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ABSTRACT

Simultaneously achieving both good performance and high
resource utilization is an important goal for production cloud
environments. Through extensive measurements of an n-
tier application benchmark (RUBBoS), we show that the
response time of an n-tier system frequently presents large
scale fluctuations (e.g., ranging from tens of milliseconds up
to tens of seconds) during periods of high resource utiliza-
tion.

Except the factor of bursty workload from clients, we
found that the large scale response time fluctuations can
be caused by some system environmental conditions (e.g.,
L2 cache miss, JVM garbage collection, inefficient schedul-
ing policies) that commonly exist in n-tier applications. The
impact of these system environmental conditions can largely
amplify the end-to-end response time fluctuations because
of the complex resource dependencies in the system. For
instance, a 50ms response time increase in the database tier
can be amplified to 500ms end-to-end response time increase.
We evaluate three heuristics to stabilize response time fluc-
tuations while still achieving high resource utilization in the
system. Our results show that large scale response time
fluctuations should be taken into account when designing
effective autonomous self-scaling n-tier systems in cloud en-
vironments.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems-Distributed Applications; C.4 [Performance of
Systems]: Reliability, availability, and serviceability; H.3.4

[Performance evaluation (efficiency and effectiveness)]:

Metrics—-complexity measures, performance measures

Keywords

N-tier system, Web-facing applications, Performance evalu-
ation, scalability, Soft resources, burstiness.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICAC’12, September 18-20, 2012, San Jose, California, USA.

Copyright 2012 ACM 978-1-4503-1520-3/12/09 ...$15.00.

33

1. INTRODUCTION

Simultaneously achieving good performance and high re-
source utilization is an important goal for production cloud
environments. High utilization is essential for high return
on investment for cloud providers and low sharing cost for
cloud users [9]. Good performance is essential for mission-
critical applications, e.g., web-facing e-commerce applica-
tions with Service Level Agreement (SLA) guarantees such
as bounded response time. Unfortunately, simultaneously
achieving both objectives for applications that are not em-
barrassingly parallel has remained an elusive goal. Con-
sequently, both practitioners and researchers have encoun-
tered serious difficulties in predicting response time in clouds
during periods of high utilization. A practical consequence
of this problem is that enterprise cloud environments have
been reported to have disappointingly low average utiliza-
tion (e.g., 18% in [17]).

In this paper, we describe concrete experimental evidence
that shows an important contributing factor to the apparent
unpredictability of cloud-based application response time
when under high utilization conditions. Using extensive
measurements of an n-tier benchmark (RUBBoS [1]), we
found the presence of large scale response time fluctuations.
These fluctuations, ranging from tens of milliseconds up to
tens of seconds, appear when workloads become bursty [13],
as expected of web-facing applications. The discovery of
these large scale response time fluctuations is important as
it will have significant impact on the autonomous perfor-
mance prediction and tuning of n-tier application perfor-
mance, even for moderately bursty workloads. Specifically, a
distinctly bi-modal distribution with two modes (that span a
spectrum of 2 to 3 orders of magnitude) can cause significant
distortions on traditional statistical analyses and models of
performance that assume uni-modal distributions.

One of the interesting facts that made this research chal-
lenging is that the long queries (that last several seconds)
are not inherently complex in their nature, i.e., they are
normal queries that would finish within tens of milliseconds
when run by themselves. Under a specific (and not-so-rare)
set of system environmental conditions, these queries take
several seconds. The detailed analysis to reveal these system
environmental conditions in an n-tier system is non-trivial
considering that classical performance analysis techniques
that assume uni-modal distributions are inapplicable. Our
approach recorded both application level and system level
metrics (e.g., response time, throughput, CPU, and disk
I/O) of each tier in an n-tier system at fine-grained time
granularity (e.g., 100ms). Then we analyzed the relationship
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Figure 1: Details of the experimental setup.

of these metrics among each tier to identify the often shift-
ing and sometimes mutually dependent bottlenecks. The
complexity of this phenomenon is illustrated by a sensitiv-
ity study of soft resource allocation (e.g., number of threads
in the web and application servers and DB connection pool)
on system performance and resource utilization.

The first contribution of the paper is an experimental il-
lustration of the large scale response time fluctuations of
systems under high resource utilization conditions using the
n-tier RUBBoS benchmark. Due to the large fluctuations,
the average system response time is not representative of
the actual system performance. For instance, when the sys-
tem is under a moderately bursty workload and the average
utilization of the bottleneck resource (e.g., MySQL CPU) is
around 90%, the end-to-end response time shows a distinctly
bi-modal distribution (Section 2.2).

