flood of duplicate message and the
corresponding latency increase. As a result, the latencies
become very consistent with the first part of the blast mea-
surement before the occurrence of the congestion collapse
problem. During the 8-hour measurement, we measure an
average latency of 153 ms, which we consider acceptable
for many interactive web applications.

The results in Figure 4 also illustrate that even with rate
control, some small number of late messages do appear. Fur-
ther inspection of the measurement application logs reveals
that some of these are duplicate messages — in this specific
experiment, only 1 duplicated message is observed. Note
that the semantics of the Amazon SQS service guarantee at-
least-once message delivery, and do not eliminate duplicate
messages. Therefore, applications must be written so as to
be prepared to handle them in an idempotent manner.

In addition to latency, we also compare the message
throughput for the blast and the rate-controlled scenarios. As
shown in Figures 5 and 6, in the blast measurement, the aver-
age throughput is initially around 50 messages/second. How-
ever, once duplicated messages start to occur, the throughput
of unique messages drops significantly. In contrast, in the
rate-controlled measurement, we obtain a sustained through-
put of 45 messages/second, which is only a 10% decrease
from the first part of the blast experiment. We believe that
additional refinements of the rate control parameters can
result in further improvements in the achievable throughput
levels, so as to reduce the observed decrease compared to
the blast case.

In addition to demonstrating that the use of rate controls
can help applications attain satisfactory message latencies
and throughput from the Amazon SQS service, we inves-
tigate potential differences in SQS performance across the
regions and zones provided by the Amazon Cloud service.
To do this, we run the same rate control experiment as above
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Figure 6. Message throughput in rate-controlled mode.

in each of the five different zones of the two US regions. Our
results indicate that there are noticeable performance differ-
ences between regions. As shown in Figure 7, the zones in
the East region experience latencies averaging about 100 ms,
whereas all three zones in the West region observe latencies
of about 300 ms. Furthermore, we observe strong correlation
in the latency variations among the different zones, and the
trends of big vs. small latencies are very similar across
zones within the same region. Possible explanations for
these observations include either that all SQS servers are in
some way synchronizing and thereby affecting everyone’s
performance in a similar manner, or that all SQS queues are
created and managed by a single entity in the East region.

These insights can serve as a hint to application develop-
ers when selecting where to deploy an application, unless
a specific geographic affinity is required for other reasons.
These observations regarding the performance imbalance
across zones are consistent with those reported elsewhere

[3]. [4].
III. UPLOAD PERFORMANCE OPTIMIZATION TO S3

In addition to understanding the messaging latencies for
component interactions, another important aspect of hosting
applications in public clouds is to assess the data movement
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Figure 7. SQS latencies by different zones in the US regions.

costs to/from the remote infrastructure. For storing data,
Amazon provides S3 — a scalable and reliable storage service
that can best be used with EC2 (Elastic computing cloud)
instances. In Big Data applications, the main bottleneck
in using this service can be transfer costs associated with
moving large amounts of data from external event source(s)
to S3. Toward this end, in the remainder of this paper, our
goal is to understand the data movement alternatives and
improvement opportunities associated specifically with S3
‘upload’ performance.

In order to address the needs of diverse customers and
their application requirements, Amazon provides a range
of data movement services. Two extreme options are the
Import/Export service [5] and the Direct Connect service [6].
With the Import/Export service, users can upload data in
bulk by FedEx-ing physical storage devices for importing
data. In contrast, Direct Connect uses dedicated networks
between customer sites and Amazon data centers, thus
providing more reliable performance and better real-time
characteristics. However, this service comes with additional
cost and is provided only in limited areas. This forces most
users to rely on data upload via the public Internet.

Among the Internet-based data movement alternatives, we
evaluate several popular S3 client applications and program-
ming libraries, with different features in terms of the number
of concurrent connections they use to perform a file transfer
and the sizes of each part of file used by each connection:

e The Amazon Web Console provides a user-friendly
graphical interface, and most users choose this by
default. However, it does not seem to support multi-
part file uploading.

s3cmd is a popular command line tool, which is useful
for shell scripting.

