Benchmarking Next Generation Hardware
Platforms: An Experimental Approach

Vishakha Gupta
Georgia Institute of
Technology

Adit Ranadive
Georgia Institute of
Technology

Abstract— Heterogeneous multi-cores—platforms comprised of
both general purpose and accelerator cores—are becoming in-
creasingly common. Further, with processor designs in which
there are many cores on a chip, a recent trend is to include
functional and performance asymmetries to balance their power
usage vs. performance requirements. Coupled with this trend in
CPUs is the development of high end interconnects providing low
latency and high throughput communication. Understanding the
utility of such next generation platforms for future datacenter
workloads requires investigations that evaluate the combined
effects on workload of (1) processing units, (2) interconnect,
and (3) usage models. For benchmarks, then, this requires
functionality that makes it possible to easily yet separately
vary different benchmark attributes that affect the performance
observed for application-relevant metrics like throughput, end-to-
end latency, and the effects on both due to the presence of other
concurrently running applications. To obtain these properties,
benchmarks must be designed to test different and varying,
rather than fixed, combinations of factors pertaining to their
processing and communication behavior and their respective
usage patterns (e.g., degree of burstiness).

The ‘Nectere’ benchmarking framework is intended for un-
derstanding and evaluating next generation multicore platforms
under varying workload conditions. This paper demonstrates two
specific benchmarks constructed with Nectere: (1) a financial
benchmark posing low-latency challenges, and (2) an image
processing benchmark with high throughput expectations. Bench-
mark characteristics can be varied along dimensions that include
their relative usage of heterogeneous processors, like CPUs vs.
graphics processors (GPUs), and their use of the interconnect
through variations in data sizes and communication rates. With
Nectere, one can create a mix of workloads to study the effects
of consolidation, and one can create both single- and multi-node
versions of these benchmarks. Results presented in the paper
evaluate workload ability or inability to share resources like
GPUs or network interconnects, and the effects of such sharing
on applications running in consolidated systems.

I. INTRODUCTION

Leading architects have discussed [1] the need for large-
scale parallelism, heterogeneous cores, and accelerators to
achieve performance and energy efficiency in future systems.
The resulting rapid evolution in functionally and performance
asymmetric platforms is evident from recent industry efforts
like Intel’s Sandybridge and AMD’s Fusion architecture, cur-
rent evaluation systems like Intel’s QuickIA platform combin-
ing Atom with Xeon processors [2] and IBM’s PowerEN [3]
processors. Systems with specialized processors like those
used for accelerating computations [4], [S], network process-
ing, or cryptographic tasks have also proven their utility in
terms of higher performance and lower power consumption.

Ada Gavrilovska
Georgia Institute of
Technology

Karsten Schwan
Georgia Institute of
Technology

Concurrent with this evolution and increased diversity in server
platforms, cloud computing providers are more aggressive
about incorporating heterogeneity into their datacenter infras-
tructures, so as to better support emerging classes of cloud
applications, such as online gaming — OnLive [6], financial
applications [7], high quality media delivery and processing —
Netflix [8], and others. Furthermore, some of these classes of
applications pose stricter requirements on the I/O capabilities
of the cloud infrastructure, in terms of increased bandwidth or
lower and more predictable latency, thereby raising the need
for use of high-end I/O fabrics, such as 10Gig Ethernet [9]
and InfiniBand [10]. Recent examples include Amazon’s high
performance (HPC) and GPU cloud offerings [11], federally
funded GPU-based machines [12], as well as datacenter clus-
ters and software offered by vendors that specifically address
the needs of high performance parallel codes [13], [14].

With next generation platforms, it is a challenge to under-
stand and evaluate their potential utility for and the limitations
they may impose on future applications. This includes un-
derstanding the choice between CPU vs. accelerator targets,
the relative benefits offered by different interconnects, and
the effects of scheduling schemes on application performance
metrics like throughput or end-to-end latency. Further, the
difficulties in doing so do not lie in understanding whether
a certain single-node code can run faster on say, a GPU
vs. a CPU, but in what ‘balance’ of processing vs. say,
interconnect performance is needed to obtain high applica-
tion level performance. In other words, what is needed are
benchmarks in which it is possible to separately and easily
vary multiple benchmark characteristics to stress different and
multiple system balance points.