The second contribution of the paper is a detailed analy-
sis of several system environmental conditions that cause
the large scale response time fluctuations. For instance,
some transient events (e.g., CPU overhead caused by L2
cache miss or Java GC, see Section 4.1) in the tier under
high resource utilization conditions significantly impact the
response time fluctuations of the tier. Then the in-tier re-
sponse time fluctuations is amplified to the end-to end re-
sponse time due to the complex resource dependencies across
tiers in the system (Section 4.2). We also found that the op-
erating system (OS) level “best” scheduling policy in each
individual tier of an n-tier system may not achieve the best
overall application level response time (Section 4.3).

The third contribution of the paper is a practical solu-
tion for stabilizing the large scale response time fluctuations
of systems under high resource utilization conditions (Sec-
tion 5). For instance, our experimental results show that
the CPU overhead caused by transient events can be re-
duced by limiting the concurrency of request processing in
the bottleneck tier (heuristic ii) while the limitations of OS
level scheduling policies can be overcome through applica-
tion level transaction scheduling (heuristic 1).

The rest of the paper is organized as follows. Section 2
shows the large scale response time fluctuations using a con-
crete example. Section 3 illustrates our fine-grained moni-
toring analysis. Section 4 shows some system environmen-
tal conditions for the large scale response time fluctuations.
Section 5 explains three heuristics in detail. Section 6 sum-
marizes the related work and Section 7 concludes the paper.

2. BACKGROUND AND MOTIVATION

2.1 Background Information

In our experiments we adopt the RUBBoS n-tier bench-
mark, based on bulletin board applications such as Slash-
dot [1]. RUBBoS can be configured as a three-tier (web
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server, application server, and database server) or four-tier
(addition of clustering middleware such as C-JDBC [11]) sys-
tem. The workload includes 24 different interactions such as
“register user” or “view story”. The benchmark includes two
kinds of workload modes: browse-only and read/write inter-
action mixes. We use browse-only workload in this paper.

Mi et al. [13] proposed a bursty workload generator which
takes into account the Slashdot effect, where a web page
linked by a popular blog or media site suddenly experiences
a huge increase in web traffic. Unlike the original work-
load generator which generates a request rate that follows a
Poisson distribution parameterized by a number of emulated
browsers and a fixed user think time E[Z], the bursty work-
load generator generates request rates in two modes: a fast
mode with short user think time and a slow mode with long
user think time. The fast mode simulates the Slashdot effect
where the workload generator generates traffic surges for the
system. The bursty workload generator uses one parameter
to characterize the intensity of the traffic surges: indezr of
dispersion, which is abbreviated as I. The larger the I is,
the longer the duration of the traffic surge. In this paper,
we use both the original workload generator (with I = 1)
and the bursty workload generator (with I = 100, 400, and
1000) to evaluate the system performance.

Figure 1 outlines the details of the experimental setup. We
carry out the experiments by allocating a dedicated physical
node to each server. A four-digit notation #W/#A/#C/#D
is used to denote the number of web servers, application
servers, clustering middleware servers, and database servers.
We have three types of hardware nodes: “L”, “M”, and “S”,
each of which represents a different level of processing power.
Figure 1(c) shows a sample 1L/2L/1S/2L topology. Hard-
ware resource utilization measurements are taken during the
runtime period using collect]l at different time granularity.
We use Fujitsu SysViz [3], a prototype tool developed by
Fujitsu laboratories, as a transaction monitor to precisely
measure the response time and the number of concurrent
requests in each short time window (e.g., every 100ms) with
respect to each tier of an n-tier system.

2.2 Motivation

In this section, we give one example to show that the aver-
age of measured performance metrics may not be represen-
tative of the actual system performance perceived by clients
when the system is under high utilization conditions. The
results shown here are based on 10-minute runtime experi-
ments of RUBBoS benchmark running in a four-tier system
(see Figure 1(c)) with different burstiness levels of workload.

Figure 2 shows the system response time distribution with
four different burstiness levels of workload. The sum of the
value of each bar in a subfigure is the total system through-
put. We note that in all these four cases, the CPU utilization
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Figure 2: End-to-end response time distribution of the system in workload 5200 with different burstiness levels; the
average CPU utilization of the bottleneck server is 90% in 10 minutes runtime experiments for all the four cases.

of the bottleneck server (the CJDBC server) of the system is
90%. This figure shows that the response time distribution
in each of these four cases has a distinctly bi-modal charac-
teristic; while majority of requests from clients finish within
a few hundreds of milliseconds, a few percentage finish longer
than three seconds. Furthermore, this figure shows the more
bursty the workload, the more requests there will be with
response time longer than 3 seconds.

_
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Figure 3: The percentiles of system response time in
workload 5200 with different burstiness levels.

