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Abstract—Both performance and energy cost are important
concerns for current data center operators. Traditionally, how-
ever, IT and mechanical engineers have separately optimized
the cyber vs. physical aspects of data center operations. In
contrast, the work presented in this paper jointly considers
both the IT - cyber - and the physical systems in data centers,
the eventual goal being to develop performance and power
management techniques that holistically operate to control the
entire complex of data center installations. Toward this end, we
propose a balance of payments model for holistic power and
performance management. As an example of coordinated data
center management system, the energy-aware cyber-physical
system (EaCPS) uses an application controller on the cyber side
to guarantee application performance, and on the physical side,
it utilizes electric current-aware capacity management (CACM)
to smartly place executables to reduce the energy consumption
of each chassis present in a data center rack. A web application,
representative of a multi-tier web site, is used to evaluate the
performance of the controller on the cyber side, the CACM
control on the physical side, and of the holistic EaCPS methods
in a mid-size, instrumented data center. Results indicate that
coordinated EaCPS outperforms the cyber and physical control
modules working separately.

Keywords-Energy Efficiency, Cyber-Physical System, Control
Theory

I. INTRODUCTION

According to the latest reports [1], the electricity used
in US data centers in 2010 likely accounted for between
1.7% and 2.2% of total electricity use. This, nonetheless,
imposes a significant load on the electric grids and genera-
tion facilities, and such loads will sharply increase if modern
cloud computing technologies continue to cause the further
expansion of large-scale data center facilities. Moreover,
given annual energy costs in the millions of dollars, data
center operators face continuing challenges of profitability
under rising energy prices, while maintaining competitively
low costs for services that offer to end users the levels of
performance they demand.

To reduce energy costs while also improving IT system
performance, one must consider and attempt to optimize
both (i) the cooling and power generation/delivery — the
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physical, and (ii) the IT systems running applications — the
cyber — components of data center systems. The importance
of such holistic action is underlined by the fact that the
energy used for cooling alone can contribute up to 50% of
the total energy costs seen in a traditional data center [2]. In
response, this paper presents an approach to and examples of
holistic data center management where income is determined
by service level agreements (SLAs) that set the price paid by
customers. So, the data center’s operating margin depends
on two factors: (1) the provided quality of service, where
higher QoS levels typically imply higher charges to users,
and (2) energy cost, which depends on the IT and cooling
equipment’s power consumption in the data center, where
lower costs lead to higher profit.

There are many challenges to balance application per-
formance and energy management in the cyber world of
data centers. One challenge is that data center workload
demands can be bursty and even vary significantly during
the course of a single day. This raises a requirement for
greater flexibility in resource provisioning, and typically
rules out static provisioning methods that would likely either
over-provision or under-provision resources. To solve this
problem, we first describe a hybrid provisioning approach
that combines predictive with reactive control strategies to
dynamically provision IT resources at different time scales.
This cyber world solution is based on three important
observations.

e First, many workloads, especially web workloads in
data centers, exhibit periodic patterns (daily, weekly,
etc.), as illustrated in [3], [4], [5].

e Second, bursts can result in bottlenecks in certain
processing components, as with the multi-tier web ap-
plications considered in our work, where the bottleneck
incurred by bursts typically resides in their application
server components [6].

e Third, actual demand patterns are statistical in nature,
and so, there will be deviations from predicted patterns
due to unforeseen factors such as flash crowds, service



outages, and holidays [3].

Based on the above observations, for multi-tier web
application, if we establish the relationship between the
system capacity and number of application servers, then
we could adjust the number of application servers accord-
ing to the workload forecast predictively, in advance of
workload spikes. For this reason, we rely on a predictive
control strategy to help estimate the incoming workload
in the near future, thereby improving the accuracy of the
resource provisioning method and reducing energy waste.
We then augment the predictive strategy with a reactive
control strategy, in order to deal with the differences between
actual workload and predictions, the goal being to reduce the
number of SLA violations in the system.

