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Abstract—A central goal of cloud computing is high resource
utilization through hardware sharing; however, utilization often
remains modest in practice due to the challenges in predicting
consolidated application performance accurately. We present a
thorough experimental study of consolidated n-tier application
performance at high utilization to address this issue through
reproducible measurements. Our experimental method illus-
trates opportunities for increasing operational efficiency by
making consolidated application performance more predictable
in high utilization scenarios. The main focus of this paper are
non-trivial dependencies between SLA-critical response time
degradation effects and software configurations (i.e., readily
available tuning knobs). Methodologically, we directly mea-
sure and analyze the resource utilizations, request rates, and
performance of two consolidated n-tier application benchmark
systems (RUBBoS) in an enterprise-level computer virtualiza-
tion environment. We find that monotonically increasing the
workload of an n-tier application system may unexpectedly
spike the overall response time of another co-located system by
300 percent despite stable throughput. Based on these findings,
we derive a software configuration best-practice to mitigate
such non-monotonic response time variations by enabling
higher request-processing concurrency (e.g., more threads) in
all tiers. More generally, this experimental study increases our
quantitative understanding of the challenges and opportunities
in the widely used (but seldom supported, quantified, or even
mentioned) hypothesis that applications consolidate with linear
performance in cloud environments.

Keywords—application co-location; cloud; consolidation; ex-
perimental study; n-tier; performance; RUBBoS; sharing.

I. INTRODUCTION

Server consolidation (or simply consolidation) through hard-
ware virtualization technology is a fundamental technique for
achieving economical sharing of computing infrastructures
as computing clouds. Consolidated servers run on the same
physical node in dedicated Virtual Machines (VMs) to
increase overall node utilization, which increases profit by
reducing operational costs such as power consumption. As
computing nodes grow in power (e.g., number of cores per
node) with Moore’s law, there is an increasing amount of
unused hardware per node. This trend of steadily decreasing

utilization of physical nodes makes consolidation a technique
of rapidly growing importance.

In contrast to the conceptual simplicity of consolidation
in clouds, leveraging the full potential of this technology
has presented significant challenges in practice. In fact,
enterprise computing infrastructures continue to struggle
with surprisingly low resource utilization—between 4 and 18
percent average utilization [1], [2]. While the exact reasons
why the utilization levels of datacenters have not significantly
improved in the last decade are the subject of controversial
debates, there is ample anecdotal evidence from engineers
and analysts that traditional applications make it difficult to
optimize IT resource allocation [3].

Where a classic approach uses (ad hoc) system tuning
to find and eliminate resource bottlenecks to resolve the
discrepancy between concept and practice [4], we argue that
the dynamic nature of clouds necessitates more methodical
experimental approaches to predicting and analyzing the
performance of consolidated applications. A major motivation
for our argument is the existence of a phase transition in the
performance and effectiveness of consolidation algorithms
(e.g., [5]) in regions of higher resource utilization. While it
is generally accepted that under low utilization consolidation
wins by adding more applications, consolidation loses when
too many applications are co-located, causing a loss of
Quality of Service (QoS) and revenues. We believe this
discontinuity in system properties, between winning and
losing, to be a fundamental phenomenon, not easily addressed
through performance debugging.

We address the challenge of predicting consolidated n-tier
application performance at high resource utilization through
a detailed experimental study. Our main focus are non-trivial
response time degradation effects, which are particularly
critical for QoS and Service Level Agreements (SLAs), when
co-locating multiple n-tier applications on shared hardware.
Methodologically, we directly measure and analyze the
request rates, resource utilization, and performance of two
instances of a representative n-tier application benchmark



(RUBBo0S) in a popular enterprise-level computer virtualiza-
tion environment using various system analysis tools (e.g.,
SysViz [6]). More specifically, we investigate how readily
available n-tier application configuration knobs (e.g., the
maximum number of threads in web servers or the number
of available DB connections in application servers) impact
response time and throughput in high utilization consolidation
scenarios.

Our main contribution is an in-depth experimental study of
the challenges and opportunities in performance management
when consolidating n-tier applications in cloud environments
at high utilization. We illustrate and explain non-trivial
response time degradation phenomena, particularly and impor-
tantly, with respect to the onset of regions of higher resource
saturation. As an example, our measurements show that the
response time in a particular n-tier consolidation scenario may
unexpectedly and non-monotonically increase by 300 percent
and then decrease to its initial level (see Figure 2c). This
response time spike appears as the workload of the co-located
(i.e., competing for resources) n-tier application system is
increased monotonically and despite linear throughput.

