
july 2011 | vol. 54 | no. 7 | communications of the acm 101

doi:10.1145/1965724.1965747

FAWN: A Fast Array
of Wimpy Nodes
By David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan

Abstract
This paper presents a fast array of wimpy nodes—FAWN—
an approach for achieving low-power data-intensive data-
center computing. FAWN couples low-power processors
to small amounts of local flash storage, balancing compu-
tation and I/O capabilities. FAWN optimizes for per node
energy efficiency to enable efficient, massively parallel
access to data.

The key contributions of this paper are the principles of
the FAWN approach and the design and implementation of
FAWN-KV—a consistent, replicated, highly available, and
high-performance key-value storage system built on a FAWN
prototype. Our design centers around purely log-structured
datastores that provide the basis for high performance on
flash storage, as well as for replication and consistency
obtained using chain replication on a consistent hashing
ring. Our evaluation demonstrates that FAWN clusters can
handle roughly 350 key-value queries per Joule of energy—
two orders of magnitude more than a disk-based system.

1. INTRODUCTION
Large-scale data-intensive applications, such as high-
performance key-value storage systems, are growing in both
size and importance; they now are critical parts of major
Internet services such as Amazon (Dynamo7), Linkedln
(Voldemort), and Facebook (memcached).

The workloads these systems support share several char-
acteristics: they are I/O, not computation, intensive, requir-
ing random access over large datasets; they are massively
parallel, with thousands of concurrent, mostly independent
operations; their high load requires large clusters to sup-
port them; and the size of objects stored is typically small,
for example, 1KB values for thumbnail images, hundreds of
bytes for wall posts, and twitter messages.

The clusters that serve these workloads must provide both
high performance and low-cost operation. Unfortunately,
small-object random-access workloads are particularly ill
served by conventional disk-based or memory-based clus-
ters. The poor seek performance of disks makes disk-based
systems inefficient in terms of both system performance
and performance per Watt. High-performance DRAM-based
clusters, storing terabytes or petabytes of data, are expensive
and power-hungry: Two high-speed DRAM DIMMs can con-
sume as much energy as a 1TB disk.

The power draw of these clusters is becoming an increas-
ing fraction of their cost—up to 50% of the 3 year total cost
of owning a computer. The density of the datacenters that
house them is in turn limited by their ability to supply and

cool 10–20 kW of power per rack and up to 10–20 MW per
datacenter.12 Future datacenters may require as much as
200 MW,12 and datacenters are being constructed today with
dedicated electrical substations to feed them.

These challenges necessitate the question: Can we build
a cost-effective cluster for data-intensive workloads that
uses less than a tenth of the power required by a conven-
tional architecture, but that still meets the same capacity,
availability, throughput, and latency requirements?

The FAWN approach is designed to address this question.
FAWN couples low-power, efficient CPUs with flash storage
to provide efficient, fast, and cost-effective access to large,
random-access data. Flash is faster than disk, cheaper than
DRAM, and consumes less power than either. Thus, it is a
particularly suitable choice for FAWN and its workloads.
FAWN represents a class of systems that targets both sys-
tem balance and per node energy efficiency: the 2008-era
FAWN prototypes used in this work used embedded CPUs
and CompactFlash, while today a FAWN node might be com-
posed of laptop processors and higher-speed SSDs. Relative
to today’s highest-end computers, a contemporary FAWN
system might use dual or quad-core 1.6 GHz CPUs with
1–4GB of DRAM.

To show that it is practical to use these constrained
nodes as the core of a large system, we designed and built
the FAWN-KV cluster-based key-value store, which provides
storage functionality similar to that used in several large
enterprises.7 FAWN-KV is designed to exploit the advantages
and avoid the limitations of wimpy nodes with flash memory
for storage.

The key design choice in FAWN-KV is the use of a log-
structured per node datastore called FAWN-DS that provides
high-performance reads and writes using flash memory.
This append-only data log provides the basis for repli-
cation and strong consistency using chain replication21
between nodes. Data is distributed across nodes using
consistent hashing, with data split into contiguous ranges
on disk such that all replication and node insertion opera-
tions involve only a fully in-order traversal of the subset
of data that must be copied to a new node. Together with
the log structure, these properties combine to provide fast
failover and fast node insertion, and they minimize the
time the affected datastore’s key range is locked during
such operations.

The original version of this paper was published in
Proceedings of the 22nd ACM Symposium of Operating
Systems Principles, October 2009.

102 communications of the acm | july 2011 | vol. 54 | no. 7

research highlights

consumption,2 requiring that all components be scaled back
with demand. As a result, a computer may consume over 50%
of its peak power when running at only 20% of its capacity.20
Despite improved power scaling technology, systems remain
most energy efficient when operating at peak utilization.

A promising path to energy proportionality is turning
machines off entirely.6 Unfortunately, these techniques do
not apply well to FAWN-KV’s target workloads: key-value
systems must often meet service-level agreements for query
throughput and latency of hundreds of milliseconds; the
inter-arrival time and latency bounds of the requests pre-
vent shutting machines down (and taking many seconds to
wake them up again) during low load.2

Finally, energy proportionality alone is not a panacea:
Systems should be both proportional and efficient at 100%
load. FAWN specifically addresses efficiency, and clus-
ter techniques that improve proportionality should apply
universally.

3. DESIGN AND IMPLEMENTATION
We describe the design and implementation of the system
components from the bottom up: a brief overview of flash
storage (Section 3.2), the per node FAWN-DS datastore
(Section 3.3), and the FAWN-KV cluster key-value lookup sys-
tem (Section 3.4), including replication and consistency.

