
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 2, APRIL 2012 429

A Petri Net Approach to Mediation-Aided
Composition of Web Services

Yanhua Du, Xitong Li, and PengCheng Xiong

Abstract—Recently, mediation-aided composition has been widely
adopted when dealing with incompatibilities of services. However, existing
approaches suffer from state space explosion in compatibility verification
and cannot automatically generate the BPEL code. This paper presents a
Petri net approach to mediation-aided composition of Web services. First,
services are modeled as open WorkFlow Nets (oWFNs) and are composed
using mediation transitions (MTs). Second, the modular reachability graph
(MRG) of composition is automatically constructed and the compatibility
is analyzed, so that the problem of state space explosion is significantly
alleviated. Furthermore, an Event-Condition-Action (ECA) rule-based
technique is developed to automatically generate the BPEL code of the
composition, which can significantly save the time and labor of designers.
Finally, the prototype system has been developed.

Note to Practitioners—Web services are an emerging area for business
process automation. This work presents a novel Petri net approach to me-
diation-aided composition of Web services. The proposed approach can
greatly alleviate state space explosion to automatically verify the compo-
sition of partially incompatible services, and significantly save the time and
labor of designers to obtain BPEL code. It consists of three phases: mod-
eling composition of Web services, automatic verification of composition,
and automatic generation of BPEL code. The prototype system has been de-
veloped based on the open source software PIPE and validated in a real-life
case study. It is ready to be applied in industrial Web service composition
for business automation.

Index Terms—Compatibility verification, mediation transition, media-
tion-aided composition, modular reachability graph, prototype system.

I. INTRODUCTION

Service-Oriented Architecture (SOA) is becoming one of the main
computing paradigms for designing complex business applications [1],
[2]. Usually, a business application is not realized by a single Web ser-
vice but a set of them. Composition, in which multiple independent
Web services are assembled to accomplish a more complex task, is one
of the key motivations to embrace Web service technology [2]–[6].

According to whether or not the participating Web services (abbrevi-
ated to services in the rest of this paper) in the composition are exactly
compatible, service composition can be divided into direct composi-
tion and mediation-aided one.

Various direct composition methods have been proposed, including
planning based [1], logical inference driven [2], Petri net based [3], [4],
automata based [5], quality-of-service (QoS) optimizing based [6], etc.
These methods [1]–[6] assume both data formats and sequences of the

Manuscript received August 08, 2010; revised July 22, 2011; accepted Jan-
uary 26, 2012. Date of publication March 06, 2012; date of current version April
03, 2012. This paper was recommended for publication by Associate Editor A.
Colombo and Editor Y. Narahari fupon evaluation of the reviewers’ comments.
This work was supported in part by the National Natural Science Foundation of
China under Grant 61004109.

Y. Du is with the School of Mechanical Engineering, University of Science
and Technology Beijing, Beijing 100083, China (e-mail: duyanhua@ustb.edu.
cn).

X. Li is with the MIT Sloan School of Management, Massachusetts Institute
of Technology, Cambridge, MA 02142 USA (e-mail: xitongli@mit.edu).

P. Xiong is with the College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332 USA (e-mail: xiong@gatech.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASE.2012.2188511

messages are consistent. However, services are not always exactly com-
patible in real-life composition situations. Usually, two (or more) ser-
vices providing complementary functionality could be linked together
in principle, but cannot be directly composed because of partially com-
patible interfaces or interaction patterns.

Mediation-aided composition [7]–[15] is attracting more attention,
which mainly uses a set of mediators/adaptors to glue two or more par-
tially compatible services. Compatibility verification is a crucial task
of mediation-aided composition which is used to check whether there
exist mediators to glue two partially compatible services [7]–[15]. An-
other important task of mediation-aided composition is to automati-
cally generate the (abstract) BPEL code of composition, since BPEL
has become the industrial standard for modeling service composition.
This can significantly save the time and labor of designers with the fast
changing need.

Existing work [7]–[15] has not fully investigated the issue of medi-
ation-aided composition, because they suffer from state space explo-
sion in compatibility verification and cannot automatically generate
the (abstract) BPEL code. In this paper, a Petri net approach to me-
diation-aided composition of services is presented. First, services are
modeled using open WorkFlow Nets (oWFNs) [16], and are composed
by adding mediation transitions (MTs). Second, the composition com-
patibility is verified by automatically constructing and analyzing the
modular reachability graph (MRG) [17] of composition. Finally, if the
composition is verified to be valid, the BPEL code of the composi-
tion is automatically generated in an Event-Condition-Action (ECA)
rule-based way [18].

Compared with the existing work [7]–[15], the contributions of this
paper are as follows.