Based on our experimental findings, we derive a practical
configuration best-practice for consolidated n-tier applica-
tions. We show that this guideline is able to mitigate some of
the previously illustrated performance degradation effect and
therefore allows leveraging the high utilization in this scenario
into efficient and SLA-conform throughput. More concretely,
we show that when consolidated n-tier application systems
are configured with additional software resources (e.g., larger
thread and connection pools), the risk of non-monotonic
response time degradation under high resource utilization
can be significantly lowered. This configuration practice
augments the inherent performance isolation properties of
modern clouds and may lead to more stable performance
in traditional applications when deployed in co-located
scenarios, even as resource utilization grows beyond regions
that are traditionally considered to guarantee SLAs.

The remainder of this paper is structured as follows. In
Section II we describe our experimental setup, detailing
our n-tier application deployment and our testbed. Subse-
quently, Section III introduces our results on challenges and
opportunities in consolidation of n-tier applications in clouds.
Section IV provides an overview of related work in this area.
Finally, Section V concludes the paper with a brief result
summary and impact considerations.

II. EXPERIMENTAL SETUP

While consolidation as practice may be applied to any type of
application, the focus of this paper are n-tier applications with
LAMP (Linux, Apache, MySQL, and PHP) implementations.
Typically, n-tier applications are organized as a pipeline of
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(a) Dedicated deployment of a 3-tier application system
with three software servers (i.e., web, application, and
database) and three physical hardware nodes.
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(b) Consolidated deployment of two 3-tier systems (Sys_A
and Sys_B) with one server per tier and five physical
hardware nodes in total. The DB servers are co-located in
dedicated VMs on a single shared physical hardware node.

Figure 1: Example of a dedicated (a) and a consolidated (b)
3-tier application system deployment, presented as mappings
of software servers to physical hardware nodes.

servers!, starting from web servers (e.g., Apache), through
application servers (e.g., Tomcat), and ending in database
servers (e.g., MySQL). This organization, commonly referred
to as n-tier architecture (e.g., 3-tier in Figure la), serves
many important web-facing applications such as e-commerce,
customer relationship management, and logistics. In our
experiments, we use the popular n-tier application benchmark
system RUBBoS [7]. Due to space constraints, we solely
focus on results obtained with a browsing-only workload
setting. Our default experiment ramp-up and run-times are
180 and 300 seconds, respectively.

At an abstract level, the deployment of n-tier applications
in a cloud computing infrastructure can be modeled as a
mapping between component servers and physical computing
nodes. An application deployment is dedicated whenever the
number of physical nodes is at least equal to the number of
servers. Figures la exemplifies a dedicated n-tier deployment
with one web server, one application servers, and one database
server. In contrast, if the number of physical nodes is smaller
than the number of servers, the deployment mapping is a
consolidation, which requires at least two servers to be co-
located on a single physical node (e.g., Figure 1b). In our
experiments, we denote the first RUBBoS system as Sys_A

In this paper server is used in the sense of computer programs serving
client requests. Hardware is referred to as physical computing node or node
for short.



Table I: Summary of experimental setup (i.e., hardware,
operating system, software, and virtualization environment).

CPU Quad Xeon 2.27GHz * 2 CPU (HT)
Memory 12GB

HDD SAS, 10,000RPM, 300GB * 2 (RAIDI)
Network I/F 1Gbps * 2

0oS RHEL Server 5.3 (Tikanga), 32-bit

OS Kernel 2.6.18-128.e15PAE

Web Server HTTPD-2.0.54

App Server Apache-Tomcat-5.5.17

Connector Tomcat-Connectors-1.2.28-src

DB Server MySQL-5.0.51a-Linux-i686-glibc23

Java JDK1.6.0_23

Monitoring Tools SysViz [6] and custom VMware CPU monitor
VMware ESXi v4.1.0

RHEL Server 5.3, 32-bit
2.6.18-8.el5

Hypervisor
Guest OS
Guest OS Kernel

and the second RUBBoS system as Sys_B, as illustrated in
the figure. Unless otherwise stated, the default consolidation
methodology in this paper is to affiliate (i.e., pin) both VMs to
the same CPU core and limit both virtual CPUs to 1.36GHz
(i.e., 60% of 2.27GHz) with a reservation of 0.00MHz and
normal shares (i.e., both VMs have the same priority). Other
important characteristics of our experimental testbed are
summarized in Table I.