3.1. Design overview
Figure 1 gives an overview of the entire FAWN system.
Client requests enter the system at one of several front ends.
The front-end nodes forward the request to the back-end
FAWN-KV node responsible for serving that particular key.
The back-end node serves the request from its FAWN-DS
datastore and returns the result to the front end (which in
turn replies to the client). Writes proceed similarly.

The large number of back-end FAWN-KV storage nodes
is organized into a ring using consistent hashing. As in sys-
tems such as Chord,18 keys are mapped to the node that fol-
lows the key in the ring (its successor). To balance load and
reduce failover times, each physical node joins the ring as a
small number (V) of virtual nodes, each virtual node repre-
senting a virtual ID (“VID”) in the ring space. Each physical
node is thus responsible for V different (noncontiguous) key
ranges. The data associated with each virtual ID is stored on
flash using FAWN-DS.

We have built a prototype 21-node FAWN cluster using
500 MHz embedded CPUs. Each node can serve up to 1300
256 byte queries/s, exploiting nearly all of the raw I/O capa-
bility of their attached flash devices, and consumes under
5 W when network and support hardware is taken into
account. The FAWN cluster achieves 330 queries/J—two
orders of magnitude better than traditional disk-based
clusters.

2. WHY FAWN?
The FAWN approach to building well-matched cluster sys-
tems has the potential to achieve high performance and
be fundamentally more energy-efficient than conven-
tional architectures for serving massive-scale I/O and data-
intensive workloads. We measure system performance in
queries per second and measure energy efficiency in queries
per Joule (equivalently, queries per second per Watt). FAWN
is inspired by several fundamental trends:

Increasing CPU-I/O gap: Over the past several decades,
the gap between CPU performance and I/O bandwidth has
continually grown. For data-intensive computing workloads,
storage, network, and memory bandwidth bottlenecks often
cause low CPU utilization.

FAWN approach: To efficiently run I/O-bound data-
intensive, computationally simple applications, FAWN uses
wimpy processors selected to reduce I/O-induced idle cycles
while maintaining high performance. The reduced proces-
sor speed then benefits from a second trend.

CPU power consumption grows super-linearly with
speed: Higher frequencies require more energy, and tech-
niques to mask the CPU-memory bottleneck come at the
cost of energy efficiency. Branch prediction, speculative
execution, out-of-order execution and large on-chip caches
all require additional die area; modern processors dedi-
cate as much as half their die to L2/3 caches.9 These tech-
niques do not increase the speed of basic computations,
but do increase power consumption, making faster CPUs
less energy efficient.

FAWN approach: A FAWN cluster’s slower CPUs dedi-
cate proportionally more transistors to basic operations.
These CPUs execute significantly more instructions per
Joule than their faster counterparts: multi-GHz superscalar
quad-core processors can execute approximately 100 mil-
lion instructions/J, assuming all cores are active and avoid
stalls or mispredictions. Lower-frequency in-order CPUs,
in contrast, can provide over 1 billion instructions/J—an
order of magnitude more efficient while running at 1/3 the
frequency.

Worse yet, running fast processors below their full capacity
draws a disproportionate amount of power.

Dynamic power scaling on traditional systems is sur-
prisingly inefficient: A primary energy-saving benefit of
dynamic voltage and frequency scaling (DVFS) was its abil-
ity to reduce voltage as it reduced frequency, but modern
CPUs already operate near minimum voltage at the highest
frequencies.

Even if processor energy was completely proportional
to load, non-CPU components such as memory, mother-
boards, and power supplies have begun to dominate energy

Figure 1. FAWN-KV architecture.

FAWN back-end
FAWN-DS

Front-end

Front-end

Switch

Requests

Responses

E2 A1

B1

D1

E1

F1
D2

A2

F2

B2

july 2011 | vol. 54 | no. 7 | communications of the acm 103

3.2. Understanding flash storage
Flash provides a non-volatile memory store with several
significant benefits over typical magnetic hard disks for
random-access, read-intensive workloads—but it also
introduces several challenges. Three characteristics of flash
underlie the design of the FAWN-KV system described in
this section:

1.  Fast random reads: (1 ms) up to 175 times faster
than random reads on magnetic disk.17

2.  Efficient I/O: Many flash devices consume less than
1 W even under heavy load, whereas mechanical disks
can consume over 10 W at load.

3.  Slow random writes: Small writes on flash are expen-
sive. Updating a single page requires first erasing an
entire erase block (128–256KB) of pages and then writ-
ing the modified block in its entirety. Updating a single
byte of data is therefore as expensive as writing an
entire block of pages.16

Modern devices improve random write performance
using write buffering and preemptive block erasure. These
techniques improve performance for short bursts of writes,
but sustained random writes still underperform.17

These performance problems motivate log-structured
techniques for flash filesystems and data structures.10, 15, 16
These same considerations inform the design of FAWN’s
node storage management system, described next.

3.3. The FAWN datastore
FAWN-DS is a log-structured key-value store. Each store con-
tains values for the key range associated with one virtual ID. It
acts to clients like a disk-based hash table that supports Store,
Lookup, and Delete.

FAWN-DS is designed to perform well on flash storage
and to operate within the constrained DRAM available on
wimpy nodes: all writes to the datastore are sequential, and
reads require a single random access. To provide this prop-
erty, FAWN-DS maintains an in-DRAM hash table (Hash
Index) that maps keys to an offset in the append-only Data
Log on flash (Figure 2a). This log-structured design is simi-
lar to several append-only filesystems such as the Google
File System (GFS) and Venti, which avoid random seeks on
magnetic disks for writes.

Mapping a key to a value: FAWN-DS uses an in-memory
(DRAM) Hash Index to map 160 bit keys to a value stored in
the Data Log. It stores only a fragment of the actual key in
memory to find a location in the log; it then reads the full
key (and the value) from the log and verifies that the key it
read was, in fact, the correct key. This design trades a small
and configurable chance of requiring two reads from flash
(we set it to roughly 1 in 32,768 accesses) for drastically
reduced memory requirements (only 6 bytes of DRAM per
key-value pair).