1) oWFNs of services are composed by using three basic kinds of
MTs to address the problem of their partially compatible inter-
faces or interaction patterns.

2) By automatically constructing and analyzing the MRG of com-
position, our approach can significantly alleviate state space ex-
plosion without unfolding to ordinary state space.

3) Once the composition is verified to be valid, its BPEL code is
automatically generated in the format of ECA rule, which can
significantly save the time and labor of designers with the fast
changing need.

4) The prototype system based on the open source software Plat-
form Independent Petri net Editor (PIPE) has been developed.

Note that our approach is an offline one. Once the composition
is launched, no runtime reconfigurations are possible, e.g., services
cannot be replaced or reconfigured during execution, because our
approach assumes that the message mappings among services to be
composed are specified by designers and should be accurate and
faultless.

The rest of this paper is organized as follows. Section II presents
the composition of oWFNs by adding MTs. Section III presents how
to automatically construct the MRG and analyze its compatibility.
Section IV discusses automatically generation BPEL code from com-
position. Section V presents a prototype system. Section VI discusses
related work and Section VII concludes this paper.

II. MODELING MEDIATION-AIDED COMPOSITION OF SERVICES

In this section, first, the formal concept of open WorkFlow Net
(oWFN) is introduced. Second, mediation transitions (MTs) between
oWFNs are presented. Finally, the composition procedure of oWFNs
based on MTs is presented.

1545-5955/$31.00 © 2012 IEEE



430 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 2, APRIL 2012

Fig. 1. Two oWFNs of eShop and TPC services.

A. Open Workflow Net (oWFN)

Existing service composition specification languages such as
Business Process Execution Language (BPEL), Web Service Choreog-
raphy Interface (WSCI), and Web Service Choreography Description
Language (WS-CDL) all provide mechanisms to compose services by
specifying message sent or received by interfaces [9]. Among these
various languages, BPEL has become dominant because it has been
proposed by OASIS as an industry standard [7]–[10] and is supported
by major software companies such as IBM, Oracle, and SAP. In this
paper, BPEL is assumed as the language for describing the internal
logic of services and the final composition of them. By doing so, our
theoretical approach becomes practical and can be used to address
real-world services in practice.

To formally analyze the composition compatibility of BPEL ser-
vices, we first model them based on oWFN. As a special class of Petri
nets [7]–[10], [19]. oWFN [16] is generalized from the classical Work-
Flow Net (WFN) [7]–[10] by introducing the interfaces for exchanging
messages.

Definition 1. (Open WorkFlow Net, oWFN): An oWFN is a
������� � 	�� �� �� ��� ��� � �
, where:

1) ��� �� �� is a WFN;
2) IP is the set of input message places, and � � � �� , �� � ;
3) OP is the set of output message places, and �� � �� ,�� � ,

�� � �� � ;
4) � � � 	� ��� 
 	�� � � 
 is the set of interface arcs.

Assume there are two BPEL services to be composed: eShop service
and a Third-Party Checkout service (TPC), which is the excerpt and
adaptation of a real business scenario [20]. When buyers finish shop-
ping and want to check out, eShop and TPC services need to be com-
posed to fulfill the requirement of the online shopping and checkout
business. To save the space of this paper, the detailed BPEL code of
two services is omitted.

When buyers check out: 1) eShop service is initiated, and it invokes
TPC service by sending message SecretID . 2) eShop service receives
messages including data CardToken and ResSecID from TPC service,
and sends synchronously data CardID and Passward to TPC service as
a message. 3) eShop service receives message composed of ResSecID,
OrderId and UserID from TPC service, and replies asynchronously
message OrderData.

On the other hand: 1) TPC service is initiated by receiving message
SecretID. 2) TPC service invokes eShop service by sending message
including data CardToken and ResSecID, then starts an asynchronous
activity to receive message composed of CardID, Passward and Order-
Data from eShop service. 3) TPC replies the confirm message Ack, and
displays the results.

According to the above descriptions, two services are models as
oWFNs in Fig. 1.

B. Mediation Transition

Based on the Web Service Description Language (WSDL) specifi-
cations of messages exchanged of oWFNs, the message mappings be-
tween two them can be set.

Definition 2. (Message Mapping, MM): A message mapping MM
between two oWFNs is expressed in the form of �	
��
�� �������,
where source is the messages, or their parts/elements that need to be
sent by an oWFN, and target is the messages, or their parts/elements
that need to be receive by another one.

Source and target are expressed in the form of Service.Message or
Service.Message.Part. In this paper, it is assumed that the MMs among
services to be composed are specified by designers and the MMs should
be accurate and faultless. The automatic generation of MMs is beyond
the scope of this paper.