In this work we deeply analyze client request traces
because a single web client request in an n-tier system may
trigger multiple non-trivial interactions between different
tiers. For this purpose we use SysViz—an n-tier system trace
analysis tool developed at the Fujitsu Laboratories. SysViz
reconstructs the entire trace of each transaction executed in
the n-tier system, based on a comprehensive traffic message
log, to calculate the intra-node delay of every request in any
server in the system. More concretely, the SysViz tool is
based on a passive 4-step network tracing process: (I) collect a
complete IP packet log from the n-tier system; (II) translate
the IP packet log to protocol messages (e.g., HTTP and
AJP) exchanged between tiers; (III) extract identification
data from each protocol message (e.g., URL of an Web
request); (IV) reconstruct the trace of each transaction of
the n-tier system using these identification data, pre-learned
transaction-flow models, and a set of transaction matching
algorithms [6].

In order to monitor the CPU utilization of each VM in our
testbed environment sufficiently accurately and at sufficiently
fine granularity (i.e., 0.1 seconds), we have developed a
custom CPU monitoring tool. To do so, we have slightly
modified the source code of our bare-metal hypervisor. While
we have experimentally confirmed that our custom CPU
monitor operates with very high accuracy and with negligible
overhead, these empirical results are omitted here due to
space constraints.

III. EXPERIMENTAL CONSOLIDATION STUDY

In this section we experimentally investigate the challenge
of non-monotonic response time variations, which may
unexpectedly appear in n-tier applications due to software
configuration settings and CPU scheduling artifacts in high
utilization consolidation scenarios. Based on our findings,
we analyze opportunities in high resource utilization with
software configuration settings that allow to mitigate the
previously illustrated performance penalties. Consequently,
our analysis strives to make high resource utilization scenarios
more attractive in practice.

Software configuration, in the context of our work, refers
to software settings that specify how many software resources
such as DB connections in servlet programs in Tomcat
or threads in Apache, Tomcat, and MySQL are allocated.
Software resources are a natural extension of hardware
resources (e.g., CPU and network) and inherently control
how much request-processing concurrency is enabled in each
tier. However, analogously to hardware resources, allocating
the appropriate amount of software resources is a non-trivial
challenge. In fact, previous research shows that an intricate
balance between concurrency overhead and bottlenecks may
necessitate the use of sophisticated configuration algorithms
in dedicated deployment scenarios [8].

Methodologically, we consolidate two RUBBoS systems
(i.e., Sys_A and Sys_B) in our experimental testbed (see
Section II) to investigate how increasing resource competition
may affect the performance of n-tier systems. Concretely,
we increase the workload of Sys_A from 1,600 to 2,400
concurrent users in steps of 100 users, and we keep Sys_B
workload constant at 2,300 users, as shown in Figure 2a.

In order to study adverse software resource allocation
effects, both systems are configured with practical resource
allocation settings that are derived from experimental results
with dedicated deployments (e.g., Figure 8c). Sys_A is
configured with a database connection pool size of 96 (12 DB
connections per each of the 8 servlet programs in Tomcat).
For the other software resources, we follow our previously
published allocation algorithm and configure the system
according to the RUBBoS-specific transaction-flow models
to minimize concurrency overhead (e.g., Apache worker
connection pool of 200 and 240 Tomcat threads) [8]. Sys_B
is configured with a tuned DB connection pool size of 16 (2
DB connections per each of the 8 servlets in Tomcat), which
is the best-performing software resource allocation in many
dedicated deployment scenarios (e.g., Figure 8c). Please refer
to Section III-C for further discussion of software resource
allocation.

The rest of this section is organized in three parts. First,
we introduce the challenging performance anomaly that is
at the core of this paper in Section III-A. In Section III-B
we present and test hypotheses for the explanation of the
performance anomaly. Finally, we discusses opportunities
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(a) The workload of Sys_A is increased mono-
tonically at a constant rate of 100 concurrent users
while the workload of Sys_B is kept constant at
2,300 concurrent users during all experiments.