Large scale response time fluctuations have significant neg-
ative impact on the performance of a system requiring strict
Service Level Agreement (SLA) guarantees such as bounded
response time. Figure 3 shows the 95- and 98-percentiles of
the end-to-end response time under different levels of bursty
workload. For the original workload (I = 1) case and the
bursty workload (I = 100) case, the 95th percentile is very
low (less than 200ms) while the 98th percentile is over 3 sec-
onds. As the burstiness level of workload increases, even the
95-percentile’s response time is beyond 3 seconds, and the
98-percentile’s for bursty workload (I = 1000) case exceeds 9
seconds. Some web-facing applications have strict response
time requirement, for example, Google requires clients’ re-
quests to be processed within one second [2]. Thus, response
time with large scale fluctuations may lead to severe SLA
violations though the average response time is small.
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3. FINE-GRAINED ANALYSIS FOR LARGE
RESPONSE TIME FLUCTUATIONS

In this section we show the cause of the distinctly bi-modal
response time distribution as introduced in the motivation
case through fine-grained analysis. The results here are
based on the same configuration as shown in the motivation
case. We use the original workload generator (I = 1), which
is an extension analysis for the case as shown in Figure 2(a).

Figure 4(a) shows the average throughput and response
time of the system from workload 5000 to 5800. The re-
sponse time distribution shown in Figure 2(a) is based on
the result of workload 5200, where the average response time
is 0.068s and the average CPU utilization of CJDBC server
is about 90% (see Figure 4(d)). Next, we zoom in the highly
aggregated average of the application/system metrics mea-
sured in workload 5200 through fine-grained analysis.

Figure 4(b) and 4(c) show the average system response
time and throughput aggregated at 100ms and 10s time
granularities respectively. Figure 4(b) shows both the sys-
tem response time and throughput present large fluctuations
while such fluctuations are highly blurred when 10 second
time granularity is used (Figure 4(c)). Figure 4(e) and 4(f)
show the similar graphs for the CJDBC (the bottleneck
server) CPU utilization. Figure 4(e) shows the CJDBC CPU
frequently reaches 100% utilization if monitored at 100ms
granularity while such CPU saturation disappears if 10s time
granularity is used .

Figure 4(h) and 4(i) show the number of concurrent re-
quests on the Apache web server aggregated at 100ms and
10s time granularity in workload 5200. Concurrent requests
on a server refer to the requests that have arrived, but have
not departed from the server; these requests are being pro-
cessed concurrently by the server due to the multi-threading
architecture adopted by most modern internet server de-
signs (e.g., Apache, Tomcat, and MySQL). We note that the

110 seconds or even longer control interval is frequently used
in automatic self-scaling systems [5, 12, 15, 20].
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Figure 4: Analysis of system/application level metrics for the large response time fluctuations of the system
(1L/2L/1S/2L config.). Requests with long response time are caused by TCP transmissions as shown in subfigure
(g), which are caused by the large fluctuations of concurrent requests in Apache web tier as shown in subfigure (h).

thread pool size we set for the Apache web server in this set
of experiments is 50; considering the underlying operating
system has a buffer (TCP backlog, the default size is 128) for
incoming TCP connection requests from clients, the maxi-
mum number of concurrent requests the Apache web server
can handle is 178. Once the server reaches the limit, the new
incoming requests will be dropped and TCP retransmission
happens, which causes the long response time perceived by
a client 2. Figure 4(h) shows that the concurrent requests,
if aggregated at 100ms time granularity, frequently present
high peaks which are close to the limit. Such high peaks
cause large number of TCP retransmissions as shown in Fig-
ure 4(g), which counts the number of TCP retransmissions
in every minute during the 10-minute runtime experiment.

3.1 Sensitivity Analysis of Large Fluctuations
with Different Bursty Workloads
System administrators may want to know under which

workload(s) the large scale response time fluctuations hap-
pen. Table 1 shows the minimum workload (with different

2TCP retransmission is transparent to clients; the waiting
time is three seconds for the first time and is exponentially
increased for the consecutive retransmissions (RFC 2988).
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Burstiness level | Threshold WL | Bottleneck server CPU util.
I =1 5000 88.1%
I =100 4800 86.3%
I =400 4400 80.4%
1 =1000 3800 74.6%

Table 1: Workload (with different burstiness levels) be-
yond which more than 1% TCP retransmission happens.

burstiness levels) under which the system has at least 1%
requests that encounter TCP retransmissions. This table
shows that both the threshold workload and the correspond-
ing average CPU utilization of the bottleneck server decrease
as the burstiness level of workload increases. This further
justifies that the evaluation of the large scale response time
fluctuations using fine-grained monitoring is an important
and necessary step in autonomic system design.

4. SYSTEM CONDITIONS FOR LARGE RE-
SPONSE TIME FLUCTUATIONS

Understanding the exact causes of large scale response
time fluctuations of an n-tier system under high utilization
conditions is important to efficiently utilize the system re-
sources while achieving good performance. In this section



we will discuss some system environmental conditions that
cause large scale response time fluctuations even under the
moderately bursty workload from clients. We note that all
the experimental results in this section are based on the
original RUBBoS browse-only workload (I = 1).