To address this challenge and understand the relative bene-
fits and trade-offs for different features offered by next gener-
ation high end cloud platforms, we have developed ‘Nectere’
— a benchmark suite that offers the flexibility to easily con-
struct application benchmarks to exercise one or more of the
aforementioned platform characteristics. Nectere fills a gap
between benchmarks focused on general purpose data center
systems like Cloudstone or RuBiS [15], [16] and benchmarks
focused on single features, like the use of accelerators on a
GPU-based machine [17], [18] or the use of high-end fabrics
like InfiniBand(IB) [19]. Further, Nectere makes it possible
to go beyond single applications (e.g., financial codes [7]) or
specific system components (e.g., to evaluate networks or 10
subsystems [20]), by making it easy to combine the capability



to use heterogeneous processing resources with that of using
high end network interconnects. With Nectere, one can build
distributed applications requiring low end-to-end latencies and
exercising low-latency interconnects like InfiniBand, as well
as construct web-centric high throughput codes that require
acceleration to meet the aggregate demands of large numbers
of web clients. Addressing the fact that virtualization is the
common systems layer in most modern datacenters, Nectere
works seamlessly with the Xen hypervisor (as demonstrated
by our evaluation).

This paper describes the Nectere framework and then
demonstrates its flexibility by using it to construct and ex-
periment with two different classes of datacenter applications.
First, we develop and evaluate a latency-sensitive financial
benchmark—an options processing application [7] which can be
run on a single node and/or in a distributed setting. It can also
use different degrees of acceleration to meet certain required
levels of end-to-end latency. Second, we use Nectere to
construct a throughput-sensitive web-based image processing
benchmark that emulates and enhances the functionality of
commercial web applications like HP’s Snapfish, but with the
novel feature of combining with such web actions, additional
processing for image conversion and manipulation. Either of
these applications can run on general purpose (with possible
performance or functional asymmetries among the x86 cores)
and/or GPU-accelerated (programmed with CUDA) platforms.

The following unique functionality is offered by Nectere:
(1) Modular configuration for evolving hardware and software.
Benchmarks can be configured to utilize different degrees of
parallelism, to address next generation processor hardware like
on-chip and off-chip accelerators (e.g., GPUs) and high end
network interconnects like InfiniBand.

(2) Varied execution patterns. Programmers can define dif-
ferent execution patterns for computational kernels that run
on CPUs or accelerators, e.g., pipelined kernel execution
of individual stages vs. farm-out of data to computation/IO
kernels running in parallel vs. each application stage at an
individual node in the cluster. Such diverse configurations can
be used to evaluate system aspects like per-node scheduling
or to evaluate choices between different kinds of processing
units based on input data and platform constraints.

(3) Distributed execution. Nectere supports distributed appli-
cations, so that evaluation can go beyond running single-
node individual computational kernels [21] or specific parallel
codes [18], thereby addressing typical datacenter use cases like
those targeted by multi-tier benchmarks like RuBiS.

(4) Diverse communication media. Communication can be
configured to use commodity networks like Ethernet and/or
to exploit the high end IB interconnect via IP or native IB
libraries.

(5) Unique dimensions for performance assessment. The met-
rics used in this paper extend traditional throughput or end-
to-end delay measurements to also consider the variations in
performance experienced by applications due to consolidation.
This is important when running applications in consolidated
systems and/or to understand the effects seen by workloads

when they are run on different types of cloud or datacenter
resources.

In summary, this paper describes the following technical
contributions. It presents the Nectere framework for construct-
ing and running representative benchmarks for next generation
systems and hardware. Nectere is used to construct different
classes of applications and to characterize their needs and
online behavior in realistic usage environments. Evaluation
uses metrics that also consider the contexts in which these ap-
plications are run, e.g., to address consolidation. Experimental
measurements are made with modern accelerators like GPUs
and use high end interconnects like InfiniBand.

In the remainder of this paper, we first briefly discuss the
Nectere framework in Section II along with the description
of our financial and image processing examples. Section III
describes the testbed, workloads, and analyses of these ap-
plications. Related work appears in Section IV, followed by
conclusions and future work in Section V.