(b) Even under high total workload levels, the (c) Sys_B response time increases unexpectedly
throughput of both systems remains proportional by 300% and then decreases to 30% of its peak
to their workload (i.e., linear). Sys_A throughput value. In contrast, Sys_A shows a monotonic
grows linearly, and Sys_B throughput is constant. response time increase, which is normally expected.

Figure 2: Workload (a), throughput (b), and response time (c) of 3-tier systems Sys_A and Sys_B. The deployment of the

two consolidated systems corresponds to Figure 1b.

for high utilization consolidation of n-tier applications in
clouds facilitated by means of appropriate software resource
allocation in Section III-C.

A. Non-monotonic Response Time in Consolidation

The performance anomaly, which is at the core of this paper,
is depicted in Figure 2. The average throughput and response
time of Sys_A and Sys_B are shown in Figures 2b and
2c, respectively. Both throughput rates are largely linear
and proportional to the system workloads. Meanwhile, the
average response time graph of Sys_B reveals a significant
peak (0.26s) at a Sys_A workload of 2,100 users. On first
sight, this peak does not seem to be trivially explainable; in
fact, this peak raises the question whether there are ways
of mitigating such performance degradation to leverage the
linear throughput in this high resource utilization scenario
into profit. In the following, we illustrate why the response
time performance of Sys_B deteriorates this significantly
for a workload of 2,100 Sys_A users and then improves
again (0.08s) as the workload of Sys_A increases to 2,400
users. Furthermore, we discuss the implications of software
configuration in consolidated n-tier applications in the context
of this performance phenomenon.

As a first step, we analyze the resource utilization in the
shared DB node and the number of concurrent requests in
each tier of Sys_B. We focus on the CPU utilizations be-
cause the main memory size of the VMs (4GB) is sufficient to
eliminate disk I/O for the browsing-only RUBBoS workload,
which is used in this set of experiments. We aim to analyze
how the number of concurrent requests that queue up in the
tiers of Sys_B relates to the utilization of the shared CPU
core (i.e., the main hardware bottleneck). Initially, we analyze
this relationship qualitatively and zoom into 10 second trace
windows while aggregating the utilization metrics at 0.1s
granularity. Figure 3 illustrates the VM CPU utilizations
in the physical DB node as the workload of Sys_B is
constant at 2,300 concurrent users, and the workload of
Sys_A increases from 1,600 to 2,000 and then to 2,300

concurrent user. Figure 4 depicts the average number of
concurrent requests (i.e., scheduled and waiting) in each tier
of Sys_B (i.e., Web, App, and DB tiers).

In Figure 3a Sys_A CPU utilization is significantly lower
than Sys_B CPU utilization, which corresponds to the signif-
icantly lower workload of Sys_A (1,600 users) compared to
Sys_B (2,300 users). Consequently, the occasionally varying
App queue length in Figure 4a suggests a DB tier bottleneck
with occasional DB connection pool (2 per servlet) saturation.
In this scenario each Web request corresponds to one App
request, which confirms that there is no additional waiting
time for Sys_B requests at the Web tier. The result is the
modest overall response time shown in Figure 2c.

In Figure 3b the DB CPU utilization of Sys_A has
increased significantly compared to Figure 3a. On average,
Sys_A DB CPU utilization is only slightly lower than
Sys_B DB CPU utilization; moreover, the graphs are mirror
images (i.e., negatively correlated), which suggests that
one system waits for the other. In other words, Sys_B
CPU utilization drops when Sys_A peaks and Sys_B
CPU utilization peaks when Sys_A drops. Both utilizations
fluctuate frequently and significantly around their mean
utilization of 50%, and Figure 4b shows longer Web queues
compared to App, which indicates an additional bottleneck
in the App tier. This suggests that the thread pool in the App
server is saturated with waiting requests, which is ultimately
reflected by the significant overall response time increase in
Figure 2c.

Finally, the mean values of the two DB CPU utilizations
are approximately equal in Figure 3c, and the two graphs are
mirror images; however, the utilizations fluctuate significantly
less compared to Figure 3b. Correspondingly, Figure 4c
shows the disappearance of the additional waiting time in the
Web tier. This suggests that the bottleneck in the App server
has been resolved. Moreover, the App queue length varies
analogous to Figure 4a, which is reflected by the significant
overall response time decrease shown in Figure 2c.
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on average, and the two graphs are mirror images,
which suggests that one system waits for the other.