4.1 Impact of Transient Events

Transient events are events that are pervasive but only
happen from time to time in computer systems, such as L2
cache miss, JVM GC, page fault, etc. In this section we will
show two types of transient events, L2 cache miss (the last
level cache) and JVM GC, that cause significant overhead to
the bottleneck resource in the system, especially when the
bottleneck tier is in high concurrency of request processing.

4.1.1 CPU overhead caused by L2 cache misses

For modern computer architectures, caching effectiveness
is one of the key factors for system performance [8, 14]. We
found that the number of L2 cache misses of the bottleneck
server in an n-tier system increases nonlinearly as workload
increases, especially when the system is under high utiliza-
tion conditions. Thus the CPU overhead caused by L2 cache
misses significantly impacts the large scale response time
fluctuations of the system.

The hardware configuration of the experiments in this sec-
tion is 1L/2L/1M (one Apache and two Tomcats on the type
“L” machine, and one MySQL on the type “M” machine).
Under this configuration, the MySQL server CPU is the bot-
tleneck of the system. We choose the “M” type machine for
MySQL as the corresponding Intel Core™™2 CPU has two
CPU performance counters which allow us to monitor the
L2 cache misses during the experiment.

Figure 5(a) shows the MySQL CPU utilization as work-
load increases from 1200 to 4600 at a 200 increment per
step. Ideally the MySQL CPU should increase linearly as
workload increases until saturation if there is no CPU over-
head. However, this figure clearly shows that the CPU over-
head increases nonlinearly as workload increases, especially
in high workload range. In order to quantify the CPU over-
head and simplify our analysis, we make one assumption
here: MySQL has no CPU overhead for request processing
from workload 0 to workload 1200 (our starting workload).
Under this assumption, we can quantify the CPU overhead
for the following increasing workloads by measuring the dis-
tance between the actual CPU utilization and the ideal CPU
utilization. For instance, under workload 4600, the MySQL
CPU overhead reaches 45%.

Figure 5(b) shows the correlation between the number of
L2 cache misses of MySQL and the corresponding CPU over-
head from workload 1200 to 4600. The CPU overhead is
calculated as shown in Figure 5(a) and the number of L2
cache misses in MySQL is recorded using the CPU perfor-
mance counter > during the runtime experiments. This fig-
ure shows that the L2 cache misses and the corresponding
CPU overhead are almost linearly correlated; thus higher L2
cache misses indicate higher CPU overhead.

One more interesting phenomenon we found is that the
CPU overhead caused by L2 cache misses can be effectively
reduced by limiting the concurrency level of request process-
ing in the bottleneck server. Table 2 shows the comparison of
CPU utilization and L2 cache misses under two different DB

3The CPU performance counter increases by 1 for 6000 L2
cache misses in our environmental settings.
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Figure 5: CPU overhead caused by L2 cache misses.

DBconnl2 DBconn2

WL TP CPU util L2 miss TP CPU util L2 miss

(req/s) (%) (x6000) (req/s) (%) (x6000)
1200 168 13.8 5036 169 13.6 4704
2400 340 34.9 8320 340 34.6 8153
3600 510 61.0 12304 510 60.2 11233
3800 538 66.1 12963 536 64.5 11968
4200 595 76.6 14204 595 74.8 13053
4600 642 99.6 21868 650 86.2 14133

Table 2: Comparison of MySQL CPU utilization and
L2 cache misses between DBconnl2 and DBconn2 with
1L/2L/1M configuration; higher concurrency leads to
more L2 cache misses in the bottleneck tier (MySQL).

connection pool sizes in Tomcat: DBconnl2 and DBconn2.
In the current RUBBoS implementation, each Servlet has
its own local DB connection pool; DBconnl12 means the DB
connection pool size for each Servlet is 12 while DBconn2
means 2. This table shows that although the throughputs
of these two cases are similar under different workloads, the
DBconn2 case has less CPU utilization and less L2 cache
misses in MySQL than the DBconn12 case, especially in the
high workload range. We note that the DB connection pools
in Tomcat controls the number of active threads in MySQL.
In the DBconn12 case under high workload more concurrent
requests are sent to the MySQL server, thus more concur-
rently active threads are created in MySQL and contend for
the limited space of L2 cache causing more cache misses and
CPU overhead than those in the DBconn2 case.

4.1.2 CPU overhead caused by Java GC

For Java-based servers like Tomcat and CJDBC, the JVM
garbage collection process impacts the system response time
fluctuations in two ways: first, the CPU time used by the
garbage collector cannot be used for request processing; sec-
ond, the JVM uses a synchronous garbage collector and it
waits during the garbage collection period, only starting to
process requests after the garbage collection is finished [4].
This delay significantly lengthens the pending requests and
causes fluctuations in system response time.