The specific challenges we consider in the physical world
lie in unbalanced thermal distributions, unequal current
draws, and different energy efficiencies of computing de-
vices. These physical factors can strongly affect the total
energy consumption of the data center. Heterogeneity in
energy efficiency of different computing devices will cause
unbalanced thermal generation. Unbalanced thermal distri-
bution will lead to increased use of cooling energy in the data
center. Finally, unequal electric current draws will violate the
three-phase balance principle and result in increased energy
consumption.

Our prior work introduces several techniques to deal with
the challenges listed above. First, in [7], we describe a
spatially aware workload placement method to balance the
thermal distribution in the data center, thereby reducing total
cooling energy consumption. Next, based on the specific ob-
servation that there are different levels of energy efficiency in
the different power domains of each single enclosure in our
data center, we develop additional methods to optimize the
total computing energy consumption in each enclosure [8].
For the blade-based configurations in our data center system,
this can be achieved via a current-aware workload schedul-
ing method that minimizes the energy consumption of the
total enclosure under the same workloads. Initial results and
measurements demonstrate the importance of considering
such constraints and inputs from the physical world when
determining how to provision resources.

The specific contribution of this paper is that it leverages
the experiences listed above to develop holistic provisioning
strategy for multi-tier web applications. The strategy uses
a balance of payments model to integrate cyber resource
control with physical environment controls to optimize data
center profit. The paper combines the following methods.

e A hybrid approach uses predictive and reactive control
to provision IT resources: predictive control works at
coarse time scales (e.g., hours) to determine how many
servers should be deployed for each tier of a multi-tier
web application, using workload prediction. Reactive
control handles any excess demand by adjusting the
resource allocation among virtual machines (VMs) at

finer time scales (e.g., minutes). The application control
of these two methods achieves an obvious improvement
in meeting SLAs, conserving energy and reducing
provisioning cost.

e An electric current-aware VM placement method con-
siders inputs from the physical environment, regarding
power and current usage, when making placement de-
cisions, thereby achieving improved energy efficiency.

A balance of payments model integrates the cyber
and physical control systems as an energy-aware cyber-
physical system (EaCPS) to coordinate IT resource
provisioning and workload placement management.
EaCPS has been implemented and evaluated in an actual
instrumented testbed. Experimental evaluations demonstrate
significant improvements in performance and energy savings
compared to regimes with separate cyber vs. physical control
systems.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the predictive and reactive control model for
the IT resource provisioning of multi-tiers web applications.
The control model for electric current-aware workload place-
ment in the a data center’s physical environment is described
in Section 3. In Section 4, we propose the EaCPS — a balance
of payments model — that combines the separate cyber
and physical control systems. The workload identification,
performance profiling of multiple system configurations, and
control algorithm implementations are illustrated in Section
5. Section 6 introduces the experimental setup and results.
A brief overview of related work and concluding remarks
appear at the end.

II. CYBER CONTROL FOR IT RESOURCE PROVISIONING

We first describe the architecture of the cyber controller
for resource provisioning used in our integrated solution. In
a cloud environment, multiple applications will be hosted
by a common pool of virtualized servers. Each application
consists of several interacting components, each of which
runs in a virtual machine. In order to enhance the utilization
of physical severs, there are always several virtual machines
consolidated in the same physical server and sharing its
resources, including CPU capacity, disk access bandwidth
and network I/O bandwidth. Resource allocations at run
time are made by hypervisors or virtual machine monitors
(VMM) (e.g., ESXi). One way to ensure that applications
meet their performance target or threshold is by performing
application-level configuration management. As illustrated
in [6], different configuration (w-a-d, where w is the number
of web servers, a is the number of application servers, and
d is the number of database servers) of the application
have different bottlenecks. In this particular code, when
the number of users increase, the bottleneck is typically
determined to be in a (the number of application servers).
In response, one can dynamically change the number of
application servers according to workload prediction. One



could also meet application performance at the node level,
by dynamically adjusting the resource allocated to each
virtual machine through the VMM, thereby controlling the
performance of each application component.