FAWN-DS’s Lookup procedure extracts two fields from
the 160 bit key: the i low order bits of the key (the index bits)
and the next 15 low order bits (the key fragment). FAWN-DS
uses the index bits to select a bucket from the Hash Index,
which contains 2i hash buckets. Each bucket is 6 bytes: a 15
bit key fragment, a valid bit, and a 4 byte pointer to the loca-
tion in the Data Log where the full entry is stored.

Lookup proceeds, then, by locating a bucket using the
index bits and comparing the key against the key fragment.
If the fragments do not match, FAWN-DS uses hash chain-
ing to continue searching the hash table. Once it finds a
matching key fragment, FAWN-DS reads the record off
of the flash. If the stored full key in the on-flash record
matches the desired lookup key, the operation is complete.
Otherwise, FAWN-DS resumes its hash chaining search of
the in-memory hash table and searches additional records.
With the 15-bit key fragment, only 1 in 32,768 retrievals
from the flash will be incorrect and require fetching an
additional record.

The constants involved (15 bits of key fragment, 4
bytes of log pointer) target the prototype FAWN nodes
described in Section 4. A typical object is between
256 bytes and 1KB, and the nodes have 256MB of DRAM
and approximately 4GB of flash storage. Because each
physical node is responsible for V key ranges (each with
its own datastore file), it can address 4GB * V bytes of
data. Expanding the in-memory storage to 7 bytes per
entry would permit FAWN-DS to address 1TB of data per
key range. While some additional optimizations are pos-
sible, such as rounding the size of objects stored in flash
or reducing the number of bits used for the key fragment
(and thus incurring, e.g., a 1-in-1000 chance of having to
do two reads from flash), the current design works well
for the key-value workloads we study.

Figure 2. (a) FAWN-DS appends writes to the end of the Data Log. (b) Split requires a sequential scan of the data region, transferring
out-of-range entries to the new store. (c) After scan completes, the datastore list is atomically updated to add the new store.
Compaction of the original store cleans up out-of-range entries.

Data log
In-memory
Hash Index

Log entry

KeyFrag Valid Offset

160-bit key

KeyFrag

Key Len Data

Inserted values
are appended

Scan and split

Concurrent
inserts

Datastore list Datastore list
Data in new range
Data in original range Atomic update

of datastore list

(c)(b)(a)

104 communications of the acm | july 2011 | vol. 54 | no. 7

research highlights

Reconstruction: The Data Log contains all the informa-
tion necessary to reconstruct the Hash Index from scratch.
As an optimization, FAWN-DS periodically checkpoints the
index by writing the Hash Index and a pointer to the last
log entry to flash. After a failure, FAWN-DS uses the check-
point as a starting point to reconstruct the in-memory
Hash Index.

Virtual IDs and semi-random writes: A physical node has
a separate FAWN-DS datastore file for each of its virtual IDs,
and FAWN-DS appends new or updated data items to the
appropriate datastore. Sequentially appending to a small
number of files is termed semi-random writes. With many
flash devices, these semi-random writes are nearly as fast
as a single sequential append.15 We take advantage of this
property to retain fast write performance while allowing
key ranges to be stored in independent files to speed the
maintenance operations described in the following.

3.3.1. Basic functions: Store, lookup, delete
Store appends an entry to the log, updates the corre-
sponding hash table entry to point to the offset of the newly
appended entry within the Data Log, and sets the valid bit
to true. If the key written already existed, the old value is
now orphaned (no hash entry points to it) for later garbage
collection.

Lookup retrieves the hash entry containing the offset,
indexes into the Data Log, and returns the data blob.

Delete invalidates the hash entry corresponding to the
key and writes a Delete entry to the end of the data file. The
delete entry is necessary for fault tolerance—the invalidated
hash table entry is not immediately committed to non-
volatile storage to avoid random writes, so a failure follow-
ing a delete requires a log to ensure that recovery will delete
the entry upon reconstruction. Because of its log structure,
FAWN-DS deletes are similar to store operations with 0
byte values. Deletes do not immediately reclaim space and
require compaction to perform garbage collection. This
design defers the cost of a random write to a later sequential
write operation.

3.3.2. Maintenance: Split, merge, compact
Inserting a new virtual node into the ring causes one key
range to split into two, with the new virtual node gaining
responsibility for the first part of it. Nodes handling these
VIDs must therefore Split their datastore into two datas-
tores, one for each key range. When a virtual node departs the
system, two adjacent key ranges must similarly Merge into
a single datastore. In addition, a virtual node must periodi-
cally Compact its datastores to clean up stale or orphaned
entries created by Split, Store, and Delete.

These maintenance functions are designed to work well
on flash, requiring only scans of one datastore and sequen-
tial writes into another.

Split parses the Data Log sequentially, writing each
entry in a new datastore if its key falls in the new datastore’s
range.

Merge writes every log entry from one datastore into the
other datastore; because the key ranges are independent,
it does so as an append. Split and Merge propagate delete

entries into the new datastore.
Compact cleans up entries in a datastore, similar to

garbage collection in a log-structured filesystem. It skips
entries that fall outside of the datastore’s key range, which
may be leftover after a split. It also skips orphaned entries
that no in-memory hash table entry points to, and then skips
any delete entries corresponding to those entries. It writes all
other valid entries into the output datastore.

3.3.3. Concurrent maintenance and operation
All FAWN-DS maintenance functions allow concurrent reads
and writes to the datastore. Stores and Deletes only
modify hash table entries and write to the end of the log.