II. NECTERE FRAMEWORK AND EXAMPLES

Researchers currently use a rich set of benchmarks to
evaluate modern platforms and high end systems. Day-
Trader models financial trading applications, RuBiS targets
multi-tier datacenter codes, Olio [22] addresses data-intensive
operations, and Memcached [23] emulates the multi-node
caching required by Facebook and other web companies. Each
such benchmark addresses a specific class of applications,
with typical workloads targeting homogeneous (i.e., general-
purpose CPUs only) commodity machines. Complementing
such benchmarks are those for highly parallel and/or GPU-
based machines, such as Parsec or Parboil. They are written
to provide the different levels of parallelism needed to evaluate
the possible speedup attainable on such platforms, but tend to
focus on specific platform elements, such as their GPUs or
their multiple CPU cores.

More complex and flexible benchmarks are needed to evalu-
ate future platforms combining acceleration, performance- and
functionally asymmetric cores, with different types of inter-
connects. Specifically, a richer evaluation approach is needed
in order to understand how effectively such platforms balance
their processing, memory, and interconnect performance, for
different types of application workloads and characteristics.
Nectere addresses the need to separately and easily vary the
processing and communication needs of workloads targeting
heterogeneous and asymmetric multicore platforms. Nectere
can be used to create different types of benchmark codes,
which, furthermore, can be deployed on different types of
hybrid machines (i.e., with general purpose CPUs and GPUs),
and on clusters of such machines interconnected with different
types of fabrics (e.g., Ethernet vs. InfiniBand). In addition,
with Nectere, performance evaluation can also consider how
benchmark behaviors are affected by other applications using
shared machine resources, as is the case for consolidated codes
running in cloud or datacenter infrastructures.



A. Framework

Figure 1 depicts the modular Nectere framework, which
includes separate components to represent application logic,
performance monitoring utilities, configuration scripts, and
networking libraries. The goal is to provide (1) sufficient
building blocks for applications that go beyond individual
kernels to instead, consist of multiple, different, and potentially
distributed components/tiers, external ‘client’ interactions, etc.,
coupled with (2) the tools needed for configuring or inter-
preting these applications’ desired behaviors. Building blocks
include (1) an extendible library of computation kernels sup-
porting different programming models via a common interface,
so that they can be combined into a single, richer application
with multiple potential processing targets, (2) networking
libraries capable of using TCP/IP or InfiniBand RDMA-based
connection for low latency communication, (3) utilities like
timers and statistics routines useful for performance measure-
ment, and (4) configuration options that govern applications’
execution patterns.

In the figure, the CPU-only and CUDA-based branches
within the Options Processing and Image Processing bench-
marks contain the CPU portion and the GPU portion of
functionalities, respectively, for our sample applications. The
computational or 10 kernels for these benchmarks are en-
capsulated in libraries. The application driver (henceforth
termed ‘driver’) present in the main benchmark folders can
then combine these CPU, GPU, or other such application
portions in an order relevant for evaluation, as described by
the configuration. The user is also responsible for specifying
the combined execution order of this driver. Further, the driver
can read requests from files on the same machine or listen on
an Ethernet/InfiniBand connection for remotely issued requests
(e.g., by workload generators like Faban [24]). There is a main
application launcher within the Applications branch that can
launch network server and client portions or create handles for
the input and output data files. It also launches the driver for
selected benchmarks, as requested by the user. The following
example applications highlight some of the functionality and
usage models.

Stable interface
despite platform
heterogeneities

Programmer
-adaptible layer for
different scenarios

..other specialized CPU-only‘ CPU-onIy‘ ‘ TCP/IP
compute kernel
implementations CUDA-based ‘ CUDA-based ‘ ‘ Infiniband Specific libraries
-and heterogeneous
Finrecipes_lib ‘ OpenCV ‘ _ wother implementations
interconnect
— Workload implementations

Fig. 1. Nectere framework with example applications
B. Sample Applications

We have chosen to create two application benchmarks to
represent future multicore and multi-node codes able to exploit

heterogeneous platforms combined into high end systems.

Options processing application [Nectere-options]. This
financial application is modeled using inputs from a financial
company with whom we have been interacting [7]. It uses
a server and client communicating over InfiniBand, and it
makes use of the high end CPU-only kernels for options
processing [25] provided through the finrecipes library (see
Figure 1). While these computational kernels, CPU-only or
CUDA-based hybrid ones, can be combined in any fashion
expected of the server, we run them in parallel on all incom-
ing requests to calculate the response that is then returned
to the client, as shown in Figure 2(a). Further, instead of
receiving(sending) requests(responses) over the network, these
could be read(written) from(to) a file. The use of files enables
experimentss to proceed on a single machine, which can be
quite useful while testing say, the scheduling logic offered by
the platform under evaluation. The rate at which client requests
are sent(read) can be tuned to the request rate desired in the
scenario being evaluated.