The architecture of the cyber control is presented in
Figure 1. The bottom of the figure shows the cyber control
domain, which consists of the workload forecast module,
configuration database, and configuration service modules.
They are used by the application controller to decide the
application configuration and the resource entitlement for
each virtual machine, in real time. Above the cyber control
domain is the managed infrastructure. Each physical server
runs multiple virtual machines. Each virtual machine hosts
one tier of an application, which can span multiple hosts.
The node controller is delivered with the ESXi server
installed on the physical server. More specifically,

e The workload forecast maintains the historical work-
load analysis results, collected from previous real data
center operation data, and provides the workload pre-
diction information to the application controller.

e The configuration DB stores system configuration
information, such as the VM locations, the type of
application components running in a VM, etc. The
information can be updated by other services, such as
the VM migration service.

e The configuration service maintains empirical data
from experimental results of different application con-
figurations, and is used to give the suggestion about the
configuration of the application based on the predicted
workload.

e The application controller collects information from
the configuration service and the workload forecast to
decide the application’s configuration. The configura-
tion can change depending on the predicted daily or
weekly pattern of the workload, or due to bursts caused
by accidental events, holidays, etc. The application
controller interacts with the node controllers to adjust
the resource allocation to a specific application to
maintain its performance target.

e The node controllers reside on each physical server.
They are responsible for resource allocations to each
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Figure 2. Feedback and feed-forward application controller

VM to meet the resource utilization target as deter-
mined by the application controller. The demanded
resource entitlement depends on the workload and
utilization target.
Application Controller. Figure 2 shows the architecture of
the application controller, consisting of a feed-forward con-
troller and a feedback controller. The feed-forward controller
utilizes the offline workload forecast to suggest the config-
uration (w-a-d) of the whole application system according
to the incoming workload prediction derived from historical
observations, as discussed in later sections. The feedback
controller is used to deal with abnormal workload burst,
and to tune the resource entitlements of each application
component based on the error between the performance
target () and the measured performance r.

These two controllers work at different time scales. The

feed-forward controller works at long time-scale (hours),
using model-based predictive control proactively to tune the
application system configuration (w-a-d) based on the work-
load daily/weekly pattern captured from historical data. We
refer to this configuration as the base workload. The feed-
back controller operates at a shorter time-scale (minutes). It
is invoked at run time, whenever the error between the target
and measured performance exceeds some threshold value
(0r). Integration of feed-forward and feedback controllers
provides a more robust solution than that with either feed-
forward or feedback alone.
Node Controller. The application controller interacts with
node controllers deployed on each physical node. The goal
of each node controller is to execute the commands from
the application controller, thereby maintaining application
performance targets by dynamically adjusting the resource
entitlements of all virtual machines on the node. It im-
plements two functions: the resource controllers and the
arbiter. The resource controllers consider CPU and memory
resources. They determine the specific resource allocations
among VMs, as guided by inputs from the application
controller, explained in more detail in [9].

III. PHYSICAL CONTROL FOR WORKLOAD PLACEMENT

Next, we introduce the physical control for the workload
placement based on the power efficiency motivation, which
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will affect the cloud owner’s operation cost on energy. The
bulk of the energy cost of the data center is cooling cost
and the compute power consumption. Cooling cost largely
depends on the thermal distribution in the data center — if
there are no ’hot’ spots or unbalanced thermal distribution,
then the cooling cost could achieve the most savings.
Current-aware Workload Placement. In our earlier work,
we developed a current-aware approach to workload place-
ment, inspired by the three-phase balance requirement in
electrical engineering. Usually, an electrical appliance con-
sumes less power when the load is balanced across the
three-phase circuit, which also ensures the safe operation
of the equipment. The proposed current-aware workload
placement method is based on the manufacturing structure of
the blade chassis in our data center. This method may not be
general to all data centers, but nonetheless, demonstrates the
energy saving potential of applying the three-phase balance
principle in data centers or more generally, demonstrates the
importance of considering both the cyber and the physical
elements of data center installations.

