
Interactive Use of Cloud Services: Amazon SQS and S3

Hobin Yoon, Ada Gavrilovska, Karsten Schwan

Center for Experimental Research in Computer Systems
Georgia Institute of Technology

Atlanta, USA
hobinyoon@gatech.edu, {ada, schwan}@cc.gatech.edu

Jim Donahue

Advanced Technology Labs
Adobe Systems
San Jose, USA

jdonahue@adobe.com

Abstract—Interactive use of cloud services is of keen interest
to science end users, including for storing and accessing shared
data sets. This paper evaluates the viability of interactively
using two important cloud services offered by Amazon: SQS
(Simple Queue Service) and S3 (Simple Storage Service).
Specifically, we first measure the send-to-receive message la-
tencies of SQS and then determine and devise rate controls
to obtain suitable latencies and latency variations. Second,
for S3, when transferring data into the cloud, we determine
that increased parallelism in TransferManager can significantly
improve upload performance, achieving up to 4 times improve-
ments with careful elimination of upload bottlenecks.

Keywords-Cloud computing, Amazon Web Services, Simple
queue services, Simple storage services

I. INTRODUCTION

Public compute clouds are becoming an attractive alterna-

tive to private in-house infrastructures for hosting services

for a range of businesses. This is driven by factors that

include cost effectiveness, availability, scalability, ease of

maintenance, and, most importantly, elasticity.

However, to migrate business-critical services, it is im-

portant to fully understand the behavior of potential in-the-

cloud service deployments, in part to better assess associated

cost/benefits. In order to compare the service behavior in the

cloud to that of internal private infrastructure, one option

is to first fully implement the service given specific public

cloud APIs, and to then perform detailed benchmarking

and performance studies. A more efficient alternative is to

first better understand the performance and behavior of the

various cloud-provided service building blocks and their

basic operations being used.

This paper provides detailed performance analyses of

some of the building blocks and services offered by the

popular and widely used Amazon cloud infrastructure. One

such building block is a message queuing service. Public

cloud providers offer message queuing APIs, like Amazon’s

Simple Queue Service (SQS), for connecting loosely cou-

pled service components. In the case of Amazon’s SQS,

this is intended to be a highly reliable and scalable service

that enables asynchronous message-based communication

between the distributed components of an application [1].

However, there have been repeated concerns regarding the

performance of SQS on the Amazon developers forum [2],

which have hindered the migration of legacy services to pub-

lic clouds. To better understand these concerns, we evaluate

the SQS send-to-receive message latencies with a latency

measurement tool specifically designed for Amazon SQS,

and we demonstrate that while the current default perfor-

mance levels of SQS may not be adequate for certain types

of applications, significant improvements can be achieved

by incorporating application-level rate-control methods to

minimize the possibility of congestion-related bandwidth

collapse. A secondary insight from these experiments reveals

significant – 3x – performance asymmetry among the zones

in the East and West regions. These insights can help

developers determine how to best deploy their applications

and achieve best behavior from the SQS service.

A widely known issue with using external clouds is

the performance of data upload services, which move data

from private infrastructures to public cloud sites, to make it

easy to share data and more importantly, to leverage cloud

elasticity to process it with varying degrees of parallelism

– depending on data sizes and application needs. Concrete

examples are ‘big data’ analysis applications, such as those

performing time-consuming web analytics. For such appli-

cations, while communication among the nodes within the

cloud data center are efficient and thus, permit substantial

scaling in terms of parallelism in data processing, data

uploading can be a severe bottleneck. To address this issue,

Amazon provides several upload alternatives, among which

the TransferManager library, which utilizes multi-part data

upload to S3, is most efficient for large data transfers. We

evaluate the behavior of the TransferManager, and show

that with minimal modifications to the TransferManager and

optimizations of the client’s environment, we can achieve up

to 6 times performance improvement.

In the remainder of this paper we present the performance

analysis of the aforementioned AWS services and describe

techniques useful for achieving their desired/improved be-

havior. Specifically, Section II focuses on the SQS messag-

ing service, and Section III on the data transfer mechanisms

for upload into S3. Related work and concluding remarks

appear at the end.