Figure 3: Trace snapshots (10 seconds) of the CPU utilizations in DB node of the backend consolidation scenario with
constant Sys_B workload of 2,300 users and Sys_A workloads of 1,600 users (a), 2,000 users (b), and 2,300 users (c).
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Figure 4: The number of concurrent requests (processing and waiting) in Sys_ B tiers (same experiment traces as in Figure 3).

B. Hypotheses and Correlation Analysis

Our experimental data supports the hypothesis that the causal
chain behind this performance anomaly is two-dimensional.
In the first dimension, the overall response time of both
systems is highly dependent on the priority that the DB node
VMs are assigned by the hypervisor’s CPU scheduler. In
the second dimension, the relatively low software resource
allocation in Sys_B, which is tuned for dedicated scenarios,
amplifies waiting time increases in the DB tier of Sys_B and
results in a disproportionately larger degradation of overall
Sys_B response time. Both dimensions in combination
explain the high peak of Sys_B response time in Figure 2c.

The first dimension is a result of the average-utilization-
based CPU scheduling policy in the DB node hypervisor,
and there are two different regions of system properties that
are distinguishable in our experiments. For low workloads
of Sys_A, the CPU scheduler in the DB node hypervisor
preferentially allocates CPU to the Sys_A VM, based on its
lower mean CPU utilization. As long as Sys_A workload is
significantly lower than Sys_B workload, Sys_B DB CPU
utilization drops whenever Sys_A DB CPU requirement
peaks (Figure 3b). These fluctuations of Sys_A DB CPU
requirement occur naturally due the stochastic nature of the
client request process. However, once Sys_A workload is
increased significantly, the mean CPU utilizations become

equal (Figure 3c), and the CPU scheduling priority also
becomes equal. Consequently, the variation in Sys_B DB
CPU utilization reduces significantly, and the the long waiting
queues in Sys_B disappear (compare Figures 4b and 4c).

The second dimension is a result of Sys_B not being able
to process the queue of waiting CPU-intensive (i.e., long
processing time) request of the type ViewStory sufficiently
fast. This limitation is due to the low software resource
allocation in Sys_B. After peaks of Sys_A DB CPU
utilization, Sys_B requires CPU and is scheduled by the
hypervisor; however, the number of DB connections for long-
processing ViewStory requests is too low to swiftly reduce
the queue length of ViewStory requests in the App server
(concurrency is limited to two connections per request type).
Moreover, long-processing requests have to wait even longer
at the DB CPU due to the large load of short-processing
requests that are supplied to the database because they have
a sufficient amount of available DB connections. Finally,
when all threads in the App server are consumed by waiting
ViewStory requests, all request types that arrive at the Web
tier are put in a waiting queue, irrespective of type and
available DB connections. This explains the long queues in
Figures 4b and causes the disproportionately large response
time increase in Figure 2c.

To provide quantitative evidence for our hypotheses, we
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(c) Constantly high positive correlation suggests
that Sys_B response time grows when Sys_A is
scheduled on the CPU for all analyzed workloads.

(a) Positive correlation suggests that Sys_A is
scheduled with high priority. The decreasing trend
suggests a lower priority at higher workloads.

(b) Constantly high positive correlation suggests
that Sys_B requests queue up when Sys_A is
scheduled on the CPU for all analyzed workloads.
Figure 5: Correlation analysis based hypothesis testing of Sys_A properties. Pearson’s correlation coefficients are calculated
based on CPU utilization, number of concurrent jobs, and response time traces collected in the DB node at 0.1s granularity.
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Figure 6: Correlation analysis based hypothesis testing of Sys_B properties. Pearson’s correlation coefficients are calculated
based on CPU utilization, number of concurrent jobs, and response time traces collected in the DB node at 0.1s granularity.

analyze the linear relationships between the main metrics in
the preceding explanation (i.e., CPU utilization, number of
concurrent jobs, and response time). Figures 5 and 6 show the
corresponding correlation coefficient graphs for Sys_A and
Sys_B, respectively. The coefficients are calculated based

on traces at 0.1s granularity collected in our experiment runs.