As shown in Figure 3, every chassis in our data center
has a total of fourteen hot-swap blade server bays and a
media tray in the front. The rear of the chassis contains up
to 4 power modules, 2 blowers, 2 management modules,
and 4 switch (I/O) modules. These components connect to
the blades in the front of the chassis through the mid-plane,
into which all major components are plugged. The power
supplies in bays 1 and 2 provide redundant power to all the
BladeCenter modules and to blade bays 1 through 6. The
BladeCenter unit supports a second pair of power modules
in power bays 3 and 4 that provide redundant power to
blade bays 7 through 14. To provide true redundant power,
BladeCenter power modules 1 and 3 must be connected to a
different 200-240 Volt AC power source than power modules
2 and 4. We denote the two power domains as A and B.
B supplies power to 8 blade servers, i.e., 2 more servers
than A. Although A includes other BladeCenter modules
such as mid-plane, blowers, I/O modules, etc., these modules
consume mostly static power when the chassis power is on,
which is about 390 Watts in our experiment. As a result,
power domain A typically consumes more power than B
when workloads are low, but when all servers reach their
capacity limits, then B’s power consumption will surpass A.

In order to obtain the computing to power relationship for
these two domains, we design an experiment that gradually
increases the workload placed on each domains from 10%
to 100%. Based on the experimental results, we obtain the
following equations for the average computing power model
of each blade. Note that these results indicate that the blade
servers in B are more power efficient than those in A.

Pa = 0.4 % Ugpyy () + 180 (1)
Pp = 0.38 % Ugpy (t) + 120 )

Next, at the chassis level, we will utilize a PI controller
to advise the system how to perform server selection.
Because the most power efficient state for the chassis is
when the two power domains’ electric currents reach the
balance, we run a thread for each chassis to check the
electric current difference between the two domains at a
specified time interval, which is 5 minutes in our case. After
obtaining the electric difference between the two domains,
we use a proportional plus integral controller to calculate the
workload to be migrated between these two domains. The
equation for the PI controller is:

Workloadmigrate = Kpce + K; / cdt +a 3)

where ¢; is the electric current difference between the two
domains at time slot t, K; is the integral gain, and K, is
the proportional gain, which is the proportion between CPU
workload and current difference in our case obtained from
stored data. Because of the different power efficiency of
the two domains, the workload to current ratios for these
two domains are also different. We use K,, and K, to
represent the ratio for domain A and B separately. K, is
then computed as:

K - Kpa *Kpb
P Kpa +Kpb

With K, determined, we next tune the K; term, used to
remove the oscillation brought by proportional controller.
Usually a simple proportional control system either oscil-
lates, moving back and forth around the setpoint because
there is nothing to remove the error when it overshoots,
or stabilizes at a too low or too high value. By adding a
proportion of the average error, namely the integral term to
the process input, the average difference between the process
output and the setpoint is continually reduced. Therefore,
eventually, a well-tuned PI loop’s process output will settle
down at the setpoint [10].

“4)

IV. CYBER-PHYSICAL COORDINATED RESOURCE
MANAGEMENT SYSTEM

Consider the cyber and physical resource management
systems described separately in the above two sections.
These two control systems have different objectives in the



data center operation. The former focuses on application
performance, relative to user experiences and the business
benefits of the service. The latter leverages the different
power efficiencies between the two power domains of blade
servers to reduce power consumption for the whole chassis,
which will lead to energy saving and operation cost reduc-
tion. The deficiencies of these two control systems are also
obvious: the physical control may deteriorate the quality of
service during workload relocation to save energy, where the
benefits earned from energy reduction may not make up for
the loss caused by SLA violations. Conversely, the cyber
resource management system can control the application
performance to satisfy the SLA most of the time, but it
neglects the potential to save energy when resources are first
being allocated. In response, this integrates the cyber and
physical resource management systems to obtain an energy-
aware mangement system —EaCPS, which not only strives
to maintain a certain level of quality of service, but also
exploits the chance to save energy during operation.