Black
scholes

I o Al
= IS 2
z? = ) z?
g. 2 Read =4 Write SED. £
ST request g response S
] S
= 3 3 ~ 3
o @ o
S < S

pricing

(a) One possible configuration of Nectere-options

Possible to choose CPU and/or GPU kernels in the pipeline
N

Ve
Sharpen l
(CPU)

Each stage can write its output to file and/or pass it to the next
stage as instructed in the configuration parameters

Requests and
corresponding
images on disk

Gaussian
(GPU)

Compression
(GPU)

Write final
response to disk

Each stage could also be implemented on a different machine with
the intermediate data being sent over chosen interconnect

(b) Possible hybrid or CPU-based Nectere-image

Fig. 2. Nectere framework allows programmers to add different computation
kernels and use the existing data structures as well as utility functions to
construct applications exhibiting various execution characteristics

Since this options processing benchmark is quite sensitive
to the latency experienced while processing a client request,
it places stringent requirements on each stage through which
a request passes. It can also have a high volume of client
requests, thereby representing the category of applications that
demand low latency with low performance variability, even
when processing a large number of requests.



Image processing application [Nectere-image]. We use
Intel’s OpenCV [26] library functions and image processing
functions implemented within the CUDA SDK and uploaded
on the NVIDIA CUDA developer zone to compose a high
throughput image processing server. Figure 2(b) shows mul-
tiple execution patterns implemented for the CPU-only as
well as the hybrid version of the application. The requests in
question are images of various sizes that can require different
or all of the processing shown in the figure. The images can be
read(written) from(to) disk(network - Ethernet or InfiniBand).
We have also evaluated a CPU-based version with each
processing stage running on different cluster nodes, thereby
creating a pipeline extending across multiple machines.

The frequency of client requests, the sizes of images, and the
number of processing stages govern the throughput and round
trip response time of this application. Its multi-stage nature
makes it representative of the many service-based applications
that transfer large amounts of data at different rates, at different
expected levels of service (i.e., with differing service level
agreements — SLASs).

C. Implementation Detail

Nectere provides high resolution timer functions which are
part of util in Figure 1. They can be used to profile the
applications and each application stage. Further, it is easy to
create new kernel interaction patterns by using alternate ker-
nels and application examples. We use the fastflow [27] library
for lock-less 10 request buffers, if required for data/request
exchanges between different stages. The top level makefile and
configuration files determine the compilation and execution of
an application run. Sample input generators can be used for
patterns displayed by real data.

III. WORKLOAD ANALYSIS

Nectere-constructed benchmarks can have different combi-
nations of execution properties, like CPU intensity, network
utilization, affinity to disk usage, the potential to benefit from
acceleration, etc. Such benchmarks can be used to learn how
these classes of applications with their different behaviors
behave on some given platform and/or benefit from specific
platform features. We now use our sample Nectere benchmarks
to discuss some evaluation metrics and the different dimen-
sions of analysis useful in cloud-like environments.

A. Testbed

Two hardware configurations are used for this evaluation.

Config-IB. This configuration consists of two Dell Pow-
erEdge 1950 servers. Server 1 has dual-socket quad-core Xeon
1.86Ghz processors, while Server 2 has dual-socket dual-core
Xen 2.66Ghz processors. Both servers have 4GB of RAM
and Mellanox MT25208 HCAs installed. The machines are
connected via a Xsigo 10Gbps IB Switch. Xen 3.3 is used on
all servers, along with using para-virtualized InfiniBand driver
modules that work under the Linux 2.6.18.8 dom0 and domU
kernels. The guest operating systems are configured with 512
MB of RAM and have the OFED-1.2 distribution installed.

Config-GPU. The GPU-based evaluation is carried out on a
system comprised of (1) a 2.5GHz Xeon quad-core processor
with 3GB memory and (2) an NVIDIA 8800 GTX GPU
managed through the v169.09 GPU driver. Since our primary
target is cloud-based installations, we run these benchmarks
in virtual machines. The virtualization for this configuration
is provided by the Xen 3.2.1 [28] and the 2.6.18 Linux kernel
running in DomO and guest domains. The GPU virtualization
extension is implemented as described in [29].