Maintenance operations (Split, Merge, and Compact)
sequentially parse the Data Log, which may be growing due
to deletes and stores. Because the log is append only, a log
entry once parsed will never be changed. These operations
each create one new output datastore logfile. The mainte-
nance operations run until they reach the end of the log, and
then briefly lock the datastore, ensure that all values flushed
to the old log have been processed, update the FAWN-DS
datastore list to point to the newly created log, and release
the lock (Figure 2c).

3.4. The FAWN key-value system
In FAWN-KV, client applications send requests to front ends
using a standard put/get interface. Front ends send the
request to the back-end node that owns the key space for the
request. The back-end node satisfies the request using its
FAWN-DS and replies to the front ends.

3.4.1. Consistent hashing: Key ranges to nodes
A typical FAWN cluster will have several front ends and
many back ends. FAWN-KV organizes the back-end VIDs
into a storage ring-structure using consistent hashing.18
Front ends maintain the entire node membership list and
directly forward queries to the back-end node that contains
a particular data item.

Each front-end node manages the VID membership list
and queries for a large contiguous chunk of the key space.
A front end receiving queries for keys outside of its range
forwards the queries to the appropriate front-end node.
This design either requires clients to be roughly aware of
the front-end mapping or doubles the traffic that front ends
must handle, but it permits front ends to cache values with-
out a cache consistency protocol.

The key space is allocated to front ends by a single man-
agement node; we envision this node being replicated
using a small Paxos cluster,13 but we have not (yet) imple-
mented this. There would be 80 or more back-end nodes
per front-end node with our current hardware prototypes,
so the amount of information this management node
maintains is small and changes infrequently—a list of 125
front ends would suffice for a 10,000 node FAWN cluster.
When a back-end node joins, it obtains the list of front-
end IDs. It uses this list to determine which front ends to
contact to join the ring, one VID at a time. We chose this
design so that the system would be robust to front-end node
failures: The back-end node identifier (and thus, what keys

july 2011 | vol. 54 | no. 7 | communications of the acm 105

it is responsible for) is a deterministic function of the back-
end node ID. If a front-end node fails, data does not move
between back-end nodes, though virtual nodes may have to
attach to a new front end.

FAWN-KV uses a 160 bit circular ID space for VIDs and
keys. Virtual IDs are hashed identifiers derived from the
node’s address. Each VID owns the items for which it is the
item’s successor in the ring space (the node immediately
clockwise in the ring). As an example, consider the cluster
depicted in Figure 3 with five physical nodes, each of which
has two VIDs. The physical node A appears as VIDs A1 and A2,
each with its own 160 bit identifiers. VID A1 owns key range
R1, VID B1 owns range R2, and so on.

3.4.2. Replication and consistency
FAWN-KV offers a configurable replication factor for fault
tolerance. Items are stored at their successor in the ring
space and at the R − 1 following virtual IDs. FAWN-KV uses
chain replication21 to provide strong consistency on a per
key basis. Updates are sent to the head of the chain, passed
along to each member of the chain via a TCP connection
between the nodes, and queries are sent to the tail of the
chain. By mapping chain replication to the consistent hash-
ing ring, each virtual ID in FAWN-KV is part of R different
chains: it is the “tail” for one chain, a “mid” node in R − 2
chains, and the “head” for one. Figure 4 depicts a ring with

six physical nodes, where each has two virtual IDs (V = 2),
using a replication factor of 3. In this figure, node Cl is the
tail for range Rl, mid for range R2, and tail for range R3.

Figure 5 shows a put request for an item in range R1.
The front end sends the put to the key’s successor, VID A1,
which is the head of the replica chain for this range. After
storing the value in its datastore, A1 forwards this request
to B1, which stores the value and forwards the request to the
tail, C1. After storing the value, Cl sends the put response
back to the front end and sends an acknowledgment back
up the chain indicating that the response was handled
properly.

For reliability, nodes buffer put requests until they
receive the acknowledgment. Because puts are written
to an append-only log in FAWN-DS and are sent in-order
along the chain, this operation is simple: nodes maintain
a pointer to the last unacknowledged put in their datastore
and increment it when they receive an acknowledgment.
By using a log-structured datastore, chain replication in
FAWN-KV reduces to simply streaming the datastore from
node to node.

Get requests proceed as in chain replication—the front
end directly routes gets to the tail of the chain for range R1,
node Cl, which responds to requests. Any update seen by
the tail has therefore also been applied by other replicas in
the chain.

4. EVALUATION
We begin by characterizing the baseline I/O performance
of a node. We then show that FAWN-DS’s performance is
similar to the node’s baseline I/O capability. To illustrate
the advantages of FAWN-DS’s design, we compare its per-
formance to an implementation using the general-purpose
BerkeleyDB, which is not optimized for flash writes. We
then study a prototype FAWN-KV system running on a
21-node cluster, evaluating its energy efficiency in queries
per second per Watt.

Evaluation hardware: Our FAWN cluster has 21 back-end
nodes built from commodity PCEngine Alix 3c2 devices,
commonly used for thin clients, kiosks, network firewalls,
wireless routers, and other embedded applications. These
devices have a single-core 500 MHz AMD Geode LX pro-
cessor, 256MB DDR SDRAM operating at 400 MHz, and
100 Mbit/s Ethernet. Each node contains one 4GB Sandisk
Extreme IV CompactFlash device. A node consumes 3 W
when idle and a maximum of 6 W when using 100% CPU,
network, and flash. The nodes are connected to each other

Owner of Range R3

Range R1 = (2150, 210]

Range R2 = (210, 220]

Range R3 = (220, 255]

E2 A1

B1

D1

E1

F1
D2

A2

F2

B2

Figure 3. Consistent hashing with five physical nodes and two virtual
IDs each.