2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4691-9/12 $26.00 © 2012 IEEE

DOI 10.1109/CCGrid.2012.85

523

II. SQS MESSAGE LATENCY

We first evaluate Amazon’s SQS (Simple Queue Service)

– a highly reliable and scalable message queuing service

that enables asynchronous message-based communication

between the distributed components of larger-scale applica-

tions [1]. Cloud developers rely on this messaging service to

build application workflows and couple EC2 or application

components that rely on other elements of the Amazon Web

Services infrastructure (AWS). In spite of claims of SQS

reliability and scalability, repeated concerns have been raised

on Amazon’s developers forum regarding potentially very

high send-to-receive message latencies. Toward this end,

the performance analysis presented in this paper is aimed

at understanding the behavior of the Amazon SQS service

and its suitability for interactive web applications.

In order to evaluate SQS, we first develop a simple

latency measurement tool. Its initial naive implementation

is designed to send, receive, and delete messages as fast as

possible, which we term a ‘blast’ measurement. Figure 1

shows the architecture of this measurement tool. It consists

of three threads – sender, receiver, and deleter – in a

Java process and two shared data structures among them

– message map and delete queue. The sender and receiver

continuously make send and receive requests to the SQS

server and the deleter makes delete requests when message

arrive in the delete queue. The message map keeps track of

sent-but-not-received messages, and is used to keep track

of the number of messages in the SQS server and to

detect duplicated messages delivered to the receiver. The

delete queue is a FIFO queue that keeps received messages

until they are deleted. The application is deployed in an

EC2 instance in the Amazon Cloud infrastructure, thus the

network latency to the SQS server is assumed to be minimal,

i.e., not exposed to external latency overheads.

Each message generated by the latency-measurement ap-

plication contains a 37-byte body, which consists of a session

identifier, a unique sequence number, current date and time,

and send time in milliseconds. The session identifier is an

11-byte string that uniquely identifies an experiment, which

is used to guarantee that potentially delayed messages from

other (prior) experiments are not delivered to the current

one. The send time is used for both measuring the send-

to-receive latency and for ordering messages in the delete

queue of the rate-controlled experiment described later in

this section.

Figure 2 shows the measurement results gathered during

one run of the latency measurement application. In this

case, during the first 35 minutes, the latencies are mostly

less than 1 second, with a 10-second running average of

mostly less than 100 ms. From around 35 minutes, latencies

start to increase, and after 1 hour and 35 minutes, the

application becomes unresponsive. Careful inspection of the

system and application logs reveals that the received-but-

SQS Perf Measurement

Sender Receiver Deleter

AWS SQS

send msg recv msgs delete msg

Delete
queue

process thread

msg map to keep
track of sent msgs

and duplicated msgs

msg msg id rate control

Figure 1. SQS latency measurement application architecture in blast mode.

Figure 2. Message latencies in blast mode, measured from an EC2 micro
instance. AWS Java SDK version 1.2.9 is used.

not-yet-deleted messages start to accumulate in the delete

queue after 35 minutes. The behavior’s occurrence is con-

sistent even though it is unpredictable when the message

accumulation starts occurring in the delete queue and when

the application ultimately becomes non-responsive. It also

depends on factors such as message sizes, current system

loads, etc.

The reason for the message accumulation in the delete

queue is the SQS built-in reliability mechanism. SQS defines

a 30-second default message visibility window, and mes-

sages not explicitly deleted in this interval will be re-sent.

These duplicate messages in turn cause further congestion

and message accumulation in the delete queue, first slowing

down message deletion, and ultimately causing full band-

width collapse. Eventually the measurement application uses

up all main memory, causing the Linux kernel to execute out-

of-memory killer and select the JVM that the application is

running in as a victim.

The above observations illustrate that although SQS pro-

vides a useful reliability mechanisms, it does not incorpo-

rate any congestion management techniques. In the blast

524

SQS Perf Measurement

Receiver makes
a request only
when there is a

message in
SQS

send rate
control to keep
SQS size no

bigger than 10

Sender Receiver Deleter

AWS SQS

send msg recv msgs delete msg

Delete queue. The
oldest msg - the one
with the earliest sent

time - will be
popped first.

process thread

send rate control to keep the oldest msg in
the delete queue no older than 15 seconds

msg map to keep
track of sent msgs

and duplicated msgs

msg msg id rate control

Figure 3. Rate-controlled SQS latency measurement application architec-
ture.