Our measurements show that when a Java-based server
is highly utilized, the JVM GCs of the server increase non-
linearly as workload increases. The hardware configuration
of the experiments in this section is 1L/2L/1S/2L (see Fig-
ure 1(c)). Under this configuration, the CJDBC CPU is the
bottleneck of the system. We note that the CJDBC server is
a Java-based DB clustering middleware; each time a Tomcat
server establishes a connection to the CJDBC server, which
balances the load among the DB servers, a thread is created
by CJDBC to route the SQL query to a DB server.

Table 3 compares the CPU utilization and the total GC
time of the CJDBC server during the runtime experiments



WL DBcoanA% DBcoan.

TP CPU util GC TP CPU util GC

(req/s) (%) (s) (req/s) (%) (s)

3000 428 49.6 0.05 428 49.2 0.05
4000 572 69.0 0.07 571 68.8 0.07
5000 721 86.1 1.06 719 84.8 0.19
5200 738 91.2 1.51 737 87.4 0.37
5400 759 94.3 1.72 767 91.1 0.40
5600 779 98.8 2.15 795 96.6 0.45

Table 3: Comparison of CJDBC CPU utilization and
JVM GC time between DBconn24 and DBconn2 with
1L/2L/1S/2L configuration; higher concurrency leads to
longer JVM GC time in the bottleneck tier (CJDBC).

between the cases DBconn24 and DBconn2 from workload
3000 to 5600. This table shows that the total GC time
for both the two cases increases nonlinearly as workload in-
creases, especially when the CJDBC CPU approaches sat-
uration. One reason is that when the CJDBC CPU ap-
proaches saturation, the available CPU for GC shrinks; thus
cleaning the same amount of garbage takes longer time than
in the non-saturation situation. Accordingly, the impact of
JVM GC on system response time fluctuations is more sig-
nificant when CJDBC approaches saturation.

Table 3 also shows that the total GC time of the CJDBC
server in the DBconn24 case is longer than that in the DB-
conn?2 case from workload 5000 to 5600. The reason is simi-
lar to the L2 cache miss case as introduced in Section 4.1.1.
Compared to the DBconn2 case, the Tomcat App tier in
the DBconn24 case is able to send more concurrent requests
to the CJDBC server under high workload, which in turn
creates more concurrent threads for query routing and con-
sumes more memory. Thus the CJDBC server performs
more GCs for cleaning garbage in memory in the DBconn24
case than that in the DBconn2 case.

4.2 Fluctuation Amplification Effect in n-Tier
Systems

Unlike some embarrassingly parallel “web indexing” appli-
cations using MapReduce and Hadoop, an n-tier application
is unique in its amplification effect among different tiers due
to the complex resource dependencies in the system. For
instance, small request rate fluctuations from clients can be
amplified to a bottom tier (e.g., DB tier), which causes sig-
nificant response time fluctuation in the bottom tier; on the
other hand, response time fluctuations in the bottom tier
can be amplified to the front tiers.

4.2.1 Top-down request rate fluctuation amplification

The traffic for an n-tier system is, by nature, bursty [13].
One interesting phenomenon we found is that the bursty
request rate from clients can be amplified to the bottom tier
of the system. Except for the impact of transient events such
as JVM GC, the complexity of inter-tier interactions of an
n-tier system contributes most to the amplification effect.
For example, a client’s HT'TP request may trigger multiple
interactions between the application server tier and the DB
tier to retrieve all the dynamic content to construct the web
page requested by the client (We define the entire process
as a client transaction).

Figure 6 shows the approximately instant request rate (ag-
gregate at every 100ms) received by the Apache web tier and
the MySQL DB tier of a three tier system (1L/2L/1L) in
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Figure 6: Amplified request rate flucutation from the
web tier to the DB tier with 1L/2L/1L configuration in
‘WL 3000.

Req. Rate (req/0.1s) Web | App DB
Mean 42.88 | 41.12 | 397.40

Std. Deviation 6.71 6.53 77.70
Coefficient of Variance. | 0.16 | 0.16 0.20

Table 4: Statistic analysis of top-down request rate fluc-
tuation amplification (corresponds to Figure 6).

workload 3000. This figure shows that the request rate fluc-
tuation in the MySQL tier is significantly larger than that in
the Apache web tier. Table 4 shows the statistical analysis
result of the amplification effect corresponding to Figure 6.
This table shows three values related to the request rate for
each tier: mean, standard deviation, and coefficient of vari-
ation (CV) 4, Comparing the mean request rate between the
web tier and the DB tier, one HT'TP request can trigger 9.3
database accesses on average, which explains why the instant
DB request rate is much higher than the instant Web request
rate; second, the CV of the request rate in the DB tier (0.20)
is larger than that in the web tier (0.16), which shows the
effect of request rate fluctuation amplification from the web
tier to the DB tier.