Range R1

Range R2

Range R3

E2

E1

D1

F1
D2

A2

F2

B2

C2

C1

A1

B1

A1 B1 C1

D1B1 C1

D1 E1C1

C1 is tail
for R1

C1 is mid for R2

C1 is head for R3

Figure 4. Overlapping chains in the ring—each node in the ring is part
of R = 3 chains.

A1

B1

Front-end
&

Cache

1. put(key, value, id)

2. put(key, value, id)

3. put(key, value)

4. put

5. put

6a. put_resp(key, id)
6b. put_cb(key, id)

8. put_ack

7. put_ack

C1

Figure 5. Life cycle of a put with chain replication—puts go to the head
and are propagated through the chain. Gets go directly to the tail.

106 communications of the acm | july 2011 | vol. 54 | no. 7

research highlights

and to a 27 W Intel Atom-based front-end node using two
16-port Netgear GS116 GigE Ethernet switches.

Evaluation workload: We show query performance for
256 byte and 1KB values. We select these sizes as proxies
for small text posts, user reviews or status messages, image
thumbnails, and so on. They represent a quite challenging
regime for conventional disk-bound systems and stress the
limited memory and CPU of our wimpy nodes.

4.1. Individual node performance
We benchmark the I/O capability of the FAWN nodes using
iozone and Flexible I/O tester. The flash is formatted with
the ext2 filesystem. These tests read and write 1KB entries,
the lowest record size available in iozone. The filesystem I/O
performance using a 3.5GB file is shown in Table 1.

4.1.1. FAWN-DS single node local benchmarks
Lookup speed: This test shows the query throughput
achieved by a local client issuing queries for randomly
distributed, existing keys on a single node. We report the
average of three runs (the standard deviations were below
5%). Table 2 shows FAWN-DS 1KB and 256 byte random
read queries/s as a function of the DS size. If the datastore
fits in the buffer cache, the node locally retrieves 50,000–
85,000 queries/s. As the datastore exceeds the 256MB of
RAM available on the nodes, a larger fraction of requests
go to flash.

FAWN-DS imposes modest overhead from hash look-
ups, data copies, and key comparisons; and it must read
slightly more data than the iozone tests (each stored entry
has a header). The query throughput, however, remains
high: tests reading a 3.5 GB datastore using 1 KB values
achieved 1,150 queries/s compared to 1,424 queries/s
from the filesystem. Using 256 byte entries achieved 1,298
queries/s from a 3.5 GB datastore. By comparison, the raw
filesystem achieved 1,454 random 256 byte reads/s using
Flexible I/O.

Bulk store speed: The log structure of FAWN-DS ensures
that data insertion is entirely sequential. Inserting 2 million

entries of 1KB each (2GB total) into a single FAWN-DS log
proceeds at 23.2MB/s (nearly 24,000 entries/s), which is 96%
of the raw speed that the flash can be written through the
filesystem.

Put speed: Each FAWN-KV node has R * V FAWN-DS files:
each virtual ID adds one primary data range, plus an addi-
tional R − 1 replicated ranges. A node receiving puts for dif-
ferent ranges will concurrently append to a small number of
files (“semi-random writes”). Good semi-random write per-
formance is central to FAWN-DS’s per range data layout that
enables single-pass maintenance operations. Our recent
work confirms that modern flash devices can provide good
semi-random write performance.1

4.1.2. Comparison with BerkeleyDB
To understand the benefit of FAWN-DS’s log structure, we
compare with a general purpose disk-based database that
is not optimized for flash. BerkeleyDB provides a simple
put/get interface, can be used without heavy-weight trans-
actions or rollback, and performs well vs. other memory
or disk-based databases. We configured BerkeleyDB using
both its default settings and using the reference guide sug-
gestions for flash-based operation.3 The best performance
we achieved required 6 hours to insert 7 million, 200 byte
entries to create a 1.5GB B-Tree database. This corresponds
to an insert rate of 0.07MB/s.

The problem was, of course, small writes: When the
BDB store was larger than the available RAM on the nodes
(<256MB), BDB had to flush pages to disk, causing many
writes that were much smaller than the size of an erase
block.

That comparing FAWN-DS and BDB seems unfair is ex
actly the point: even a well-understood, high-performance
database will perform poorly when its write pattern has
not been specifically optimized to flash characteristics.
We evaluated BDB on top of NILFS2, a log-structured
Linux filesystem for block devices, to understand whether
log-structured writing could turn the random writes into
sequential writes. Unfortunately, this combination was
not suitable because of the amount of metadata created for
small writes for use in filesystem checkpointing and roll-
back, features not needed for FAWN-KV—writing 200MB
worth of 256 bytes key-value pairs generated 3.5GB of meta-
data. Other existing Linux log-structured flash filesystems,
such as JFFS2, are designed to work on raw flash, but mod-
ern SSDs, compact flash, and SD cards all include a Flash
Translation Layer that hides the raw flash chips. While
future improvements to filesystems can speed up naive DB
performance on flash, the pure log structure of FAWN-DS
remains necessary even if we could use a more conven-
tional back end: It provides the basis for replication and
consistency across an array of nodes.

4.1.3. Read-intensive vs. write-intensive workloads
Most read-intensive workloads have some writes. For exam-
ple, Facebook’s memcached workloads have a 1:6 ratio of
application-level puts to gets.11 We therefore measured the
aggregate query rate as the fraction of puts ranging from 0

Table 1. Baseline CompactFlash statistics for 1KB entries.
QPS = Queries/second.

Seq. Read Rand Read Seq. Write Rand. Write

28.5MB/s 1424 QPS 24MB/s 110 QPS

Table 2. Local random read speed of FAWN-DS.