Figure 4. Message latencies from the rate-controlled measurement.

experiment, the overloading of the SQS server is caused

by the unbalanced request rates of the sender, receiver and

deleter application components. In order to deal with this and

to provide better congestion management, we next employ

application-level rate controls on each component of the

measurement application.

Figure 3 shows the architecture of the rate-controlled mea-

surement application. The specific rate control mechanism

used in our measurement application is summarized in the

steps listed below.

• Sender sends messages only when there are less than

10 messages in the SQS server. It keeps the number of

messages in the server no larger than 10, which is the

maximum number of messages imposed by the SQS

server that a client can get with one request.

• Receiver makes a request only when there are messages

in the server. This prevents unnecessary polling of

messages.

• Deleter waits for a message to be deleted in the same

manner as in the blast version.

• Sender sends messages only if the oldest message in

the delete queue is no older than 15 seconds, which is

arbitrarily chosen to be half of the 30-second default

message visibility window. This prevents the delete

queue from becoming too big, which may cause dupli-

cated messages if messages are not deleted in a timely

fashion.

Note that our main goal here is to demonstrate the

importance of using a rate control mechanism to improve the

behavior of the SQS service, and the actual implementation

of such a mechanism will differ for different applications. A

potential future extension of the SQS API may incorporate

features better suited for implementation of rate-control

mechanisms in distributed application, such as querying the

buffer space availability or the oldest message in the delete

queue.
The measurements gathered with the modified application

are shown in Figure 4. The graph illustrates that using rate-

control eliminates the flood of duplicate message and the

corresponding latency increase. As a result, the latencies

become very consistent with the first part of the blast mea-

surement before the occurrence of the congestion collapse

problem. During the 8-hour measurement, we measure an

average latency of 153 ms, which we consider acceptable

for many interactive web applications.
The results in Figure 4 also illustrate that even with rate

control, some small number of late messages do appear. Fur-

ther inspection of the measurement application logs reveals

that some of these are duplicate messages – in this specific

experiment, only 1 duplicated message is observed. Note

that the semantics of the Amazon SQS service guarantee at-

least-once message delivery, and do not eliminate duplicate

messages. Therefore, applications must be written so as to

be prepared to handle them in an idempotent manner.
In addition to latency, we also compare the message

throughput for the blast and the rate-controlled scenarios. As

shown in Figures 5 and 6, in the blast measurement, the aver-

age throughput is initially around 50 messages/second. How-

ever, once duplicated messages start to occur, the throughput

of unique messages drops significantly. In contrast, in the

rate-controlled measurement, we obtain a sustained through-

put of 45 messages/second, which is only a 10% decrease

from the first part of the blast experiment. We believe that

additional refinements of the rate control parameters can

result in further improvements in the achievable throughput

levels, so as to reduce the observed decrease compared to

the blast case.
In addition to demonstrating that the use of rate controls

can help applications attain satisfactory message latencies

and throughput from the Amazon SQS service, we inves-

tigate potential differences in SQS performance across the

regions and zones provided by the Amazon Cloud service.

To do this, we run the same rate control experiment as above

525

Figure 5. Message throughput in blast mode.

Figure 6. Message throughput in rate-controlled mode.

in each of the five different zones of the two US regions. Our

results indicate that there are noticeable performance differ-

ences between regions. As shown in Figure 7, the zones in

the East region experience latencies averaging about 100 ms,

whereas all three zones in the West region observe latencies

of about 300 ms. Furthermore, we observe strong correlation

in the latency variations among the different zones, and the

trends of big vs. small latencies are very similar across

zones within the same region. Possible explanations for

these observations include either that all SQS servers are in

some way synchronizing and thereby affecting everyone’s

performance in a similar manner, or that all SQS queues are

created and managed by a single entity in the East region.

These insights can serve as a hint to application develop-

ers when selecting where to deploy an application, unless

a specific geographic affinity is required for other reasons.

These observations regarding the performance imbalance

across zones are consistent with those reported elsewhere

[3], [4].