For superfluous message pattern, the MM between two oWFNs is
�	
��
�� �. The MM of missing message pattern is � � �������.
These patterns cannot affect the verification result of service compo-
sition and do not appear explicitly in the composition models. Super-
fluous messages can be discarded by designers, because they do not
lead to deadlocks of the oWFNs. On the other hand, if the designers
cannot provide the missing messages, then the composition is usually
considered to be incompatible and do not need further verification.

Definition 3. (Message Place Mapping, MPM): A message place
mapping MPM is transformed from a MM �	
��
�� ������� and ex-
pressed in the form of ��	�� �	��, where �	� is the set of output
message places corresponding to messages (or their parts/elements) in
source and �	� is the set of input message places corresponding to mes-
sages (or their parts/elements) in target.

Not all of input or output message places of oWFNs need to appear in
a MPM. For those redundant output messages that no oWFN accepts,
their corresponding places will not appear in a MPM. For an oWFN
with choice branches, if one path is not picked up by its partner oWFN,
the corresponding input message place will also not appear.

Based on MPMs, we can derive mediation transitions to connect
oWFNs, which serve as information channel by specifying the trans-
ferring relation of messages.

Definition 4. (Mediation Transition, MT): A mediation transition
MT is a transition which has at least one input places and at least one
output places in oWFNs.

In this paper, three basic kinds of MTs are defined as follows.
1) Forward Mediation Transition (FMT): A FMT stores the in-

coming message and forwards it to the receiver when needed.
For a MPM ��	�� �	��, where �	� and �	� all have only one
message place, a FMT is used to connect the output message
place in �	� and the input message place in �	�.

2) Merge Mediation Transition (MMT): A MMT collects the mul-
tiple source messages/parts/elements and then combines them
into one single target message. For a MPM ��	�� �	��, where
�	� has more than one message places and �	� has only one, a
MMT is used to connect the output message places in �	� and
the input message place in �	�.

3) Split Mediation Transition (SMT): A SMT replicates the source
message (or its part/element) into multiple copies. For a MPM
��	�� �	�� where �	� has only one message place and �	� has
more than ones, a SMT is used to connect the output message
place in �	� and the input message places of in �	�.

Definition 5. (Composition of Open Workflow Nets by MTs,
CoWFN): Suppose 
����	� � 
� �� � � � � �
 models � services, a
tuple �
��� � 	
����� � � � � 
����� ��� � �
 is called as
Composition of open WorkFlow Nets by MTs if and only if:

1) IT is the set of MTs between oWFNs;
2) FI is the set of arcs between the ������� in 
����	� �


� �� � � � � �
 and MTs.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 2, APRIL 2012 431

Fig. 2. The CoWFN of eShop and TPC services.

Fig. 3. Two examples of complex conditions.

Reconsidering the previous scenario, by analyzing the interfaces of
eShop and TPC services in Fig. 1, the MMs are obtained as follows:

����������	�
��
 �������	�
���


�������	������
 ��������
�	��	��
���	���


���������	������
 �������������������������


�	��	��
���	����


����������	���
������	����������	��	��
�


�������	���
������	�
�	��	��
���

Based on the above MMs, we obtain three MPMs: ���
 ����,
����
 ������, and ������
 ����. Then, FMT 
�, SMT 
� and
MMT 
� are constructed, as shown in Fig. 2.

For the complex conditions that an output message place appears in
more than one MPM, we cannot directly use the above basic MTs. The
output message places for these MPMs need to be duplicated. This is
do not affect analyzing of composition compatibility, because the corre-
sponding tokens remains in the duplicated output message places are al-
lowed for the compatibility of oWFNs (see Definition 9 in Section III).

By adding duplicated places, we assure that each output message
place only exists in only one MPM so that complex conditions can be
achieved by combining basic MTs.

For the example of the left of Fig. 3(a), the message of �� and a part
of message �� are composed as the message �	, and the rest of the
part of message �� is used by the message of ��. We get the MPMs
��� � ��
 �	� and ����
 ���. Here, a copy ��� of �� is inserted,
and a MMT 
� and FMT 
� are constructed, as shown in the right of
Fig. 3(a). Another example in the left of Fig. 3(b), its left MPM is

Fig. 4. Transformation of iterative structure in oWFNs.

divided into �������
 �	�
��������
 ���� by duplicating �� and
��. Subsequently, two MMTs 
� and 
� are constructed, as shown in
the right of Fig. 3(b).

C. Mediation-Aided Composition of oWFNs

The procedure of mediation-aided composing oWFNs into a CoWFN
is shown in the following Algorithm 1.