4.2.2  Bottom-up response time fluctuation amplifica-
tion

Due to the top-down request rate fluctuation amplification
and also the interference of transient events, the response
time of the bottom tier in an n-tier system naturally fluctu-
ates. We found that even small response time fluctuations
in the bottom tier can be amplified to the front tiers due to
the following two reasons.

First, the complex soft resource dependencies among tiers
may cause requests to queue in front tiers before they reach
the bottom tier, which increases the waiting time of transac-
tion execution. Soft resources refer to system software com-
ponents such as threads, TCP connections, and DB connec-
tions [19]. In an n-tier system, every two consecutive tiers in
an n-tier system are connected through soft resources dur-
ing the long invocation chain of transaction execution in
the system. For example, the Tomcat App tier connects to
the MySQL tier through DB connections. Such connections
are usually limited soft resources; once soft resources in a
tier run out, the new requests coming to the tier have to
queue in the tier until they get the released soft resources
by other finished requests in the same tier. We note that for
a RPC-style n-tier system, a request in a front tier releases
soft resources (e.g., a processing thread) in the tier until

4Coefficient of variation means normalized standard devia-
tion, which is standard deviation divided by mean.
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Figure 7: Amplified response time fluctuations from the DB tier to the web tier with 1L/2L/1L (DBconn24) config-

uration in WL 5400.

the downstream tiers finish all the processing for the corre-
sponding transaction. Accordingly, long response times in
the bottom tier may lead to the saturation of soft resources
(and thus a large number of queued requests) in front tiers.

Figure 7(a) shows the approximately instant number of
concurrent requests (aggregated every 100ms) in each tier
of a three-tier system (1L/2L/1L, MySQL is the bottleneck
tier) under workload 5400. This figure shows that when the
number of concurrent requests in MySQL reaches about 90,
requests start to queue in the front tiers due to the scarcity
of DB connections in Tomcat. Figure 7(c) shows the approx-
imately instant response time in each tier. This figure shows
that very small response time fluctuations (within 50ms) in
MySQL lead to large response time fluctuations in Tomcat
and Apache; the high peaks of response time in Figure 7(c)
match well with the high peaks of queued requests in front
tiers as shown in Figure 7(a). This indicates the waiting
time of requests in front tiers largely contributes to the long
response time of transaction execution.

Second, multi-interactions between tiers of an n-tier sys-
tem amplify the bottom-up response time fluctuations. In
an n-tier system it is natural that some transactions in-
volve more interactions between different tiers than the other
transactions. For example, in the RUBBoS benchmark, a
ViewStory request triggers an average of twelve interactions
between Tomcat and MySQL; a small response time incre-
ment in MySQL leads to a largely amplified response time in
Tomcat and thus longer occupation time of soft resources in
Tomcat. In such case, soft resources such as DB connections
in Tomcat are more likely to run out, which leads to longer
waiting time of the queued requests in Tomcat.

Figure 7(b) and 7(d) show the similar graphs as shown in
Figure 7(a) and 7(c), but only for ViewStory transactions.
Compared to Figure 7(c), Figure 7(d) shows that the re-
sponse time of ViewStory requests in the Apache tier fluctu-
ates more significantly. This is because ViewStory requests
involve more interactions between Tomcat and MySQL than
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the average and run out their local DB connections earlier
than the other types of requests; thus new incoming View-
Story requests have to wait longer in the Tomcat App tier
(or in the Apache web tier if the connection resources be-
tween Apache and Tomcat also run out).

4.3 Impact of Mix-Transactions Scheduling in
n-Tier Systems

Scheduling polices impacting web server performance have
been widely studied [10, 16]. These previous works mainly
focus on a single web server and show that the performance
can be dramatically improved via a kernel-level modifica-
tion by changing the scheduling policy from the standard
FAIR (processor-sharing) scheduling to SJF (shortest-job-
first) scheduling. However, for more complex n-tier systems
where a completion of a client transaction involves complex
interactions among tiers, the best OS level scheduling policy
may increase the overall transaction response time.

The main reason for this is because the operating system
of each individual server in an n-tier system cannot distin-
guish heavy transactions from light transactions without ap-
plication level knowledge. A transaction being heavier than
a light transaction can be caused by the heavy transaction
having more interactions between different tiers than the
light one. However, in each individual interaction the pro-
cessing time of the involved tiers for a heavy transaction can
be even smaller than that for a light transaction. Since the
operating system of a tier can only schedule a job based on
the processing time of the current interaction, applying SJF
scheduling policy to the operating system of each tier may
actually delay the application level light transactions.