III. UPLOAD PERFORMANCE OPTIMIZATION TO S3

In addition to understanding the messaging latencies for

component interactions, another important aspect of hosting

applications in public clouds is to assess the data movement

��
��

��
�	

�
�

����	��	����	����	���	�����

���������������	 ������	!�	"���	
!�"���	�����#��	������	������$	�����$�

��	%���	��
��	%���	��

��	%���	��
��	&���	��

��	&���	�!

�

���

���

'��

(��

)��

*��

+��

�(,��
�),��

�*,��
�+,��

��,��
�-,��

��,��
��,��

Figure 7. SQS latencies by different zones in the US regions.

costs to/from the remote infrastructure. For storing data,

Amazon provides S3 – a scalable and reliable storage service

that can best be used with EC2 (Elastic computing cloud)

instances. In Big Data applications, the main bottleneck

in using this service can be transfer costs associated with

moving large amounts of data from external event source(s)

to S3. Toward this end, in the remainder of this paper, our

goal is to understand the data movement alternatives and

improvement opportunities associated specifically with S3

‘upload’ performance.

In order to address the needs of diverse customers and

their application requirements, Amazon provides a range

of data movement services. Two extreme options are the

Import/Export service [5] and the Direct Connect service [6].

With the Import/Export service, users can upload data in

bulk by FedEx-ing physical storage devices for importing

data. In contrast, Direct Connect uses dedicated networks

between customer sites and Amazon data centers, thus

providing more reliable performance and better real-time

characteristics. However, this service comes with additional

cost and is provided only in limited areas. This forces most

users to rely on data upload via the public Internet.

Among the Internet-based data movement alternatives, we

evaluate several popular S3 client applications and program-

ming libraries, with different features in terms of the number

of concurrent connections they use to perform a file transfer

and the sizes of each part of file used by each connection:

• The Amazon Web Console provides a user-friendly

graphical interface, and most users choose this by

default. However, it does not seem to support multi-

part file uploading.

• s3cmd is a popular command line tool, which is useful

for shell scripting.

• Cyberduck is an easy-to-use GUI application, written

in Python using the jets3t library.

• AmazonS3Client.putObject() is a low level Java API

that uses a single connection per transfer.

• TransferManager.upload() is a high level Java API that

526

��
��

��
�	

�

�

���
�

��
	

���
�	��
����
�

����������	�

���������	��

	����

���� ����
���� ���� ���� ���� ���� ����

���
�����

���� ����
����

��	�
��	

���	
���	 ����

�����������
��������
��!"

����
���� ���� ���� ���	 ���� ���	 ���	

#���	$
�
���%
��������!"

���	

���� ���	 ���� ���	

����
��	�

���	

&�'

'

'&

�' �(�) �* �'+ ��(�+) �'(*

Figure 8. S3 upload performance of various tools. The client machine
consists of Intel Core 2 Duo 2.6 GHz, 4 GB of DDR2 memory, and 5400
rpm hard drive

uploads a file in parts using multiple connections and

threads.

The results from the comparison of the upload data rates

for each of these upload services for different file sizes

are shown in Figure 8. From these graphs, we observe that

for larger data sizes, TransferManager achieves the highest

throughput, followed by Cyberduck. This trend is directly

related to the number of concurrent connections used by the

upload client: for a 128 MB file, TransferManager uses 10

connections, Cyberduck uses 5 connections, and others use

1 connection. With small files the performance difference

is not noticeable, since TransferManager does multi-part

upload only when the size of a file is greater than a specific

threshold, with the default value 5 MB. We tried to override

the behavior by modifying the client code; however, the SQS

server limits the size threshold.

Figure 9 shows the simplified execution sequence of

TransferManager. The client application creates an instance

of TransferManager, requests upload of a file, polls on

the upload progress or has a progress listener report on

progress, and when the upload is finished, it shuts down the

TransferManager instance. TransferManager, upon creation,

creates a thread pool with some fixed number of threads

and a HTTP connection manager, which has a limit on the

maximum number of HTTP connections. Upon an upload

request, TransferManager calculates the optimal part sizes

for multi-part upload, creates upload requests for each part,

and submits the task to the thread pool manager. The thread

pool manager runs each task, polls on the completion of all

uploads, and requests merging of all parts. At this point,

TransferManager throws an exception if it has received

a request with part size smaller than 5 MB or file size

no bigger than 16 MB. A simple improvement would be

to generate the exception when the optimal part sizes are

originally calculated.