Different from mediators/adaptors in [7]–[15], MTs in our paper are
high level and abstractive transitions, which hide unnecessary structural
details irrelevant to the verification of composition. As conceptual me-
diators, MTs will be detailed implemented in the phase of automatically
generating BPEL code of the composition.

Note that four kinds of basic control structures, namely, sequen-
tial, parallel, selective and iterative structures, have been defined in
the Workflow Reference Model [7]–[10]. The iterative structure occurs
when some transitions are executed iteratively. If oWFNs do not con-
tain iterative structures, we can directly use Algorithm 1. Otherwise,
we approximate the number of loops in a finite iterative structure and
transform it to a sequence of transition by expanding cycles [23]. The
input/output message places linked by transitions in an iterative control
structure should also be duplicated into several “copied” places in the
transformed model. As depicted in Fig. 4, a copy ��� of �� is inserted
because the iterative structure is executed only one time.

Algorithm 1: Mediation-aided compose oWFNs

Input: oWFNs

Output: CoWFN

Step 1: According to WSDL specifications of exchanged messages
among oWFNs, the MMs are set.

Step 2: For each MM ����	��
 
�	��
�, a MPM are obtained by
getting the place name of messages in ���	���
�	��
, denoted by
����
 ����.

Step 3: If each output message place of all oWFNs exist in only one
MPM, then go to Step 5.

Step 4: Assume an output message place op appears in more than
one MPMs, e.g., ���, ���
�
 � � �, and ���, �� is duplicated
into ����
 ��

�

�
�
 � � � 
 ��
�

���, and set ����� �� �� ����� ���. Then,
���������� ��� is used to replace �� in �������� ���.

Step 5: According to the MPMs, construct the MTs among oWFNs.



432 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 2, APRIL 2012

Fig. 5. The MRG of CoWFN in Fig. 2.

III. AUTOMATIC VERIFICATION OF COMPATIBILITY

Firstl, the concept of modular reachability graph (MRG) and its con-
structing procedure are presented in this section. Then, how to verify
the compatibility of services by analyzing the MRG is discussed.

A. Modular Reachability Graph

First, a CoWFN is divided into a set of fragments (oWFNMs).
Definition 6. (Open Workflow Net With MTs, oWFNM): Given

���� � ��� �� �� ��� 	�� � ��, a 3-tuple ����
 �

�������� � ��� is called as open Workflow Net with MTs if
and only if:

1) � is the set of MTs; given � � � � , �� � or �� � ;
2) � �� � �	� � �� �� � �� � is the set of interface arcs.

The CoWFN of eShop and TPC services in Fig. 2 can be divided into
two oWFNMs.

Intuitively, MRG is composed of one local reachability graph for
each oWFNM, and a synchronization graph which captures their com-
munications [17], [19].

Definition 7. (Modular Reachability Graph, MRG): Let
����
� �
 � �� �� � � ��� be decomposed from a CoWFN.
The modular reachability graph is a �� � ��-tuple 
�� �

����� � � � � ���� ���, where:
1) ��� � ���� ��� ���, �
 � �� �� � � � � ��, is local reachability

graph of ����
� in which: (a) ���� ��� is a directed graph,
where �� � ��
���, and �� � ��
��
���
�� 
� �

��
������� � ��� 
�	���
��; (b) ��� �� 	 �� is a
mapping from �� to �� in ����
� , ���
��
�� � �� iff

�	���
� .

2) �� � ����� �� is the synchronization graph among
oWFNMs, in which: (a) ����� is a directed graph, � 


��
����� � ����
���;� � ��
���
����
���
�� �

� � ��� � �� � 
��	���
���; (b) � �	 ��� is a map-
ping from � to the set of �� , ��
���
��� � �� iff

��	�� � 
�� .

A semiautomatically method of constructing MRG has been pre-
sented in [19], which needs the designers to manually decompose the
composition into fragments. In this paper, we move one step forward
to propose a full-automatically constructing and analyzing procedure
from a CoWFN, which is shown in the following Algorithm 2.

First of all, we explain the operation of marking projection that will
be used in the automatically constructing procedure.

Definition 8. (Marking Projection): The marking projection of

� � ������� � � � ��� in �� on ��� is to remove the places from

 that do not exist in the ����
� , and is denoted with 
� �
��.

For the CoWFN in Fig. 2, we construct the 
�� �

���	
��
� ����� � ��� as shown in Fig. 5.

In order to prove of correctness of the Algorithm 2, we give the fol-
lowing Theorem 1.

Algorithm 2: Construct MRG from CoWFN

Input: CoWFN

Output: MRG

Step 1: For each 
� �, we duplicate a set of copies, i.e.,
�� � ���� ��� � � � � ���, in which � is the number of oWFNs of �
connecting.