If the decisions of the cyber and physical control system
are consistent, then it is ok for the EaCPS to make the final
decision by just following what the two separate control
modules suggest. An example is when the application con-
troller needs to power on another tomcat server to handle
the increasing incoming workload, and when the physical
control side wants to increase the current of some domain
at that time to balance the electric current of the two
domains. In that case, both controllers will agree on the
utility of placing the new virtual machine in the lower
current power domain. There may also be disagreement
between both controllers, however. An example is when the
physical control module needs some virtual machine to be
migrated from one power domain to the other, but the cyber
control component does not permit VM migration at that
time for performance reasons. The EaCPS payment model
is the proposed basis for dealing with such conflicts.

A. Balance of Payments Model for EaCPS

While we have already introduced the variables and
parameters used in our performance and cost modeling, for
convenience, Table I summarizes the notations used in this
section.

For the cost of the data center, we only consider the energy
cost, which includes the cooling and computing energy cost.
For cooling power, we rely on a relationship between the
cooling power and the computing power in the data center,
as presented in Equation 5:

comp
Pt

~ CoP(Tin)

sup

P )
where CoP means coefcient of performance, which is the
ratio of the heat removed over the work required to remove
that heat. A higher CoP means more efficient cooling,
and usually, the CoP increases with increase in the air

Table I
NOTATIONS FOR MODELING

d power domain number:1 or 2
number of tiers (e.g. Web, App, DB)

I, number of virtual machines at tier m

Ny number of blade servers in domain d

Ba power coefficient of blade server in domain d
A average arrival rate of all transaction types

Tepu average resident time on CPU resources

Tothers | average resident time on other resources

r average user request response time
P;gie,q | idle blade server power cost in domain d
PP | computing power consumption at interval t
PAC | cooling power consumption at time interval t
Uim(t) | CPU utilization of i** VM of tier m during t

Ky unit electricity price (e.g. dollars/KWH)

temperature supplied by the CRAC, Tjgp Note the CoP is
the average value for the whole data center, not for specific
CRAC. So the whole energy consumption of the data center

1S

Eiotar = (Ptcomp + PtAC) *1
1

1+ —F—

U+ Eop@a

sup

— )PtCOmp % t

We assume that the supply air temperature is kept the same
during our experiments, and denote (1 + W) as a
constant . Given the power consumption model presented
in the last section, the total computing power consumption
for the application running in the cluster can be obtained as:

2 Ny M I,
PtCUmP _ Z Z (Pidle7d + Ba Z Z Uim (t)) (6)
d=1n=1 m=1i=1

So, ‘payments’ for energy can be calculated as:

2 N M I,
Cost = Kw*a*{z > <13idle,d +B1Y. Y Uim@)) }*t

d=1n=1 m=1i=1
(7)

In addition to the energy cost, we also need to know the
income brought by the hosted applications, which is related
to the performance attained from the allocated resources. We
use the same performance model as presented in previous
work [9], [11], which assumes that a Poisson process is a
good approximation of request arrivals, and models CPUs
as an M/G/1/PS queue. Based on queueing theory, the CPU
resident time in the m tier is repum = m, where
Uy = Zf’:"’l Uim(t)/I,,, which represent the average CPU



resource usage in tier m. The average request response time

can be expressed as:

Um

®)

1
T = Tepu + Tothers = X § + Tothers

m=1 1- Um

where the parameters are as explained in Table I. For
simplicity, we also assume that the average service time of
the non-CPU resources of each request is constant, since the
effect of contention for these resources on the response time
is negligible, i.e., Tothers = 7 1S a constant. The charging

equation is defined as:
ifr <rpey
if 72> rpey

~Jw(l —exp (r —rref))
fr) =14

where w is the parameter to adjust the price rate, and
rrey 18 the reference SLA. If the response time exceeds the
reference threshold, then it is considered an SLA violation,
which generates null value, or may even involve a penalty.
Therefore, the income at a time interval 7 is:

M
1 Um,
Income = E f(X E T s +7) ©
t m=1 m

Finally, the balance of payments of the data center at any
operation time interval can be expressed as:

Balance:;f % mz_llﬁn;m + ) — Ky * ax
2 Nd M I’VTL
Z Z Piaie,a + Ba Z Z Uin(t) | § %t
d=1n=1 =1 i—1
(10)

Equation 10 could be used as the criterion to coordinate
the cyber and physical control modules. Any control decision
should keep the balance a positive value, otherwise the
control suggestion should be ignored.