Cyberduck is an easy-to-use GUI application, written
in Python using the jets3t library.
AmazonS3Client.putObject() is a low level Java API
that uses a single connection per transfer.
TransferManager.upload() is a high level Java API that
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uploads a file in parts using multiple connections and
threads.

The results from the comparison of the upload data rates
for each of these upload services for different file sizes
are shown in Figure 8. From these graphs, we observe that
for larger data sizes, TransferManager achieves the highest
throughput, followed by Cyberduck. This trend is directly
related to the number of concurrent connections used by the
upload client: for a 128 MB file, TransferManager uses 10
connections, Cyberduck uses 5 connections, and others use
1 connection. With small files the performance difference
is not noticeable, since TransferManager does multi-part
upload only when the size of a file is greater than a specific
threshold, with the default value 5 MB. We tried to override
the behavior by modifying the client code; however, the SQS
server limits the size threshold.

Figure 9 shows the simplified execution sequence of
TransferManager. The client application creates an instance
of TransferManager, requests upload of a file, polls on
the upload progress or has a progress listener report on
progress, and when the upload is finished, it shuts down the
TransferManager instance. TransferManager, upon creation,
creates a thread pool with some fixed number of threads
and a HTTP connection manager, which has a limit on the
maximum number of HTTP connections. Upon an upload
request, TransferManager calculates the optimal part sizes
for multi-part upload, creates upload requests for each part,
and submits the task to the thread pool manager. The thread
pool manager runs each task, polls on the completion of all
uploads, and requests merging of all parts. At this point,
TransferManager throws an exception if it has received
a request with part size smaller than 5 MB or file size
no bigger than 16 MB. A simple improvement would be
to generate the exception when the optimal part sizes are
originally calculated.

Given the TransferManager design described in the pre-
vious paragraph, potential limiting factors in the achievable
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Figure 9. Execution sequence of S3 TransferManager. AWS Java SDK
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performance can be due to the fixed number of threads and
the limit on the number of HTTP connections it uses. In
order to analyze potential improvement opportunities, we
modify two of the TransferManager components as follows:

e Dynamic  thread  creation: in  TransferMan-
agerUtils.java, we replace the FixedThreadPool
that uses 10 threads with CachedThreadPool as an
instance of ThreadPoolExecutor. CachedThreadPool
creates as many threads as needed and reuse ones
when they are available.

Increased connection count limit: in HttpClientFac-
tory.java we increase the maximum number of HTTP
connections from 50 to 200; this turns out to be
sufficient for our experiments.

Figure 10 shows the throughput increase for 512MB data
transfer as a result of increasing the number of threads
involved in the transfer. With 10 threads, which is the
maximum number of threads of the unmodified code, the
average throughput is 5.20 MB/s. Increasing the number of
concurrent connections to 14 boosts the throughput level
by near 20% to 6.21 MB/s with 14 threads. This result,
along with the results from the comparisons of the different
upload utilities in Figure 8 above demonstrate opportunities
to improve the performance of the upload transfer processes
by more flexible selection of parameters which determine
the level of concurrency in the transport process, chunk-sizes
used by each concurrent connection, or various thresholds.

A second observation from Figure 10 is that in this
scenario, when using beyond 14 connection the transfer
throughput levels starts decreasing. In order to further un-
derstand the opportunities for improvement in the transfer
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Figure 11. TransferManager upload throughput from RAM disk

module performance we undertake a series of steps to
eliminate several performance bottlenecks. First, in order
to eliminate the hard disk as a bottleneck, we modify the
transfer module to upload data from a RAM disk. As shown
in Figure 11, this results in a significant performance boost
to up to 22.96 MB/s with 20 concurrent connections, which
is 3.7 times than that of the HDD.

Next, we consider the CPU as potential bottleneck. To
verify this we track the CPU usage for the different up-
load module configurations from above, and, as shown in
Figure 12, observe that indeed both system and application-
level CPU usage does increase and ultimately becomes a
bottleneck. We repeat the same experiment on a faster client
machine, and as shown in Figure 13, we achieve additional
improvements and average throughput of 30.69 MB/s. From
the graph and the fact that the CPU usage remains around
50%, we believe that additional throughput increases are
possible with larger number of threads.