Given the TransferManager design described in the pre-

vious paragraph, potential limiting factors in the achievable

Thread pool manager

worker
1

worker
3

worker
2

main

tx = new TransferManager()
 ...
 --> create a thread pool of 10
 threads
 --> set max HTTP connection (50)

tx.upload()
 ...
 --> create UploadMonitor()
 and submit to thread pool

UploadMonitor
 calculates the optimal part size
 initiates multi-part upload
 submits jobs to each worker threads
 …
 reschedule itself in 5 seconds

...

UploadMonitor
 polls for completion of all parts
 requests merging of all parts
 may throw EntityTooSmall

poll transfer status
or provide a progressListener
and have it report

wait for the upload to
finish and shutdown the
TransferManager

thread pool manager executes a submitted task
possible enhancement
modifications to increase parallelism

Upload each
part Upload each

part

Upload each
part

Upload each
part

Figure 9. Execution sequence of S3 TransferManager. AWS Java SDK
version 1.2.1 was used.

performance can be due to the fixed number of threads and

the limit on the number of HTTP connections it uses. In

order to analyze potential improvement opportunities, we

modify two of the TransferManager components as follows:

• Dynamic thread creation: in TransferMan-

agerUtils.java, we replace the FixedThreadPool

that uses 10 threads with CachedThreadPool as an

instance of ThreadPoolExecutor. CachedThreadPool

creates as many threads as needed and reuse ones

when they are available.

• Increased connection count limit: in HttpClientFac-

tory.java we increase the maximum number of HTTP

connections from 50 to 200; this turns out to be

sufficient for our experiments.

Figure 10 shows the throughput increase for 512MB data

transfer as a result of increasing the number of threads

involved in the transfer. With 10 threads, which is the

maximum number of threads of the unmodified code, the

average throughput is 5.20 MB/s. Increasing the number of

concurrent connections to 14 boosts the throughput level

by near 20% to 6.21 MB/s with 14 threads. This result,

along with the results from the comparisons of the different

upload utilities in Figure 8 above demonstrate opportunities

to improve the performance of the upload transfer processes

by more flexible selection of parameters which determine

the level of concurrency in the transport process, chunk-sizes

used by each concurrent connection, or various thresholds.

A second observation from Figure 10 is that in this

scenario, when using beyond 14 connection the transfer

throughput levels starts decreasing. In order to further un-

derstand the opportunities for improvement in the transfer

527

��
��
��
��
�	

��

��
�

�
��
������	����

������
�����������
��
�
��
������	����

	��������	
��

���

���
�

���
�

���
�

���
�

���
�
���

�
���

����
�
���

����
���
��
���

�

���
�

	��
�

	��
�

��

	

���
�

���
�

���
����
�

���
�

��

�

���
����
�

���
	

���
�

���
�

���
�

���
�

���
�
���

�
���

�
���

�
���

�
���

�
���

�
���

�
���

�
��

�
���

�
��	

�

�

�

�

�

!

"

#

�
�
�
�
�
	
�

�
��
��
��
�	
��
��
��
��
��
��
��
��
	�
��

	
���

Figure 10. TransferManager upload throughput with more connections
and threads.

��
��
��
��
�	

��

��
�

�
��
������	����

������
�����������
��
�
��
������	����
����
�������	

��
�����
������������������������

�����
�����

����������

���	

���
�

����	
�����

�
���

�
���
�
�
�

�
����	���

�	��

���	�

�����
���
�

����������

���
�

�
���

�����

�	���
���
�

����	���

����
����	

�����
����	���		

����
���������
���	
���	�������������������

�

�

��

��

��

��

�
�
�
�
�
	

�
��
��
��
�	
��
��
��
��
��
��
�

�

	�

�

	
���

Figure 11. TransferManager upload throughput from RAM disk

module performance we undertake a series of steps to

eliminate several performance bottlenecks. First, in order

to eliminate the hard disk as a bottleneck, we modify the

transfer module to upload data from a RAM disk. As shown

in Figure 11, this results in a significant performance boost

to up to 22.96 MB/s with 20 concurrent connections, which

is 3.7 times than that of the HDD.