Note that while current cloud operators do not provide
interfaces to report SLA violations, as used in the algorithms
described above, one contribution of this work is the demon-
stration of the utility of such interfaces, including to cloud
data center operators. Numerous other efforts have demon-
strated the utility of richer APIs between applications and the
hosting platform [12], and select commercial products and
stardatization efforts support flexible management interfaces
for exchange of such information [13], [?].

V. IMPLEMENTATION

Workload Identification. The benchmark application used
in this paper is a modified version of the Rice University
Bidding System (RUBIS) [14], an online auction benchmark
modeled after eBay. It has 22 transaction types, such as
browsing for items and viewing user information. In our
testbed, the servlet version of the application server is
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deployed. A RUBIS database is initialized with sufficient
content for meaningful application behavior.
Two workload generators are used in experiments, one
is the default RUBiS client emulator producing stationary
workloads. Its deficiency is that the relative frequency of
the different transaction types remains constant over time.
The other generator is a custom workload generator that can
replay transaction traces collected from production systems.
The workload traces used in our experiments are obtained
from the Internet Traffic Archives [15]. We then use the
method introduced in [3] to identify and discretize patterns
in the forecasted workload demand. It uses the dynamical
programming algorithm to find a small number of time
intervals and representative demand for each, also keeping
the deviation from actual demand minimal. The final result
is to represent the daily pattern in workloads by discretizing
their demands into consecutive, disjoint time intervals with
a single representative demand value in each interval. The
workload pattern obtained from the trace file is shown in the
next section.
Performance Profiling. In order to obtain empirical data
for the application controller, we run a series of experiments
to profile the performance of different application config-
urations (w-a-d), as shown in Figure 4. We observe that
the performance of different w-a-d configurations is largely
influenced by the number of application servers namely a.
Based on these experiments, the system capacity c, i.e., the
number of concurrent users can be supported for a given
system configuration, represented as follows:

c<T7000 ifa=1

- <9500 ifa=2
Cla)=1{°= na

c<12000 ifa=3
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Request response times will increase immediately when
the number of concurrent users exceeds the system capacity
limits. In addition, we collect resource utilization data during
the experiments, and observe that the web and database
servers are all under low CPU utilization, while the utiliza-
tion of the application servers increases. It reaches the peak
point when the experiment proceeds to the capacity limit,
then stays around the peak point until the end of experiment.

Algorithm Implementation. For brevity, we summarize
the implementation of the algorithms as follows. The cyber,
i.e., application controller continuously performs two checks
— one to adjust, if necessary, the number of application
servers a, the second to adjust VMs’ resource allocations
on individual nodes, depending on the difference between
the expected and real workload.

The physical CACM controller also consists of two
phases. In the first (allocation) phase, the incoming workload
is assigned to the more power efficient domain if the
current difference is lower than the reference point, else
it is assigned to the domain that has lower current. In the
second (adjust) phase, the main objective is to reduce energy
usage and inter-domain current imbalance. To do this, the
algorithm first turns off idle VMs, then idle hosts, and
finally, makes decisions to migrate VMs. A VM or host
is considered idle if its time period of zero CPU usage
exceeds some value. If migration is necessary, the candidate
migration VMs are all selected from the domain that has the
larger current, and the destination host is chosen from the
other domain, as long as the current imbalance is above a
preset threshold value.

A final coordination step in the EaCPS system evaluates
the decisions coming from the cyber and physical side, and
uses the balance of payments (BoP) model to make a final
decision.