Nectere benchmarks can run in distributed GPU cluster
configurations with machines connected using InfiniBand fab-
rics [30]. We are not aware of other open-source virtualized
software solutions that support both GPUs and IB cards. We
next evaluate different aspects of these unique platforms, run-
ning Nectere-options and Nectere-image on the two hardware
configurations described above.

B. Targeting Low Latency Interconnects

First, using a Nectere benchmark representing a latency-
sensitive distributed financial application, we highlight various
aspects the application behavior when running over a low
latency interconnect, InfiniBand. The application consists of a
server and a client, which communicate using RDMA. Nectere
measures the I/O and compute latencies experienced by the
server and client and reports these for every request sent by
the client. We can also configure Nectere to send messages
of different sizes to the server, to change the application’s I/O
behavior.

The results in Figures 3 and 4 show the utility of the Nectere
benchmark in analyzing various aspects of the application
behavior on the IB-based platform. We show the effect of
varying data sizes on the latencies in Figure 3. Since request
latencies and therefore, application performance depend on the
I/O load present on the link, it is important to understand
the effects of workload consolidation on this type of latency-
sensitive applications. Figures 3 and 4 show the effects of
consolidation with workloads with differing I/O behaviors, in
this case I/O message sizes.

In the first figure, both VMs use the same IO message
sizes, while in the latter figure, the ‘Other VM’ message
size is changing. From Figure 3, we see that as the I/O
workload increases, there is a consequent increase in the
latency variability experienced by both VMs. This means that
both VMs suffer equally, and it also shows that at smaller
data sizes, the interconnect is able to support I/O workloads
almost as well as seen for the NoConsolidation Latencies.
Conversely, Figure 4 shows the breakdown of total server
latency for a 64KB configured VM with increasing message
sizes for other VM. It shows that compute latency is constant
for every request, but I/O latencies increase as the ‘Other VM’
message sizes increase. As variability in I/O latencies increase,
they will ultimately affect the SLA required by the application.

We have composed an image pipelining benchmark, as
mentioned in the previous Section II, using our communication
library. This allows us to construct distributed applications
that leverage the framework. We evaluate this workload for



Same IOness Servers Latency
1200

NoCons I/O Latency ez
VML /O Latency m===m
1000 - VM2 I/O Latency ===
Z
< 800
>
o
c
2
s 600
(]
j=2]
o
o) 400
>
<
200 E
o g fN % \
1024 2048 4096 8192 16384 32768 65536 131072 262144 524288
Message Size (Bytes)
Fig. 3. Effect on Nectere IB Latency when consolidating workloads with

same IO properties

TABLE I
IMAGE PIPELINING THROUGHPUT FOR DIFFERENT CONFIGURATIONS

Configuration Throughput(KPixels/sec)
Native-Ethernet 1041.5
Native-InfiniBand 1489.4
Virt-Ethernet 655.0
Virt-InfiniBand 741.0

its throughput when running on top of InfiniBand as well as
Ethernet. Table I shows the throughput achieved by our image
pipelining code in various configurations for both Native and
Virtualized cases with Ethernet and InfiniBand interconnects.
We see that InfiniBand always does better than Ethernet but
only about 13% more in the Virtualized case and 43% more
in the Native case. However, when comparing InfiniBand
performance it is doubled in the Native case when compared
to Virtualized case. We attribute this to the sharing of the
device between VMs (we use a single machine with 4 VMs)
versus using 4 physical machines in the Native case. Such
insights are useful in deciding the type of interconnect best
suited for an application as well as consolidation constraints
on that application.

C. Targeting GPU-based Systems

Combining processing kernels through Nectere can help
analyze their behavior when consolidated or scheduled on
asymmetric platforms. Figure 5 shows the execution behavior
of the hybrid version Nectere-image (composition as shown
in Figure 2(b)). We use images of size 512 by 512. While it
fully occupies the GPU through the image processing kernels,
CPU utilization remains only around 50-55%. This benchmark
will therefore, be a good candidate for running on a slower
core (e.g., an Atom) instead of a faster one (e.g., a Xeon) or
consolidation when another CPU-intensive benchmark without
a GPU component is run on the same platform.