Figure 8 shows sample interactions between a Tomcat
App tier and a MySQL tier for a ViewStory transaction
(heavy) and a StoryOfTheDay transaction (light) specified
in the RUBBoS benchmark. A ViewStory transaction in-
volves multiple interactions between Tomcat and MySQL
(see Figure 8(a)) while a StoryOfTheDay transaction in-
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Figure 8: ViewStory vs. StoryofTheDay, different in-
teraction pattern between Tomcat and MySQL.

volves only one interaction (see Figure 8(b)). Suppose MySQL
is the bottleneck tier. Our measurements show that a single
query from a ViewStory transaction has similar execution
time in MySQL as a query from a StoryOfTheDay transac-
tion. During each interaction, a thread in the MySQL tier
receives a query from Tomcat and returns a response after
the query processing, regardless of which servlet sends the
query. From MySQL’s perspective, MySQL cannot distin-
guish which transaction is heavy and which transaction is
light. Thus either FAIR or SJF scheduling in the MySQL
tier can delay the processing of the light transactions.

We note that once the waiting time of queries from light
transactions increases in MySQL, the total number of queued
light requests in upper tiers also increases. Since each queued
request (regardless if entailing heavy or light transactions)
in upper tiers occupies soft resources such as threads and
connections, soft resources in upper tiers are more likely to
run out under high workload. In this case, the response time
fluctuations in a bottom tier are more likely to amplified to
upper tiers (see Section 4.2.2).

S. SOLUTION AND EVALUATION

So far we have discussed some system environmental con-
ditions causing the large scale response time fluctuations
under high utilization conditions and explained the unique
amplification effect inside an n-tier system. In this section
we will evaluate three heuristics to help stabilizing the large
scale response time fluctuations.

Heuristic (i): We need to give higher priority to light
transactions than heavy transactions to minimize the total
amount of waiting time in the whole n-tier system. We need
to schedule transactions in an upper tier which can distin-
guish light transactions from heavy transactions.

Heuristic (i) is essentially an extension of applying the SJF
scheduling policy in the context of n-tier systems. Suppose
the MySQL tier is the bottleneck tier; as explained in sec-
tion 4.3, applying SJF scheduling policy to MySQL through
the kernel-level modification may not reduce the overall sys-
tem response time because MySQL cannot distinguish appli-
cation level heavy transactions and light transactions. Thus
we need to schedule transactions in an upper tier that can
make such distinction in order to apply SJF scheduling pol-
icy properly in an n-tier system. We define such scheduling
as cross-tier-priority (CTP) based scheduling.
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Figure 9: Illustration of applying CTP scheduling policy
across tiers (only 2 servlets shown).

Figure 9 illustrates how to apply the CTP scheduling to
a simple two-tier system. This figure shows only requests
for two servlets (the RUBBoS browse-only workload con-
sists of requests for eight servlets): ViewStory (heavy) and
StoryOfTheDay (light). Once ViewStory requests and Sto-
ryOfTheDay requests reach the Tomcat App tier at the same
time, we give StoryOfTheDay requests higher priority to
send queries to MySQL. In this case the waiting time of the
light StoryOfTheDay transactions can be reduced and the
overall waiting time for all transactions is reduced °.

Figure 10 shows the response time stabilization by apply-
ing the CTP scheduling to a three-tier system (1L/2L/1L
with DBconn2) in workload 5800. Under this configura-
tion, the MySQL CPU is the bottleneck in the system. Fig-
ure 10(a) and 10(c) show the results of the original RUB-
BoS implementation (using the default OS level scheduling)
and Figure 10(b) and 10(d) show the results after the CTP
scheduling is applied to the Tomcat App tier and the MySQL
DB tier (see Figure 9).

Figure 10(a) and Figure 10(b) show the number of concur-
rent requests in each tier of the three-tier system for these
two cases. Although in both cases the number of concurrent
requests in the MySQL tier is very small (around eight),
the fluctuations of the number of concurrent requests in the
Tomcat App tier and the Apache web tier are much higher
in the original case than those in the CTP scheduling case.
This is because in the original case more light requests are
queued in the upper tiers due to the increased waiting time
of light requests in the MySQL tier.

Figure 10(c) and Figure 10(d) show that the approxi-
mately instant response time in the Apache web tier in the
original case has much larger fluctuations than that in the
CTP scheduling case, which validates that CTP scheduling
actually reduces the overall waiting time of all transactions
in the system. In fact the high peaks of response time in
these two figures perfectly matches the high peaks of the
number of queued requests in upper tiers as shown in Fig-
ure 10(a) and Figure 10(b).

Heuristic (ii): We need to restrict the number of concur-
rent requests to avoid overhead caused by high concurrency
in the bottleneck tier.

Heuristic (ii) is illustrated by Figure 11. The hardware
configuration is 1L/2L/1S /2L where the CJDBC server CPU
is the bottleneck of the system. We choose DBconn24 and
DBconn2 for each servlet in Tomcat; the CPU utilization
and JVM GC time of the CJDBC server under different
workloads are shown in Table 3.