Step 2: For 
 � � to �:

For � �� � ��� of �����, if �� �� �, set �� to be the input place of
one transition �� of ��. If �� � ��, set �� to be the output place of one
transition �� of ��. Then, delete �� from ��.

Step 3: For each 
� �, rename its copies ��� ��� � � �, and �� to �.

Step 4: Construct each initial node 
�� in the ������
���; then
construct the initial node �
�� � � � � �
��� for ��.

Step 5: For 
 � � to �:

Parallel compute and draw the nodes for each ��� until no any
enabled transitions in ����
� .

Step 6: Get the set of enabled MTs, denoted as ST, and for each
� � �� :

Assume � is enabled by 
� � � � � �
� that 
�� � � � �
� are the
markings of ���� � � � � ��� , the node �
� � � � � �
�� and arc
��
� � � � � �
��	���
 �

� � � � � �
 �

��� are constructed in
SG. Then, we construct the node of 
��
 �

� � � � � �
 �

�� in the
��� ���
���, respectively.

Step 7: If there is not any possible enabled transition in oWFNMs, the
Algorithm ends. Otherwise, go to Step 5.

Theorem 1: Assume ����� � ������� � � � � ������

��� � �� and its fragments denoted as ����
����
���, the MRG
of CoWFN is isomorphic with its traditional reachability graph.

Its proof is very similar with [17], and is omitted because of the limit
of paper space.

B. Analyzing Based on MRG

Definition 9. (Composition Compatibility of oWFNs): The CoWFN
of ������
 � �� �� � � � � �� are regarded as compatible, iff its MRG
satisfies the following cases:

1) For �
 � ������
���, there exists a firing sequence � and

� , satisfying 
 	��
� and 
�

	 (terminal marking).

2) Assume 
 � ������
��� and 
 
 
	, if �� � � satis-
fying 
����
	���, then � � ��� �	�� � � � ��� �	��.

Before presenting the automatically analyzing procedure of compat-
ibility by MRG, as shown in the following Algorithm 3, we explain the
operation of cross-product of marking sets that will be used in it.

Definition 10. (Cross-Product of Marking Sets): Given two marking
sets: �� � �
��� � � � �
��� in ��� and �� � �
��� � � � �
��� in
��� , The cross-product of them is to combine all possible the mark-
ings from �� and ��, and is denoted with ���� ���.

For the example of MRG in Fig. 5, we conclude that eShop and TPC
services are compatible by Algorithm 3.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 2, APRIL 2012 433

TABLE I
PERFORMANCE COMPARISON WITH TRADITIONAL APPROACH

Algorithm 3: Analyze the compatibility by MRG

Input: MRG

Output: Results of compatibility

Step 1: For each � �� � ��, gets its ������ on
�����������	�.

Step 2: For � � � to 	:

Take all possible projection markings on ������ , and denote
it as the set ���.

Step 3: Construct the cross-product set denoted as CMS by
����
���
 � � � 
����, and remove the product markings from

CMS which are labeled on SG arcs.

Step 4: For each ��� � ���, gets its projection marking �������

on �����������	� denoted as the set ����.

Step 5: If ��� � ���������	� satisfies the following cases, the
composition is compatible:

1) �� � ���� is the logical state �� of �����; and

2) If �
 � � satisfying ���
�����
�, then 
 �

��� � ��� � � � ��� � ���.

Compared with traditional approach [7]–[10] that analyze the ordi-
nary state space, our approach based on MRG can effectively mitigate
state explosion without unfolding to the ordinary state space. In the
worst case where there exist no transition in oWFNs, the SG in MRG
will be identical with the ordinary state graph [7]–[10], i.e., having the
same number of nodes and arcs. In the best case where there is no MT
at all, the SG contains no nodes and arcs, and each��� of ������

is identical to the ordinary state graph. In a real application, there are
often some MTs and thus we can expect it can always outperform the
traditional approach.

In order to quantitatively analyzing performance of our approach,
we compare it with the ordinary state graph approach by several test
cases in Table I. As we can see, our approach dramatically decreases
the complexity of state space. Especially, with the increasing number
of services increasing and the augmenting complexity of models, our
approach is more efficient than the traditional approach.

IV. AUTOMATIC GENERATION OF BPEL CODE

After verifying the composition compatibility, in this section, how
to automatically generate the BPEL code of composition to support its
execution is discussed.

ECA rule offers flexible, adaptive and human-readable advantages to
realizing processes in SOA environments [18], so that the BPEL code

in the format of ECA rule will significantly save the designers time
and labor. First, ECA rule is used to translate the MTs into BPEL code
blocks as follows.