Heterogeneous systems offer choices between alternatives,
like scheduling a task on a CPU vs. GPU, which can be

Different IOness Servers Latency
450

64KB VM /O Latency Zzz71
64KB VM Compute Latengy o [
6478 VM Torll Lat =ﬁy

400

350

300

250 T

Average Latency (us)

200

150

100 % " E7

64KB 128KB
Other VM Message Size (Bytes)

/
% )
|
g ,,
0

NS
A

256KB 512KB imMB

Fig. 4. Effect on Nectere IB Latency when consolidating workloads with
different IO properties

70

GPU——

60 1
50 ,7—‘—_—_/*/\—%
S
c
S 40t J
©
N
5 30+t .
2
o
© 20t :

10 :

0 s s s s s s s s

10 20 3 40 50 60 70 80 90 100
Requests/sec
Fig. 5. Nectere framework makes different dimensions of analysis possible

on accelerator-based systems. For example, in this scenario, CPU utilization
remains approximately constant leaving room for other benchmarks along
side Nectere-image. Thus, we could potentially improve the utilization of this
platform by adding another workload that can use the rest of the CPU or we
could move the CPU to a lower power state and reduce power consumption.

analyzed by composing such tasks in Nectere. Figure 6 shows
the number of options processing requests processed by a
GPU-only vs. a CPU-only version of the options processing
benchmark in Nectere. As discussed earlier for the GPU,
Figure 6 shows how CPU performance can closely follow GPU
performance. After a size of 5000 options processing requests,
GPU performance starts increasing beyond that of the CPU.
Therefore, depending on the limits set within the system for
tolerable latency and the ‘busyness’ of resources, CPU and
GPU can be used interchangeably to service requests up to a
certain request size.

We can also use Nectere benchmarks to understand the
effects of different configurations of the platform software
stack, such as the scheduler. Figure 7 demonstrates this from
our previous use of Nectere-image to evaluate our existing
GPU-virtualization infrastructure, termed Pegasus [29]. Fig-
ure 7 shows the effect of consolidation of the benchmark



120000

GPU—— CPU -~~~

100000 - b
80000 b
60000 . b

40000 - x b

Option requests/sec

20000 b

4000 6000 8000 10000

Number of requests

0 .
0 2000 12000

Fig. 6. CPU performance closely follows GPU performance for smaller data
sizes in Nectere-options

combination shown in Figure 2(b), with GPU components,
using different scheduling policies. We run three dual-core
512MB guests on our testbed. One VM (Dom?2) is used for
priority service and hence, given 1024 credits and 1 GPU,
while the remaining two are assigned 256 credits, and they
share the second GPU. VM2 is latency-sensitive, and all of
the VMs require high throughput. Figure 7 shows the average
throughput (pixels/sec to incorporate different image sizes)
seen by each VM with four different policies. The important
insight is that Nectere can be used to evaluate different soft-
ware policies along with the heterogeneous hardware platforms
on which they are used. In this case, AugC, CoSched, and
SLAF are useful policies implemented in Pegasus, and None
is the baseline in which workload scheduling is not controlled.

2e+06
None +
SLAF X
H n
1.8e+06 » AugC %
1.66406 CoSched O
o
& 1.4e+06 ¢
5
2 1.2e+06 |
o
1e+06 |
800000 T T
600000 T
Dom1 Dom2 Dom3
Domains
Fig. 7. Use of Nectere-gpu to evaluate different scheduling schemes
D. Summary

In summary, the results shown in this section demonstrate
(1) the feasibility of using Nectere to represent different types
of applications that each exercise different platform features
— accelerators, high-end fabrics, etc. Results also show (2)
the utility of such benchmarks in evaluating the effects of
specific application properties (e.g., amount of I/O, percentage
of accelerated computation, etc.) on application performance,
as well as (3) to gain an understanding of the effects of

consolidation and different workload mixes on application
performance, or (iv) to provide insights into the effectiveness
of different platform configuration options in better supporting
a target workload mix (e.g., the effect of different VMM-level
scheduler alternatives).

IV. RELATED WORK

Binnig et. al. [31] argue that traditional TPC-C kind of
benchmarks will no longer be sufficient to evaluate cloud
systems that offer different system architecture and constraints
based on pay-as-you-go services. While those metrics still
have relevance for the cloud applications there is a need of
different ways for measuring them for scalable (i.e., dynamic)
systems where resources come and go. Nectere framework
for benchmarks are been designed keeping in mind these
requirements and can be extended to add various metrics while
keeping the core benchmarks at the representative ones.