Figure 11(a) and 11(b) show the approximately instant

®Heavy transactions are only negligibly penalized or not pe-
nalized at all as a result of SJF-based scheduling [10].
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Figure 10: Response time stabilization by applying CTP scheduling in 1L/2L/1L configuration in WL 5800.

response time in the Apache web tier for the DBconn24 case
and the DBconn2 case in workload 5600 respectively. These
two figures show that the response time in the DBconn24
case present much larger fluctuations than that in the DB-
conn2 case. As shown in Table 3, the DBconn24 case in
workload 5600 has significantly longer JVM GC and high
CPU utilization in CJDBC than those in the DBconn?2 case.
This set of results clearly shows that higher concurrency in
the bottleneck tier causes many more transient events such
as JVM GC, which in turn cause more CPU overhead in the
tier and lead to large end-to-end response time fluctuations.

We note that lower concurrency in the bottleneck tier is
not always better; too low concurrency in the bottleneck
tier may under-utilize the hardware resource in the tier and
degrade the overall system performance. Interested readers
can refer to [19] for more information.

Heuristic (iii): We need to allocate enough amount of
soft resources in front tiers (e.g., web tier) to buffer large
fluctuations of concurrent requests and avoid TCP retrans-
mission.

This heuristic is illustrated in the motivation case. Though
the average concurrent requests over a long time window
is low (see Figure 4(i)), the approximately instant concur-
rent requests may present high peaks that can be 10 times
higher than the average (see Figure 4(h)) due to the impact
of system environmental conditions discussed in this paper.
Thus, allocating a large number of soft resources in front
tiers is necessary to buffer such high peaks of concurrent re-
quests and avoid TCP retransmission. A reasonable alloca-
tion should also be hardware dependent since soft resources
consume hardware resources such as memory.

6. RELATED WORK

Autonomic self-scaling n-tier systems based on elastic work-
load in cloud for both good performance and resource effi-
ciency has been studied intensively before [12, 15, 20, 21].
The main idea of these previous works is to propose adaptive
control to manage application performance in cloud by com-
bining service providers’ SLA specifications (e.g., bounded
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response time) and virtual resource utilization thresholds.
Based on the average of the monitored metrics (e.g., re-
sponse time, CPU) over a period of time (a control interval),
the controller of the system allocates necessary hardware re-
sources to the bottleneck tier of the system once the target
threshold is violated. However, how long a proper control
interval should be is an open question and sometimes diffi-
cult to determine. As shown in this paper, the average of
monitored metrics based on inappropriately long control in-
tervals may blur the large performance fluctuations caused
by factors such as bursty workload or JVM GC.

The performance impact of bursty workloads for the tar-
get n-tier system has been studied before. The authors in [6,
13] observed that while the system CPU utilization may be
low at a coarse time granularity, it fluctuates significantly if
observed at a finer time granularity, and such large fluctu-
ation significantly impacts the n-tier system response time.
Different from the previous works which mainly focus on
bursty workload, we focus more on system aspects such as
JVM GC, scheduling policy, and fluctuation amplification
effects in n-tier systems. As shown in this paper, system
response time presents large scale fluctuations due to these
factors even under the moderately bursty workload.

Analytical models have been proposed for performance
prediction and capacity planning of n-tier systems. Chen et
al. [7] present a multi-station queuing network model with
regression analysis to translate the service providers’” SLA
specifications to lower-level policies with the purpose of op-
timizing resource usage of an n-tier system. Thereska et
al. [18] propose a queuing modeling architecture for clus-
tered storage systems which constructs the model during
the system design and continuously refines the model during
operation for better accuracy due to the changes of system.
Though these models have been shown to work well for par-
ticular domains, they are constrained by rigid assumptions
such as normal/exponential distributed service times, disre-
gard of some important factors inside the system which can
cause significant fluctuations of both application level and
system level metrics.
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7. CONCLUSIONS

We studied the large scale response time fluctuations of
n-tier systems in high resource utilization using the n-tier
benchmark RUBBoS. We found that the large scale response
time fluctuations can be caused by some system environ-
mental conditions such as L2 cache miss, JVM GC, and
limitations of OS level scheduling policies in the system, in
addition to the bursty workload from clients. We showed
that because of the complex resource dependencies across
tiers, a small response time fluctuation in a bottom tier can
be amplified to front tiers and eventually to clients. To
mitigate the large scale response time fluctuations, we eval-
uated three heuristics to stabilize the response time fluctua-
tions while still achieving efficient resource utilization. Our
work is an important contribution to design more effective
autonomous self-scaling n-tier systems in cloud to achieve
both good performance and resource efficiency under elastic
workloads.
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