VI. EVALUATION

Testbed Architecture. The architecture of the energy-aware
management system is depicted in Figure 5. There are four
main parts of the system: IBM BladeCenter, control server,
PI server, and NFS storage.

e BladeCenter: its configuration and structure are de-
scribed in Section III. All blades are virtualized with the
VMware ESXi 4.0 hypervisor, and the management of
our virtualized datacenter prototype is under VMware
vSphere. All virtual machines in the BladeCenter are
running ubuntu (64bit) Linux.

e Control Server: the control server accommodates two
virtual machines. The first runs Windows 2008 and the
VMware vSphere Client, which collects VM- and host-
level information, and it also supports the execution of
control commands such as VM migration, on/off,etc.
The second VM runs CentOS and executes the re-
source allocation controller based on collected cyber
information, as well as physical information such as
CPU temperature, inlet temperature, chassis power and
current draw, all gathered through the PI server.

e PI server: this server collects environmental infor-
mation via a dedicated sensor network deployed in
our data center, such as the inlet temperature of each
BladeCenter, CPU temperature of each CPU, power,
current and voltage information of each power strip
outlet, PDU outlet, etc. The PI system is a commercial
product provided by OSIsoft company[16].

e NFS Storage: to enable ’hot” VM migration, NFS
storage is used to store all virtual machine images. This
storage is accessible to all blade servers and the control
server.

Cyber Control of Application Performance. We first
present the results comparing the use of only the cyber
control system, compared to a statically provisioned system.
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The results in Figures 6 and 7 show the benefits of using
the cyber controller. The application controller adjusts the
application’s configuration dynamically according to the
predicted base workload. As illustrated in Figure 6, the
application system configuration dynamically changes with
the base workload, according to the performance profiling
of each system configuration identified in the last section.
During the most intensive workload period, the number of
application servers increases to four. As expected, Figure
7 shows that the performance of the dynamically changing
system is much better than that of the statically configured
one. The dynamic system’s throughput has a similar curve
as the base workload trace, while the throughput of the
static system drops earlier, as soon as the workload reaches
the system capacity limit. The statistical analysis of request
response times shows that for an SLA of 100ms, the cyber
controller helps reduce SLA violations of the application
system by 25.5%.

Physical Control for Power Efficiency. Next, we evaluate
the energy savings and performance impact of using only
the CACM controller. In this experiments, we use 11 VMs,
6 of which are used for the RUBIS application, while the
other 5 VMs are running a micro-benchmark that generates a
specified CPU workload during some specified time period.
In order to make the energy difference obvious, we make
sure these VMs consume 80% of their CPU entitlements for
the entire 30 minute duration of the experiment. The RUBIiS
benchmark uses the same workload trace as introduced in
the previous section, but the system configuration for RUBIiS
is 1-4-1, namely, there are 4 static tomcat servers to process
requests. We run the experiments two times for different
scenarios.
e Scenario 1: we place all VMs in power domain A,
which has 6 physical servers. One server is dedicated
to the web tier virtual machine, each of the remaining
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Figure 7.  Application Performance Comparison between Cyber Control
and Static Under-Provisioned System
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Figure 8. CACM Physical Controller Performance

servers host two virtual machines, one for RUBIiS, the
other one is running the mico-benchmark. There is
no migration during the experiment. We denote this
scenario as ‘Static’.

e Scenario 2: The initial state is the same as in Scenario
1, but we start the CACM controller, which adjusts the
placement of VMs during the experiment. This scenario
is called ‘CACM only’.

For the experimental results shown in Figure 8, we
observe that in this 30min experiment, the CACM controller
reduces the energy consumption by about 32% (0.34 kwh)
compared to the static scenario. However, this reduction
comes with a significant drop in application performance.
These results demonstrate that the use of the CACM con-
troller, which considers the physical inputs only (i.e., current
imbalance), can deteriorate performance, although it helps
reduce energy consumption. This indicates the need for a
solution like the balance of payments model in EaCPS. We
present the results from the use of EaCPS next.
Coordinated Cyber-Physical Control System. We add two
additional experimental scenarios to the previous section’s
experiments, and analyze the effectiveness of the coordinated
cyber- and physical system controls:

e Scenario 3: all VMs are placed into power domain A.
One difference from scenario 1 is that initially, we use
only 3 VMs for RUBIS, and the same number of mico-
benchmark VMs (5). Next, we enable the application
controller, which dynamically changes the number of
virtual machines for the RUBIS application during the
experiment, according to the changes in base workload.
We call this scenario *App only’.