1) FMT: Preconditions of FMT t is the event of ��	
��
����
�,
which 
 is the input message place of � and corresponds to
activity ��	����� or ���
���. Activity ��	��������
should consume these events and receives activities, referring
to the corresponding partner link, port type and operation.
Then, activities ������	� and ���
�� perform the trans-
ferring and transforming of messages between services. For
example, �� in Fig. 2, its BPEL code is following.

2) MMT: This case is similar with a FMT, except that we orderly
use more than one ��	�������� to specify the occurrences
for the events corresponding to preconditions.

3) SMT: This case is similar with a FMT, except that we orderly
use more than one pair of������	� and���
�� to perform
the transferring and transforming of messages.

��� ��	
��
����
����

���������� 
��
������� �

� � � � � 
��
��
��� � � � � �
���
��� � � � � � �� � ��

��������

���
��

����	 �������� � � � � � ��� �
� �������� � � � � � ���

����
��

���������

�� ������ 
��
 �� 
����

������� 
��
������� � � � � � � 
��
��
��� � � � � �
���
��� �
� � � � �� � ��

���������

������������

Then, the rest of a CoWFN is treated like a state machine and trans-
lated into event handlers, which mimic the pre and postconditions of
each activity by sending messages to them.

Algorithm 4: Transform to BPEL code

Input: CoWFN

Output: The BPEL code of CoWFN

Step 1: Services are defined as the partner links by activity
�
���	�� �	��. Then, the variables for composition are also
defined by activity ������!���� according to the messages of the
WSDL description of services.

Step 2: According to the kinds of MTs, we construct the BPEL code
for them in the format of ECA rule. Then, the code of all MTs are
embraced by ����	�"�	#����� and �����	�"�	#�����.

Step 3: For the some copied output places in the CoWFN, complete
events are defined according to needs by activity ��	�����, which
do not carry any data.

Step 4: If there exist a ���� 
 ������� in the procedure of
composition, we supplement the corresponding messages (parts or
elements) between the pair of ������	� and ���
�� to perform
the transferring or transforming of messages.

Step 5: For each service, we use activity �$%���� to check whether
or not the ECA rules (the code of MTs) have been triggered. If



434 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 2, APRIL 2012

Fig. 6. The prototype system- MCSS.

true, to perform the interface operations by activities ���������,
����	
�� or �����
�.

Step 6: The BPEL code blocks of each service is embraced by
���	����� and ����	�����, in order to make services execute
concurrently.

Step 7: To specify the CoWFN receiving the initial message that
starts it, the initial activity ��������� is added with createInstance
attribute. Then, the BPEL code of CoWFN is obtained by putting all
the above code blocks into ���	����� and ����	�����.

Note that the generated BPEL code lack specific implementation
details which cannot be automatically derived from a CoWFN by the
above Algorithm 4, so the code needs further refinement.

V. PROTOTYPE SYSTEM

In this section, a prototype system (Mediation-aided Composition
System of Services, MCSS) implementing the proposed approach is
presented.

As shown in Fig. 6, MCSS has five components: Petri net translator,
adding MTs modeler, MRG constructer, verification analyzer, and
BPEL code generator. Petri net translator adopts the free software
BPEL2oWFN [21] and the other four modules are developed based
on the open-source software PIPE [22]. The original PIPE uses the
Model-Controller-View architecture pattern to implement several Petri
net analysis plug-in modules. Based on the existing architecture of
PIPE, the modules in MCSS (adding MTs modeler, MRG constructer,
verification analyzer, and BPEL code generator) can be developed
quickly.

Petri net translator is responsible for translating BPEL services into
oWFNs in the file format of Petri Net Markup Language (PNML). We
adopt the existing free software tool BPEL2oWFN. The output PNML
files of oWFNs are input into adding MTs modeler. Then, adding MTs
modeler composes the oWFNs into a CoWFN. It merges the PNML
files of oWFNs as the whole file of a CoWFN by adding XML sections
of MTs. The designers can manually add MTs based on the WSDL
descriptions of oWFNs.

The whole PNML file of CoWFN is the input of MRG constructer.
MRG constructer serves as the engine to automatically decompose a
CoWFN into some oWFNMs in the background through manipulating
its PNML file. The PNML files of oWFNMs are put into the fragment
pool and are used to support verifying the compatibility of composition

Fig. 7. The main interface of MCSS.

Fig. 8. The screenshot of MRG constructer.

based on MRG. In order to intuitively illustrate the MRG, MCSS return
the graphic results to the designers.