There are some cloud benchmarking efforts already well
past the research stage. Cloudstone [15], is designed to mea-
sure the performance of clouds designed to run Web 2.0
applications. MalStone [32] is a stylized analytic computation
of a type that is common in data intensive computing. Tradi-
tional 3-tier applications like RuBiS [16] and DayTrader [33],
that simulate ebay-like online shopping and web-based day
trading activities respectively, also form a representative set
of benchmarks for evaluation of cloud and data-centers.

Research groups have developed several benchmark suites
like Rodinia [17], parboil [18] and CUDA libraries for Intel’s
OpenCV [34] to evaluate systems with increasing number of
accelerators like NVIDIA GPUs. NVIDIA provides bench-
marks as part of its CUDA SDK. These benchmarks are
typically used to compare the performance of applications run
on CPUs vs. GPUs and for comparing among GPUs. They are
also useful in learning architectural features and shortcomings
of GPUs and hence lend themselves to in-depth analysis.

Lacking from all these benchmarking efforts are require-
ments that address challenges from these different systems
through one benchmark suite. With increasing number of
accelerators in cloud, data-center and HPC based systems and
a push towards higher end interconnects like IB, there is a
clear need for a benchmark suite that can take advantage of this
modern day hardware configuration. Nectere fills that gap with
its libraries capable of communicating over high performance
IB connections and its CUDA integration for GPUs.

V. CONCLUSIONS AND FUTURE WORK

The Nectere benchmark framework targets heterogeneous,
high end server platforms that can leverage accelerators
like GPUs and high end interconnects like InfiniBand. For
virtualized server and cloud infrastructures, Nectere-based
benchmarks can be varied easily with respect to their use
of CPU, memory, and network performance requirements.
This makes it possible to evaluate future platforms for multi-
ple ‘balance points’ concerning the respective capacities of
different platform resources. Two types of benchmarks are
constructed with Nectere and used in this paper, one focused



on high throughput using image processing codes and the
other requiring low end-to-end latency emulating financial
codes like those in futures trading. In earlier work, these were
used to evaluate scheduling policies in virtualized accelerator-
based systems [29], and additional work [30] will use them
to better understand the performance of multi-node, multi-
GPU systems as well as performance trade-offs seen for
low-latency applications running across InfiniBand-connected
machines [35].

The analyses conducted with Nectere, presented in this
paper, demonstrate that there remain significant challenges
in extracting high levels of performance from such systems.
We also show that basic virtualization technologies remain
insufficiently rich to permit the effective consolidation of such
workloads. Our future work will use metrics other than those
measuring performance, like power consumption due to data
movement, when running combined accelerator- and IB-based
codes.

REFERENCES

[1]1 S. Borkar and A. A. Chien, “The future of microprocessors,” Commu-
nications of the ACM, vol. 54, May 2011.

[2] N. Chitlur, G. Srinivasa, et al., “QuickIA: Exploring Heterogeneous
Architectures on Real Prototypes,” in HPCA-18, February 2012.

[3] C. Johnson, D. H. Allen, J. Brown, et al., “A Wire-Speed PowerTM
Processor: 2.3GHz 45nm SOI with 16 Cores and 64 Threads,” in ISSCC,
San Francisco, USA, 2010.

[4] NVIDIA Corp., “NVIDIA’s Next Generation CUDA Compute Architec-
ture: Fermi,” http://www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA _Fermi_Compute_Architecture_Whitepaper.pdf.

[5] J. A. Turner, “The Los Alamos Roadrunner Petascale Hybrid Su-
percomputer: Overview of Applications, Results, and Programming,”
Roadrunner Technical Seminar Series, March 2008.

[6] OnLive Inc., “OnLive,” http://www.onlive.com.

[71 E. Marcial, “The ICE Financial Application,” http://www.theice.com,
2010, private Communication.

[8] Netflix Inc., “Netflix,” http://en.wikipedia.org/wiki/Netflix.

[91 “10 gigabit ethernet,” http://en.wikipedia.org/wiki/10_Gigabit_Ethernet.
[10] “InfiniBand Trade Association. InfiniBand Architecture Specification,
Release 1.2, www.infinibandta.org.