More specifically, Figures 5a and 6a illustrate the correlation
between the DB CPU utilization and the number of concurrent
DB requests; Figures 5b and 6b show the correlation between
the DB CPU utilization and the DB response time of the
co-located VM; and Figures 5c¢ and 6¢ show the correlation
between the DB CPU utilization and the DB response time

of the co-located VMs for Sys_A and Sys_B, respectively.

In Figure 5a the positive correlation suggests that Sys_A
is scheduled with high priority, and the decreasing trend
suggests a lower scheduling priority at higher workloads. This
corresponds to the negative correlation in Figure 6a, which
indicates that Sys_B is scheduled with low priority. Sys_B
scheduling priority reaches a minimum at Sys_2A workload
of 2,000 users. For higher Sys_A workloads the scheduling
priority of Sys_B grows again. In Figure 5b the constantly
high positive correlation suggests that Sy s_B requests queue
up when Sys_A is scheduled on the CPU for all analyzed
workloads. Moreover, the constantly high positive correlation

in Figure 5c indicates that Sys_B response time grows when
Sys_A is scheduled on the CPU for all analyzed workloads.
In contrast, the negative correlation in Figure 6b suggests
that Sys_B CPU utilization drops when the number of
Sys_A requests increases. For Sys_ A workloads higher than
2,000 users, this dependence diminishes rapidly. Finally, the
negative correlation in Figure 6¢ suggests that Sys_B CPU
utilization drops when the response time of Sys_A grows
due to request queues. For Sys_A workloads higher than
2,000 users, this dependence diminishes.

To provide quantitative evidence for our assertions about
the role of long-processing requests, we illustrate the promi-
nence of ViewStory request in all tiers of Sys_B (Figure 7).
The traces in this figure correspond to the scenario shown in
Figure 4b. There is a significant amount of queued requests
in the Web tier of Sys_B that are not of the type ViewStory
(Figure 7a). This suggests that the overall response time of
Sys_B increases significantly due to a bottleneck in the App
tier of Sys_B. The overall response time is amplified because
all request types queue up in the Web server and suffer from
the long-processing ViewStory waiting time—even though
they might be of a type that is normally short-processing. In
contrast, most queued requests in the App tier are of type
ViewStory (Figure 7b). This suggests that most threads in the
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Figure 7: The number of concurrent ViewStory requests in Sys_B tiers (same experiment traces as in Figures 3 and 4).

App tier are blocked on queued ViewStory requests, which
explains the request backlog in the Web tier. Finally, the
number of DB connections in the App server (i.e., two per
servlet) determines the maximum DB request concurrency;
thus, the number of requests in Sys_B DB tier remains
stable (Figure 7c).

C. Software Resource Allocation in Consolidation

In the following we compare system response time in various
software resource allocation scenarios in both consolidated
and dedicated deployments. While Figures 8a and 8b show
the response time of Sys_A and Sys_B in a consolidated
deployment (see Figure 1b), Figure 8c shows the response
time for a dedicated deployment (see Figure 1a).

Very little variation is apparent for the different software
configuration settings in Figure 8a Sys_A, which suggests
that a concurrency setting that is at least equal to the
co-located system (i.e., 16 DB connections in Sys_B) is
dominant for consolidated scenarios. On the other side,
Figure 8b Sys_B shows very high variation for different
software configurations, which suggests that a concurrency
setting that is lower than the co-located system (i.e., 96 DB
connections in Sys_2) is inferior for consolidated scenarios.
In contrast, Figure 8c shows an ordering of performance

—HB— 16 DB CX —A— 24 DB CX —E— 96 DB CX —57— 192 DB CX

—HB— 16 DB CX —A— 24 DB CX —©— 96DB CX —5— 192 DB CX

graphs according to increasing software configuration concur-
rency. Concretely, this suggests that in dedicated deployments
of n-tier applications, lower concurrency may be favorable.
This finding corroborates our previous results that showed that
in dedicated environments lower software resource allocations
may significantly increase overall system performance by
taking advantage of data locality effects (e.g., in caches) and
eliminating context switching penalties (e.g., at CPUs) [8].