e Scenario 4: the initial state is the same as in Scenario
1, but we start the application and CACM controllers,
as well as the coordinator module. We call this scenario
"EaCPS’.
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From Figure 9 , 10, we see that the ‘App only’ scenario
can result in up to 16% energy savings compared to the
‘Static’ scenario. This is caused by the resource over-
provisioning in the static scenario compared to the ‘App
only’ experiment. Clearly, this comes with some impact on
performance, but the performance in the App only scenario
still has 90% more requests with less than 200ms response
time, which may be acceptable to typical cloud customers.

We next compare energy consumption and application
performance for all four scenarios, as shown in Figures 9
and 10. The energy consumption data in Figure 9 is the
consumption of the whole chassis during half an hour.
We observe that the static scenario has the highest energy
consumption, followed by the App scenario. The CACM and
EaCPS scenarios have nearly the same energy consumption.
These results, therefore, demonstrate the importance of using
a physical control system for reducing energy usage for the
whole system.

Conversely, the over-provisioned and the cyber control
system result in better performance and quality of service
control, as illustrated with the Static and App Only curves
in Figure 10. As explained in Section III, the CACM con-
trol can deteriorate application performance while seeking
energy savings, and this is evident in Figure 10. The EaCPS
scenario, however, not only results in energy savings similar
to CACM, but also in performance comparable to Static
and App Only. In fact, as shown in the figure, EaCPS has
better performance than the App Only scenario. This is
somewhat counter intuitive. One possible explanation is that
there are less migrations in the EaCPS scenario than in the
App scenario, because the coordination controller cancels
some migrations, thereby resulting in better performance
for EaCPS. These results demonstrate both the feasibility
and importance of integrating cyber and physical control
mechanisms in data center management to achieve improved
energy-efficiency and maintain desired performance levels.
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Figure 10. Application Performance Comparison Among the Four different
Scenarios

VII. RELATED WORK

One area of related work is the study of application perfor-
mance management in virtualized server environments [11],
[9], [4], [5]. Much of this research is focused on applying
control theoretic methods to data center resource allocation
management. [9] use an adaptive feedback controller in the
resource partition among the components of the application
to optimize application performance. [11] integrate feed-
forward prediction and feedback reactive control for dynam-
ically tuning virtual machine capacity.

Another area of related work is power reduction in data
centers [17], [18], [3], where most such work is dedicated
to optimizing resource allocation to save energy or maxi-
mize the utility of the data center. Typical work combines
power regulation methods like DVFS or turning on/off idle
machines with the characteristic of workloads for the target
clusters.

Some previous work integrates performance and power
into one optimization objective in data center operation [19],
[20], [21], [22], [23], using an approach that combines ther-
mal energy management with workload placement, to reduce
cooling energy cost. Our work complements such efforts
in focusing on other features of the physical environment
to reduce energy consumption, notably the different power
efficiencies between the two power domains used in modern
blade servers.

VIII. SUMMARY AND CONCLUSIONS

This paper presents separate cyber vs. physical control
systems. The cyber system controls the configuration of a
dynamic multi-tier application, to manage application per-
formance in lieu of workload changes. The physical control
system performs electric current-aware workload placement
according to the physical chassis environment. A balance of



payment model is used to combine the two systems, to find
the best trade-off points between application performance
and energy management. We use the RUBiS benchmark
to evaluate the cyber control, physical control, and CPS
coordinator modules in a mid-size fully instrumented data
center. Results show that the CPS integrated system has
the most energy savings with nearly equal application
performance, compared to the static system configuration
with over-provisioned resources. The outcome is that it is
essential to integrate the cyber and physical systems used in
data centers to achieve both sustainable energy savings and
acceptable levels of application performance.
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