Amazon Inc., “High Performance Computing Using Amazon EC2,” http:
/laws.amazon.com/ec2/hpc-applications/.

J. Vetter, D. Glassbrook, J. Dongarra, et al., “Keeneland - Enabling
Heterogeneous Computing For The Open Science Community,” http:
/Iwww.nvidia.com/content/PDF/sc_2010/theater/Vetter_SC10.pdf, 2010.
R. Inc., “Rackspace hosting,” http://www.rackspace.com/.

OpenCirrus, “Open cirrus,” http://www.opencirrus.org/.

W. Sobel, S. Subramanyam, A. Sucharitakul, et al., “Cloudstone: Multi-
platform, multi-language benchmark and measurement tools for web
2.0,” in Cloud Computing and Its Applications, Chicago, USA, 2008.
E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and W. Zwaenepoel,
“Performance comparison of middleware architectures for generating
dynamic web content,” ser. Middleware, Rio de Janeiro, Brazil, 2003.
S. Che, M. Boyer, J. Meng, et al., “Rodinia: A Benchmark Suite for
Heterogeneous Computing,” in /ISWC, Austin, USA, 2009.

S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, et al., “Optimization
principles and application performance evaluation of a multithreaded
GPU using CUDA,” in PPoPP, Salt Lake City, USA, 2008.
OpenFabrics Group, “OpenFabrics,” http://www.openfabrics.org.

A. Theurer, “NetBench Performance Evaluation for Linux,” http:/Ise.
sourceforge.net/benchmarks/netbench/.

NVIDIA Corp., “NVIDIA CUDA Compute Unified Device
Architecture,” http://developer.download.nvidia.com/compute/cuda/

1_.0/NVIDIA_CUDA _Programming_Guide_1.0.pdf, 2007.

S. Subramanyam and A. Sucharitakul, “The apache olio project,” http:
//incubator.apache.org/olio/index.data/Olio_Overview_long.pdf.

Danga Interactive, “Memcached,” http://code.google.com/p/
memcached/.

(11]
[12]
[13]

[14]
[15]

[16]

(17]
[18]
[19]
[20]

[21]

[22]

[23]

[24]
[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

Faban, “Faban: Open source performance and load testing tool,” http:
/Iwww.faban.org/.

B. A. degaard, “Financial Numerical Recipes in C++,” http://finance.bi.
no/~bernt/gcc_prog/recipes/index.html, 2007.

Intel Corp., “Open Source Computer Vision Library: Reference
Manual,” http://www.cs.unc.edu/Research/stc/FAQs/OpenCV/
OpenCVReferenceManual.pdf.

M. Aldinucci, M. Danelutto, M. Meneghin, et al., “Efficient streaming
applications on multi-core with fastflow: the biosequence alignment test-
bed,” in Parallel Computing, 2009.

P. Barham, B. Dragovic, K. Fraser, ef al., “Xen and the art of virtual-
ization,” in SOSP, Bolton Landing, USA, 2003.

V. Gupta, K. Schwan, N. Tolia, et al., “Pegasus: Coordinated scheduling
for virtualized accelerator-based systems,” in USENIX ATC, Portland,
USA, 2011.

A. M. Merritt, V. Gupta, A. Verma, er al., “Shadowfax: scaling in
heterogeneous cluster systems via gpgpu assemblies,” ser. VIDC, San
Jose, California, USA, 2011.

C. Binnig, D. Kossmann, T. Kraska, et al., “How is the weather to-
morrow?: towards a benchmark for the cloud,” ser. DBTest, Providence,
Rhode Island, 2009.

C. Bennett, R. L. Grossman, D. Locke, et al., “Malstone: towards a
benchmark for analytics on large data clouds,” in Knowledge Discovery
and Data Mining, San Diego, USA, 2010.

Apache Geronimo v2.0, “Apache DayTrader Benchmark Sample,” https:
/lewiki.apache.org/GMOxDOC20/daytrader.html.

Y. Allusse, P. Horain, A. Agarwal, et al., “GpuCV: an opensource GPU-
accelerated framework forimage processing and computer vision,” ser.
MM, Vancouver, British Columbia, Canada, 2008.

A. Ranadive, A. Gavrilovska, and K. Schwan, “ResourceExchange:
Latency-Aware Scheduling in Virtualized Environments with High Per-
formance Fabrics,” in IEEE Cluster, Austin, Texas, 2011.