DS Size
1KB Rand Read
(in queries/s)

256 bytes Rand Read
(in queries/s)

10KB 72352 85012
125MB 51968 65412
250MB 6824 5902
500MB 2016 2449
1GB 1595 1964
2GB 1446 1613
3.5GB 1150 1298

july 2011 | vol. 54 | no. 7 | communications of the acm 107

(all gets) to 1 (all puts) on a single node (Figure 6).
FAWN-DS can handle more puts per second than gets

because of its log structure. Even though semi-random write
performance across eight files on our CompactFlash devices
is worse than purely sequential writes, it still achieves higher
throughput than pure random reads.

When the put-ratio is low, the query rate is limited by the
get requests. As the ratio of puts to gets increases, the faster
puts significantly increase the aggregate query rate. On the
other hand, a pure write workload that updates a small sub-
set of keys would require frequent cleaning. In our current
environment and implementation, both read and write
rates slow to about 700–1000 queries/s during compaction,
bottlenecked by increased thread switching and system
call overheads of the cleaning thread. Last, because deletes
are effectively 0 byte value puts, delete-heavy workloads are
similar to insert workloads that update a small set of keys
frequently. In the next section, we mostly evaluate read-
intensive workloads because it represents the target work-
loads for which FAWN-KV is designed.

4.2. FAWN-KV system benchmarks
System throughput: To measure query throughput, we pop-
ulated the KV cluster with 20GB of values and then mea-
sured the maximum rate at which the front end received
query responses for random keys. Figure 7 shows that the
cluster sustained roughly 36,000 256 byte gets per second
(1,700 per second per node) and 24,000 1KB gets per second
(1,100 per second per node). A single node serving a 512MB
datastore over the network could sustain roughly 1,850 256
byte gets per second per node, while Table 2 shows that it
could serve the queries locally at 2,450 256 byte queries per
second per node. Thus, a single node serves roughly 70% of
the sustained rate that a single FAWN-DS could handle with

local queries. The primary reasons for the difference are
the addition of network overhead, request marshaling and
unmarshaling, and load imbalance—with random key dis-
tribution, some back-end nodes receive more queries than
others, slightly reducing system performance.

System power consumption: Using a WattsUp power
meter that logs power draw each second, we measured
the power consumption of our 21-node FAWN-KV cluster
and two network switches. Figure 8 shows that, when idle,
the cluster uses about 83 W, or 3 W/node and 10 W/switch.
During gets, power consumption increases to 99 W, and
during insertions, power consumption is 91 W. Peak get
performance reaches about 36,000 256 bytes queries/s for
the cluster serving the 20GB dataset, so this system, exclud-
ing the front end, provides 364 queries/J.

The front end connects to the back-end nodes through a
1 Gbit/s uplink on the switch, so the cluster requires about
one low-power front end for every 80 nodes—enough front
ends to handle the aggregate query traffic from all the
back ends (80 nodes * 1500 queries/s/node * 1KB/query =
937 Mbit/s). Our prototype front end uses 27 W, which adds
nearly 0.5 W/node amortized over 80 nodes, providing 330
queries/J for the entire system. A high-speed (4 ms seek
time, 10 W) magnetic disk by itself provides less than 25
queries/J—two orders of magnitude fewer than our existing
FAWN prototype.

Network switches currently account for 20% of the
power used by the entire system. Moving to FAWN requires
roughly one 8-to-1 aggregation switch to make a group of
FAWN nodes look like an equivalent-bandwidth server; we
account for this in our evaluation by including the power
of the switch when evaluating FAWN-KV. As designs such
as FAWN reduce the power drawn by servers, the impor-
tance of creating scalable, energy-efficient datacenter net-
works will grow.

5. ALTERNATIVE ARCHITECTURES
When is the FAWN approach likely to beat traditional archi-
tectures? We examine this question by comparing the 3
year total cost of ownership (TCO) for six systems: three
“traditional” servers using magnetic disks, flash SSDs, and
DRAM; and three hypothetical FAWN-like systems using
the same storage technologies. We define the 3 year TCO
as the sum of the capital cost and the 3 year power cost at
10 cents/kWh.

Because the FAWN systems we have built use several-
year-old technology, we study a theoretical 2009 FAWN node

0

2000

4000

6000

8000

10,000

0 0.2 0.4 0.6 0.8 1Q
ue

ri
es

 p
er

 s
ec

on
d

Fraction of put requests

8 FAWN-DS files

1 FAWN-DS file

Figure 6. FAWN supports both read- and write-intensive workloads.
Small writes are cheaper than random reads due to the FAWN-DS log
structure.

0

10,000

20,000

30,000

40,000

0 10 20 30 40 50 60

Q
ue

ri
es

 p
er

 s
ec

on
d

Time (s)

256 B Get Queries

1 KB Get Queries

Figure 7. Query throughput on 21-node FAWN-KV system for 1KB and
256 bytes entry sizes.

60
70
80
90

100

0 50 100 150 200 250 300 350

P
ow

er
 (

W
)

Time (s)

PutsGets Idle

99 W
83 W 91 W

Figure 8. Power consumption of 21-node FAWN-KV system for 256 bytes
values during Puts/Gets.

108 communications of the acm | july 2011 | vol. 54 | no. 7

research highlights

using a low-power CPU that consumes 10W–20 W and costs
∼$150 in volume. We in turn give the benefit of the doubt to
the server systems we compare against—we assume a 2 TB
disk exists that serves 300 queries/s at 10 W.

Our results indicate that both FAWN and traditional sys-
tems have their place—but for the small random-access
workloads we study, traditional systems are surprisingly
absent from much of the solution space, in favor of FAWN
nodes using either disks, flash, or DRAM.