Next, we consider the CPU as potential bottleneck. To

verify this we track the CPU usage for the different up-

load module configurations from above, and, as shown in

Figure 12, observe that indeed both system and application-

level CPU usage does increase and ultimately becomes a

bottleneck. We repeat the same experiment on a faster client

machine, and as shown in Figure 13, we achieve additional

improvements and average throughput of 30.69 MB/s. From

the graph and the fact that the CPU usage remains around

50%, we believe that additional throughput increases are

possible with larger number of threads.

A potential bottleneck is communications. Since we do

not have direct access to the S3 server, we run a network

throughput test between the client machine and an EC2

instance. As we increase the number of connections up to

120, we observe that the aggregate throughput reaches 1

��
��
��
��

	�

�

��
���
��	���
��

��������	������
���
��	���
��

��� ��� �
���

��

���

���

���

���

����

� � � � � � � 	
 �� �� �� �
 �� �� �
 �� �� �� �� ���

Figure 12. CPU usage of client machine that uploads data from RAM

��
�

��
��

�

���
��
��
�

 �
!�"
��#"
�
��

$�%
����#�!
����"#�&'� �
!�"
��#"
�
���
����&#

#��"%�#�
���"���#

��
�����
����������������	
������

����

����
����

����
����

���	
����

���

	����
	����

		���

	����	����
	����

	��	
	��
�
	����
		���
		���
		���
	��	�
		���

	����
	���	

	����
	����
	����
	��
�
	����

	����
	����

	����
	
���

�	���
�	���

�����
�����

���	�
�����

���
�

����

�

�

��
�

��
�

��
�

��
�

	
�
�
�
�
�
�
�

	�
	�
	�
	�
	

��
��
�

��
��
��
��
��
��
��
	��

Figure 13. TransferManager upload throughput on a better machine with
Intel Xeon Quad Core 2.8 GHz, 12 GB of DDR3 memory, and 7200 rpm
hard drive

Gb/s, which is the maximum sustainable data rate supported

on the client machine. This indicates that communications

via network and/or intermediate nodes are not the bottleneck.

It pays to organize or reorganize files after upload. Specif-

ically, when merging parts of the uploaded file, we observe

that this exhibits good scalability. As shown in Figure 14,

the time to merge all file parts increases slowly with the

increase in the number of parts, and in all cases completes

in under 1 second on average, which is under 3% of the

total upload time.

In summary, from these experimental results, it is apparent

(i) that end users must appropriately select the data transfer

services they use, (ii) that it is important to tune such a

service’s parameters, such as to increase transfer parallelism,

or to tune the transfer unit size, and (iii) improved avail-

ability of client-side resources (i.e., faster disks and CPUs

and more memory), can significantly impact the client’s

data upload experience and maximize the overall aggregate

bandwidth utilization, even without requiring any additional

modifications on the cloud-side upload service.

528

��
�

��
��
��

�

�����	
���

������������������	
���

�����������������������
�����
��

��
��

�

��
��

�

��
��

�

�	
��

�

��
	�

�
�

��
�

��
��

�
��

��
�

��
��

���
��

�
�

	�
�

��
��

�
��

��
�

��
	�

	
��

��
	

�	
��

�
��

��
	

��
��

���
��

�
��

��
�

��
��

	
��

��
�

��
��

���
��

�
��

��
	

��
��

�
��

��
�

��
��

�
��

��
	

��
��

�
��

��
�

�	
��

�

�	
��

��
��

	

�	
��

���
��

�

��
��

�

��
��

�

��
��

�

��
��

�

��
��

�

���

�����

�����

�����

�����

�����

�����

�����

�
�
�
�
�
�
�
�
	
�

��
��
��
�	
��
��
�	
��
�

��
��
��
��
��
�
�

Figure 14. Time spent merging parts

IV. RELATED WORK

The contributions can be grouped into two categories.