More generally, our results suggest that allocating ad-
ditional software-resources in n-tier applications when de-
ploying them in clouds may allow for higher resource
utilization when sharing, without significant performance loss.
Especially when compared to classic datacenter scenarios,
software resource allocations should be increased to mitigate
the impact of the second dimension response time amplifica-
tion described in Section III-B. Our data suggests that this
practice is able to mitigate some of the negative implications
of sharing at high utilization, making sharing at high
utilization a more viable option. In other words, additional
software resources help to increase performance stability in
regions where cloud performance isolation mechanisms have
less desirable performance properties.
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(a) Sys_A shows very little variation for different
software configurations suggesting that a concur-
rency setting that is at least equal to the co-located
system (i.e., 16 DB CX in Sys_B) is dominant.
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(b) Sys_B shows very high variation for different

software configurations suggesting that a concur-

rency setting that is lower than the co-located

system (i.e., 96 DB CX in Sys_A) is inferior.
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(c) The ordering of the performance graphs accord-
ing to increasing software configuration concur-
rency suggests that dedicated deployment of n-tier
applications favors lower concurrency settings.

Figure 8: Comparison of three-tier system performance for various software resource allocations in both the consolidated (a),
(b) and the dedicated (c) deployment scenarios show in Figure 1.



IV. RELATED WORK

Many related research papers on application consolidation
in cloud environments (e.g., [9], [10]) assume linear con-
solidation performance and apply optimization techniques
to improve the location of various tasks. For example, a
recent approach applies linear programming to improve
consolidated application performance through dynamic VM
migration [5]. Similarly, most papers that model and solve
consolidation as a bin-packing optimization problem assume
linear consolidation. Clearly, our experimental study of
consolidation performance does not invalidate these good
results, but our work helps to delimit the applicability of
such results that assume linear consolidation performance.

A related line of research that also assumes linear con-
solidation uses real work application traces (e.g, [11]) or
trace-driven simulation [12]. They typically use production
application execution traces (instead of a benchmark appli-
cation execution) to detect the major application resource
requirements and then carefully consolidate the applications
that have complementary resource requirements. It is our
conjecture that trace-driven analyses that take into account
deep knowledge of application resource requirements are
more likely to find consolidation solutions that satisfy linear
performance. This is due to their aim of reducing resource
competition among applications, an effort that is closely
aligned to the reduction of consolidation interference.

Most of the papers that assume linear consolidation per-
formance use simulation or calculations. A new development
is a recent paper on database server consolidation [2].
They use a non-linear optimization algorithm to find the
consolidation strategy, and then evaluated their optimization
algorithm through measurements of benchmarks and real
database usage traces. Their measurements found a very
close match between their optimized consolidation solution
and the measured results, even for relatively high CPU
utilization levels (30% average and the 95% percentile at near
60%). To the best of our knowledge, this work is the first
experimental paper that claims low performance interference
in their measurements of production clouds at realistic
CPU levels, which represents a significant evolution from
other measurement-based papers on performance interference.
Consequently, this paper corroborates our research that
aims at providing an extensive evaluation of consolidation
performance in diverse scenarios.

There are several other related areas, but due to space
constraints we can only enumerate a sample of works. The
first area is system management (proceedings of DSOM,
IM, NOMS, LISA, and ICAC). Well known monitoring
tools include: IBM Tivoli, HP OpenView, Stardust [13],
Astrolabe [14], and SDIMS [15]. The second area is cloud
benchmarking. In addition to RUBBoS [7], we are currently
analyzing other cloud-benchmarks such as CloudStone [16]
and MRBench [17].

V. CONCLUSION

This paper provides the first in-depth experimental study
of consolidated n-tier application performance under high
utilization in clouds. The main impact of a better under-
standing of the challenges and opportunities in performance
management of applications in clouds is a more efficient
utilization of cloud resources, which leads to higher profits.
Currently, decision-makers hesitate to deploy mission-critical
applications in clouds due to unpredictable performance under
consolidation and therefore the true potential of clouds is
often not fully leveraged. Our measurement-based analysis
is a first step towards providing an accurate prediction
of performance of consolidated benchmark applications in
various scenarios, which will aid in increasing resource
utilization. Consequently, cloud users, service providers,
and researchers will eventually be able to run consolidated
applications at higher utilizations than previously considered
feasible with high confidence. This is a transformational
research effort both for the systematic experimental evaluation
of the hypothesis that applications consolidate with linear per-
formance in clouds and for the quantitative understanding of
the fundamental performance phenomenon of discontinuous
properties in shared computer systems.
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