Key to the analysis is a question: why does a cluster need
nodes? The answer is, of course, for both storage space and
query rate. Storing a DS gigabyte dataset with query rate QR
requires N nodes:

With large datasets with low query rates, the number of
nodes required is dominated by the storage capacity per
node: thus, the important metric is the total cost per GB for
an individual node. Conversely, for small datasets with high
query rates, the per node query capacity dictates the number
of nodes: the dominant metric is queries per second per dol-
lar. Between these extremes, systems must provide the best
trade-off between per node storage capacity, query rate, and
power cost.

Table 3 shows these cost and speculative performance
statistics for several candidate systems circa 2009; while
the numbers are outdated, the trends likely still apply. The
“traditional” nodes use 200 W servers that cost $1,000 each.
Traditional + Disk pairs a single server with five 2 TB high-
speed (10,000 RPM) disks capable of 300 queries/s, each disk
consuming 10 W. Traditional + SSD uses two PCI-E Fusion-IO
80GB flash SSDs, each also consuming about 10 W (Cost:
$3 K). Traditional + DRAM uses 8GB server-quality DRAM
modules, each consuming 10 W. FAWN + Disk nodes use
one 2 TB 7200 RPM disk: FAWN nodes have fewer connec-
tors available on the board. FAWN + SSD uses one 32GB Intel
SATA flash SSD capable of 35,000 random reads/s,17 con-
suming 2 W ($400). FAWN + DRAM uses a single 2GB, slower
DRAM module, also consuming 2 W.

Figure 9 shows which base system has the lowest cost for
a particular dataset size and query rate, with dataset sizes
between 100GB and 10PB and query rates between 100 K

and 1 billion/s.
Large datasets, low query rates: FAWN + Disk has the

lowest total cost per GB. While not shown on our graph,
a traditional system wins for exabyte-sized workloads if it
can be configured with sufficient disks per node (over 50),
though packing 50 disks per machine poses reliability
challenges.

Small datasets, high query rates: FAWN + DRAM costs the
fewest dollars per queries per second, keeping in mind that
we do not examine workloads that fit entirely in L2 cache on
a traditional node. This somewhat counterintuitive result is
similar to that made by the intelligent RAM project, which
coupled processors and DRAM to achieve similar benefits4
by avoiding the memory wall. We assume the FAWN nodes
can only accept 2GB of DRAM per node, so for larger data-
sets, a traditional DRAM system provides a high query rate
and requires fewer nodes to store the same amount of data
(64GB vs. 2GB/node).

Middle range: FAWN + SSDs provide the best balance
of storage capacity, query rate, and total cost. If SSD cost
per GB improves relative to magnetic disks, this combina-
tion is likely to continue expanding into the range served
by FAWN +  Disk; if the SSD cost per performance ratio
improves relative to DRAM, so will it reach into DRAM
territory. It is therefore conceivable that FAWN + SSD could
become the dominant architecture for many random-
access workloads.

Are traditional systems obsolete? We emphasize that this
analysis applies only to small, random-access workloads.

Table 3. Traditional and FAWN node statistics.

System Cost W QPS Queries/Joule GB/Watt TCO/GB TCO/QPS

Traditionals
5–2TB Disks $2K 250 1500 6 40 0.26 1.77
160GB PCIe SSD $8K 220 200K 909 0.72 53 0.04
64GB DRAM $3K 280 1M 3.5K 0.23 59 0.004

FAWNs
2TB Disk $350 20 250 12.5 100 0.20 1.61
32GB SSD $500 15 35K 2.3K 2.1 16.9 0.015
2GB DRAM $250 15 100K 6.6K 0.13 134 0.003

0.1

1

10

100

1000

10,000

0.1 1 10 100 1000

D
at

as
et

 s
iz

e
in

 T
B

Query rate (Millions/s)

Traditio
nal + DRAM

FAWN + Disk

FAWN + Flash

FAWN + DRAM

Figure 9. Solution space for lowest 3 year TCO as a function of
dataset size and query rate.

july 2011 | vol. 54 | no. 7 | communications of the acm 109

References
	 1.	A ndersen, D.G., Franklin, J., Kaminsky,

M., Phanishayee, A., Tan, L.,
Vasudevan, V. FAWN: A fast array of
wimpy nodes. In Proceedings of the
22nd ACM Symposium on Operating
Systems Principles (SOSP) (Big Sky,
MT, October 2009).

	 2.	 Barroso, L.A., Hölzle, U. The
case for energy-proportional
computing. Computer 40, 12
(2007), 33–37.

	 3.	 Memory-only or Flash configurations.
http://www.oracle.com/technology/
documentation/ berkeley-db/db/ref/
program/ram.html

	 4.	 Bowman, W., Cardwell, N., Kozyrakis,
C., Romer, C., Wang, H. Evaluation
of existing architectures in IRAM
systems. In Workshop on Mixing
Logic and DRAM, 24th International
Symposium on Computer
Architecture (Denver, CO, June 1997).

	 5.	C aulfield, A.M., Grupp, L.M., Swanson,
S. Gordon: Using flash memory to
build fast, power-efficient clusters
for data-intensive applications.
In 14th International Conference on
Architectural Support for Programming
Languages and Operating Systems
(ASPLOS’09) (San Diego, CA,
March 2009).

	 6.	C hase, J.S., Anderson, D., Thakar,
P., Vahdat, A., Doyle, R. Managing
energy and server resources in
hosting centers. In Proceedings of the
18th ACM Symposium on Operating
Systems Principles (SOSP) (Banff, AB,
Canada, October 2001).

	 7.	 DeCandia, G., Hastorun, D., Jampani, M.,
Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., Vogels,
W. Dynamo: Amazon’s highly available
key-value store. In Proceedings of the
21st ACM Symposium on Operating
Systems Principles (SOSP) (Stevenson,
WA, Oct. 2007).

	 8.	H amilton, J. Cooperative expendable
micro-slice servers (CEMS): Low cost,
low power servers for Internet scale
services, http://mvdirona.com/jrh/
TalksAndPapers/JamesHamilton_
CEHS.pdf (2009).