Based on the above MRG, verification analyzer determines whether
the composition is compatible. If the compatibility is validated, BPEL
code generator is enabled for the designers to get the BPEL code of
composed service. Otherwise, the error messages are returned.

BPEL code generator can automatically generate the BPEL code
from CoWFN in the format of ECA rules. All code are implemented
and stored in the BPEL template library. Here,the library includes the
predefined BPEL template for three kinds of MTs, and message vari-
ables for composition according to their message formats.

In order to illustrate the executing procedure of MCSS, we adopt the
example of the eShop and TPC services described in Section II. As
shown in the Fig. 7, the oWFNs of eShop and TPC services are output
by Petri net translator. Based on adding MTs modeler, the designers
can add MTs ��, �� and ��, and obtain their CoWFN.

Next, MRG constructer automatically generates the MRG in the
background and demonstrates the MRG in the graphic format as shown
in Fig. 8, where the node color of RGs for eShop and TPC is light
blue, while the node color of SG is dark red.

Afterwards, verification analyzer returns the result that the compo-
sition is compatible and the BPEL code generator is enabled. Finally,



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 9, NO. 2, APRIL 2012 435

the whole BPEL code of the example from the CoWFN is automati-
cally generated by the BPEL code generator.

Because of the limit of paper length, the screenshots of other com-
ponents and the whole BPEL process of example are not shown in this
paper.

VI. RELATED WORK

There are some related studies [7]–[15] on the issue of compatibility
verification and automatic generation of BPEL code in mediation-aided
composition.

A. Compatibility Verification

Mooij and Voorhoeve [7] address the automated generation of
adapters based on the open WorkFlow Net (same with our work in
this paper). Then, correctness of adapters is verified by proving the
properties (e.g., deadlock-freedom) holding for the composition of
services. Wang [8] proposes a visual language for specifying adaptors
for services and use Petri nets to check their correctness. Tan et al. [9]
transform the BPEL services into service workflow nets (a special class
of Petri nets) and analyze the compatibility of two services based on
mediators. Based on Colored Petri Nets (CPNs), Li et al. [10] present
a heuristic approach to identify the protocol mismatches of services
and select appropriate mediator patterns. Then, if the composition is
verified, the BPEL templates of mediator patterns are also developed.
Guermouche et al. [11] model services are as automata models.
Then, the mediator are generated to supply the missing messages
which are required to complete the Cartesian product of automates.
Simultaneously, the correctness of constructing adapters is verified.
Also, based on automata, Nezhad et al. [12] present a method for
identification of the split/merge class of interface mismatches and a
semiautomated matching approach to construct an adaptor for these
services. Bachir and Fauvet [13] check whether two services based
on Finite State Machines (FSMs) are incompatible, and provides the
locations in the service interfaces where these incompatibilities occur.
So that mediators can be constructed subsequently. Zhou [14] obtains
abstract protocols from service protocols by a set of rules. Then, they
construct adaptation matrix, using an adapted depth-first search with
back tracking technique, so that the conditions that these two services
can be adapted is identified. Canal et al. [15] present an approach to
automatically generate adaptor based on Labeled Transition Systems
(LTSs). Along with adapters is constructed, their correctness is also
verified.

The above methods [7]–[15] can address the issue of compatibility
verification for a small number of services. However, they all suffer
from the problem of state space explosion when verifying the compo-
sition of complex services, especially the number of services is large.

B. Automatic Generation of BPEL Code

The abovementioned methods [7]–[9], [11]–[15] only propose
conceptual mediators, e.g., the function of mediators such as how to
transfer or split messages, and cannot produce the (abstract) BPEL
code from composition models to support execution. Li et al. [10]
present the BPEL templates of several mediator patterns. However,
they all do not consider how to automatically generate the whole
BPEL code from the composition models.

VII. CONCLUSION

The mediation-aided composition is attracting more attention when
dealing with incompatibilities of services. But existing approaches
suffer from the problem of state space explosion and cannot auto-
matically generate the BPEL code. The approach presented in this
paper has addressed the weaknesses of prior ones. Specifically, the
compatibility of composition is verified by automatically constructing
and analyzing its MRG, which can alleviate the state space explosion

problem. If the composition is verified to be valid, the BPEL code is
automatically generated, which can significantly save the time and
labor of designers with the fast changing need.

In the future, we plan to extend our approach in two aspects.
1) The present approach needs designers to give MMs based on

service WSDL specifications. We will explore how to adopt
semantic technology to automatically generate MMs.

2) In a practical business environment, some service composition
often has timed specification (or temporal constraints) [23]. We
will extend MRG to express the timed state space.

REFERENCES

[1] M. Carman, L. Serafini, and P. Traverso, “Web service composition as
planning,” in Proc. Int. Conf. ICAPS, 2003, pp. 45–51.