First, related to performance measurements of public

cloud services, Kagan and Bitcurrent conduct performance

measurements of various cloud services, including Amazon

S3, but also for Google App Engine, Joyent, Rackspace

CloudServer, and Windows Azure [3], [4]. Results show

evidence that cloud performance varies significantly across

cloud vendors, ISPs, countries, and days and, furthermore,

they demonstrate that performance-based load balancing can

deliver reasonable performance gains compared to static geo-

load balancing. These results also confirm the performance

asymmetry among zones in the East vs. West region, also

observed in our measurements.

Second, the optimization techniques we use to improve

SQS latency and throughput for the upload utility are similar

to a range of techniques developed and adapted for transport

protocols by the high-performance networking community,

such as loss- or delay-based congestion control algorithms,

use of parallel connections, such as multiple TCP streams

in GridFTP, tuning of transfer unit sizes, TCP window and

socket buffer sizes, or packet pacing [7]. We show that

techniques such as these can be beneficial even when used

at the application level. Better selection TCP- or reliable

UDP-based transports which are more suited for large wide-

area transfers requires modifications at the AWS-server side,

which we have no permissions to perform, but may result

in additional performance improvement opportunities.

Specifically, regarding parallel data transfers, Garfinkel

and Palankar et al. evaluate the performance of Amazon S3

and show that parallel downloading of files from a bucket

can increase the aggregate downloading performance [8],

[9]. They focus on the evaluation of download performance

from multiple VMs. Our work differs in that we evaluate and

optimize multi-part upload performance from a single client,

and in addition, more generally explore other techniques

for improving the performance of data transfer and other

services offered by AWS.

Finally, Amazon recently added batching of send and

delete operations [10], which we believe will increase the

sustainable throughput rates, but will not eliminate the op-

portunities for additional benefits from the other techniques

discussed in this paper.

V. CONCLUSIONS AND FUTURE WORK

Amazon’s highly available, scalable, and fault-tolerant

services exist in a purposefully restricted computing envi-

ronment. We have learned that although client applications

do not have any control over these services and how they

operate, there are multiple opportunities for client-side opti-

mizations concerning their effective use – with careful rate

control of SQS messages and by exploiting parallelism for

data upload to S3. There are obvious future extensions to

our work, such as those that evaluate other services and

devise additional optimization. More importantly, however,

this paper demonstrates client-side opportunities for opti-

mizing cloud services, and it presents examples in which

performance models maintained by clients can be used to

carry out such optimizations. This suggests the utility of

a future model-driven approach to cloud service usage and

optimization, which we have begun to explore in our recent

work.

REFERENCES

[1] “Getting started with Amazon EC2 and Amazon SQS:
Building scalable, reliable Amazon EC2 applications
with Amazon SQS,” AWS Whitepaper, 2008. [Online].
Available: http://sqs-public-images.s3.amazonaws.com/
Building\textunderscoreScalabale\textunderscoreEC2\
textunderscoreapplications\textunderscorewith\
textunderscoreSQS2.pdf

[2] “AWS SQS Forum.” [Online]. Available: https://forums.aws.
amazon.com/forum.jspa?forumID=12&start=0

[3] Bitcurrent, “Cloud performance from the end user perspec-
tive,” 2011. [Online]. Available: http://www.bitcurrent.com/
download/cloud-performance-from-the-end-user-perspective

[4] M. Kagan, “Global cloud performance data,” 2011.
[Online]. Available: http://www.cloudconnectevent.com/
2011/presentations/free/76-marty-kagan.pdf

[5] “AWS Import/Export.” [Online]. Available: http://aws.
amazon.com/importexport

[6] “AWS Direct Connect,” 2011. [Online]. Available: http:
//aws.amazon.com/directconnect

[7] A. Gavrilovska, “High Performance IP-Based Transports,”
September 2009.

[8] S. L. Garfinkel, “An Evaluation of Amazons Grid Computing
Services: EC2, S3, and SQS,” Center for, Tech. Rep., 2007.

529

[9] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel,
“Amazon s3 for science grids: a viable solution?” in
Proceedings of the 2008 international workshop on Data-
aware distributed computing, ser. DADC ’08. New York,
NY, USA: ACM, 2008, pp. 55–64. [Online]. Available:
http://doi.acm.org/10.1145/1383519.1383526

[10] Amazon, “Release: Amazon simple queue service on 2011-
10-20,” 2011. [Online]. Available: http://aws.amazon.com/
releasenotes/7651101893906539

530