	 9.	 Penryn Press Release. http://www.
intel.com/pressroom/archive/
releases/20070328fact.htm

	10.	T he Journaling Flash File System.
http://sources.redhat.com/jffs2/

	11.	 Johnson, B. Facebook, personal
communication (November 2008).

	12.	K atz, R.H. Tech titans building boom.
IEEE Spectrum (February 2009).
http://spectrum.ieee.org/green-tech/
buildings/tech-titans-building-boom

	13.	L amport, L. The part-time parliament.
ACM Trans. Comput. Syst., 16, 2,
(1998), 133–169.

	14.	L im, K., Ranganathan, P., Chang, J.,
Patel, C., Mudge, T., Reinhardt, S.
Understanding and designing new
server architectures for emerging
warehouse-computing environments.
In International Symposium on
Computer Architecture (ISCA)
(Beijing, China, June 2008).

	15.	N ath, S., Gibbons, P.B. Online
maintenance of very large random
samples on flash storage. In
Proceedings of VLDB (Auckland,
New Zealand, August 2008).

	16.	N ath, S., Kansal, A. FlashDB:
Dynamic self-tuning database for
NAND flash. In Proceedings of ACM/
IEEE International Conference on
Information Processing in Sensor
Networks (Cambridge, MA, April 2007).

	17.	 Polte, M., Simsa, J., Gibson, G.
Enabling enterprise solid state disks
performance. In Proceedings of the
Workshop on Integrating Solid-State
Memory into the Storage Hierarchy
(Washington, DC, March 2009).

	18.	S toica, I., Morris, R., Karger, D.,
Kaashoek, M.F., Balakrishnan, H.
Chord: A scalable peer-to-peer lookup
service for Internet applications.
August. 2001. http://portal.acm.org/
citation.cfm?id=383071

	19.	S zalay, A., Bell, G., Terzis, A., White,
A., Vandenberg, J. Low power Amdahl
blades for data intensive computing,
2009. http://portal.acm.org/citation.
cfm?id=1740407&dl=ACM

	20.	T olia, N., Wang, Z., Marwah, M.,
Bash, C., Ranganathan, P., Zhu, X.
Delivering energy proportionality
with non energy-proportional
systems—optimizing the ensemble.
In Proceedings of HotPower (Palo
Alto, CA, December 2008).

	21.	 van Renesse, R. Schneider, F.B.
Chain replication for supporting
high throughput and availability. In
Proceedings of the 6th USENIX OSDI
(San Francisco, CA, December 2004).

Sequential-read workloads are similar, but the constants
depend strongly on the per byte processing required.
Traditional cluster architectures retain a place for CPU-
bound workloads, but we do note that architectures such
as IBM’s BlueGene successfully apply large numbers of low-
power, efficient processors to many supercomputing appli-
cations—but they augment their wimpy processors with
custom floating point units to do so.

Our definition of “total cost of ownership” ignores
several notable costs: In comparison to traditional archi-
tectures, FAWN should reduce power and cooling infra-
structure but may increase network-related hardware and
power costs due to the need for more switches. Our current
hardware prototype improves work done per volume, thus
reducing costs associated with datacenter rack or floor
space. Finally, our analysis assumes that cluster software
developers can engineer away the human costs of man-
agement—an optimistic assumption for all architectures.
We similarly ignore issues such as ease of programming,
though we selected an x86-based wimpy platform for ease
of development.

6. RELATED WORK
Several projects are using low-power processors for datacen-
ter workloads to reduce energy consumption.5, 8, 14, 19 These
systems leverage low-cost, low-power commodity compo-
nents for datacenter systems, similarly arguing that this
approach can achieve the highest work per dollar and per
Joule. More recently, ultra-low power server systems have
become commercially available, with companies such as
SeaMicro, Marvell, Calxeda, and ZT Systems producing low-
power datacenter computing systems based on Intel Atom
and ARM platforms.

FAWN builds upon these observations by demonstrating
the importance of re-architecting the software layers in obtain-
ing the potential energy efficiency such hardware can provide.

7. CONCLUSION
The FAWN approach uses nodes that target the “sweet spot”
of per node energy efficiency, typically operating at about
half the frequency of the fastest available CPUs. Our expe-
rience in designing systems using this approach, often
coupled with fast flash memory, has shown that it has sub-
stantial potential to improve energy efficiency, but that
these improvements may come at the cost of re-architecting
software or algorithms to operate with less memory, slower
CPUs, or the quirks of flash memory: The FAWN-KV key-
value system presented here is one such example. By suc-
cessfully adapting the software to this efficient hardware,
our then four-year-old FAWN nodes delivered over an order
of magnitude more queries per Joule than conventional
disk-based systems.

Our ongoing experience with newer FAWN-style systems
shows that its energy efficiency benefits remain achievable,
but that further systems challenges—such as high kernel
I/O overhead—begin to come into play. In this light, we view
our experience with FAWN as a potential harbinger of the
systems challenges that are likely to arise for future many-
core energy-efficient systems.

Acknowledgments
This work was supported in part by gifts from Network
Appliance, Google, and Intel Corporation, and by grant
CCF-0964474 from the National Science Foundation, as
well as graduate fellowships from NSF, IBM, and APC. We
extend our thanks to our OSDI and SOSP reviewers, Vyas
Sekar, Mehul Shah, and to Lorenzo Alvisi for shepherding
the work for SOSP. Iulian Moraru provided feedback and
performance-tuning assistance.�

© 2011 ACM 0001-0782/11/07 $10.00

David G. Andersen, Jason Franklin, Amar
Phanishayee, Lawrence Tan, and Vijay
Vasudevan, Carnegie Mellon University

Michael Kaminsky, lntel Labs