A potential bottleneck is communications. Since we do
not have direct access to the S3 server, we run a network
throughput test between the client machine and an EC2
instance. As we increase the number of connections up to
120, we observe that the aggregate throughput reaches 1
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Gb/s, which is the maximum sustainable data rate supported
on the client machine. This indicates that communications
via network and/or intermediate nodes are not the bottleneck.

It pays to organize or reorganize files after upload. Specif-
ically, when merging parts of the uploaded file, we observe
that this exhibits good scalability. As shown in Figure 14,
the time to merge all file parts increases slowly with the
increase in the number of parts, and in all cases completes
in under 1 second on average, which is under 3% of the
total upload time.

In summary, from these experimental results, it is apparent
(i) that end users must appropriately select the data transfer
services they use, (ii) that it is important to tune such a
service’s parameters, such as to increase transfer parallelism,
or to tune the transfer unit size, and (iii) improved avail-
ability of client-side resources (i.e., faster disks and CPUs
and more memory), can significantly impact the client’s
data upload experience and maximize the overall aggregate
bandwidth utilization, even without requiring any additional
modifications on the cloud-side upload service.
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IV. RELATED WORK

The contributions can be grouped into two categories.

First, related to performance measurements of public
cloud services, Kagan and Bitcurrent conduct performance
measurements of various cloud services, including Amazon
S3, but also for Google App Engine, Joyent, Rackspace
CloudServer, and Windows Azure [3], [4]. Results show
evidence that cloud performance varies significantly across
cloud vendors, ISPs, countries, and days and, furthermore,
they demonstrate that performance-based load balancing can
deliver reasonable performance gains compared to static geo-
load balancing. These results also confirm the performance
asymmetry among zones in the East vs. West region, also
observed in our measurements.

Second, the optimization techniques we use to improve
SQS latency and throughput for the upload utility are similar
to a range of techniques developed and adapted for transport
protocols by the high-performance networking community,
such as loss- or delay-based congestion control algorithms,
use of parallel connections, such as multiple TCP streams
in GridFTP, tuning of transfer unit sizes, TCP window and
socket buffer sizes, or packet pacing [7]. We show that
techniques such as these can be beneficial even when used
at the application level. Better selection TCP- or reliable
UDP-based transports which are more suited for large wide-
area transfers requires modifications at the AWS-server side,
which we have no permissions to perform, but may result
in additional performance improvement opportunities.

Specifically, regarding parallel data transfers, Garfinkel
and Palankar et al. evaluate the performance of Amazon S3
and show that parallel downloading of files from a bucket
can increase the aggregate downloading performance [8],
[9]. They focus on the evaluation of download performance
from multiple VMs. Our work differs in that we evaluate and
optimize multi-part upload performance from a single client,
and in addition, more generally explore other techniques
for improving the performance of data transfer and other
services offered by AWS.
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Finally, Amazon recently added batching of send and
delete operations [10], which we believe will increase the
sustainable throughput rates, but will not eliminate the op-
portunities for additional benefits from the other techniques
discussed in this paper.

V. CONCLUSIONS AND FUTURE WORK

Amazon’s highly available, scalable, and fault-tolerant
services exist in a purposefully restricted computing envi-
ronment. We have learned that although client applications
do not have any control over these services and how they
operate, there are multiple opportunities for client-side opti-
mizations concerning their effective use — with careful rate
control of SQS messages and by exploiting parallelism for
data upload to S3. There are obvious future extensions to
our work, such as those that evaluate other services and
devise additional optimization. More importantly, however,
this paper demonstrates client-side opportunities for opti-
mizing cloud services, and it presents examples in which
performance models maintained by clients can be used to
carry out such optimizations. This suggests the utility of
a future model-driven approach to cloud service usage and
optimization, which we have begun to explore in our recent
work.
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