[2] X. Tang, C. Jiang, and M. Z. Zhou, “Automatic Web service composi-
tion based on Horn clauses and Petri nets,” Expert Systems With Appli-
cations, vol. 38, no. 10, pp. 13024–13031, 2011.

[3] R. Hamadi and B. Benatallah, “A Petri net-based model for Web service
composition,” in Proc. Int. Conf. ADC, 2003, pp. 191–200.

[4] J. M. Mendes, P. Leitão, F. Restivo, and A. W. Colombo, “Composition
of Petri nets models in service-oriented industrial automation,” in Proc.
8th Int. Conf. INDIN, 2010, pp. 578–583.

[5] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Compatibility verifi-
cation for web service choreography,” in Proc. Int’l Conf. ICWS, 2004,
pp. 738–741.

[6] P. Xiong, Y. Fan, and M. Z. Zhou, “Web service configuration under
multiple quality-of-service attribute,” IEEE Transactions on Automa-
tion Science and Engineering, vol. 6, no. 2, pp. 311–321, 2009.

[7] A. J. Mooij and M. Voorhoeve, “Proof techniques for adapter genera-
tion,” in Proc. 5th Int. Conf. WS-FM , 2008, pp. 207–223.

[8] K. W. S. Wang, “Interface Adaptation for Conversational Services,”
Ph.D., Faculty of Information Technology, Queensland University of
Technology., Brisbane, Australia, 2008.

[9] W. Tan, Y. S. Fan, and M. C. Zhou, “A Petri net-based method for com-
patibility analysis and composition of Web services in business process
execution language,” IEEE Transactions on Automation Science and
Engineering., vol. 6, no. 1, pp. 94–106, 2009.

[10] X. Li, Y. Fan, S. Madnick, and Q. Z. Sheng, “A pattern-based approach
to protocol mediation for web service composition,” Information and
Software Technology, vol. 52, no. 3, pp. 304–323, 2010.

[11] N. Guermouche, O. Perrin, and C. Ringeissen, “A mediator based ap-
proach for services composition,” in Proc. 6th Int. Conf. SERA, 2008,
pp. 273–280.

[12] H. R. M. Nezhad, G. Y. Xu, and B. Benatallah, “Protocol-aware
matching of web service interfaces for adapter development,” in Proc.
Int. Conf. WWW, 2010, pp. 731–740.

[13] A. A. Bachir and M. C. Fauvet, “Diagnosing and measuring incom-
patibilities between pairs of services,” in Proc. 20th Int. Conf. DEXA,
2009, pp. 229–243.

[14] Z. Zhou, S. Bhiri, H. Zhuge, and M. Hauswirth, “Assessing service
protocol adaptability based on protocol reduction and graph search,”
Concurrency and Computation: Practice and Experience, vol. 23, no.
9, pp. 880–904, 2011.

[15] C. Canal, P. Poizat, and G. Salaun, “Model-based adaptation of behav-
ioral mismatching components,” IEEE Transactions on Software Engi-
neering, vol. 34, no. 4, pp. 546–563, 2008.

[16] L. Niels, M. Peter, S. Christian, and W. Daniela, “Analyzing interacting
WS-BPEL processes using flexible model generation,” Data & Knowl-
edge Engineering, vol. 64, no. 1, pp. 38–54, 2008.

[17] C. Sqren and P. Laure, “Modular analysis of Petri nets,” The Computer
Journal, vol. 43, no. 3, pp. 224–242, 2000.

[18] J. Y. Jung, J. Park, S. K. Han, and K. Lee, “An ECA-based framework
for decentralized coordination of ubiquitous web services,” Informa-
tion and Software Technology, vol. 49, no. 5, pp. 1141–1161, 2007.

[19] Y. Du, Y. Fan, and X. Li, “Verifying service composition based on
modular reachability graph and generating BPEL codes,” Journal of
Software, vol. 21, no. 8, pp. 1810–1819, 2010.

[20] eBay developers Program, 2006. [Online]. Available:
http://developer.ebay.com/DevZone/XML/docs/Web-
Help/Checkout_Third_Party_Checkout.html

[21] BPEL2oWNF, 2007. [Online]. Available: http://www.gnu.org/soft-
ware/bpel2owfn

[22] PIPE, 2005. [Online]. Available: http://www.pipe2. sourceforge.net/
[23] Y. Du, P. Xiong, Y. Fan, and X. Li, “Dynamic checking and solution

to temporal violations in concurrent workflow processes,” IEEE Trans.
Syst., Man,Cybern.: Part A, vol. 41, no. 6, pp. 1166–1181, 2011.


