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Abstract
This paper presents a fast array of wimpy nodes—FAWN—
an approach for achieving low-power data-intensive data-
center computing. FAWN couples low-power processors 
to small amounts of local flash storage, balancing compu-
tation and I/O  capabilities. FAWN optimizes for per node 
energy efficiency to enable efficient, massively parallel 
access to data.

The key contributions of this paper are the principles of 
the FAWN approach and the design and implementation of 
FAWN-KV—a consistent, replicated, highly available, and 
high-performance key-value storage system built on a FAWN 
prototype. Our design centers around purely log-structured 
datastores that provide the basis for high performance on 
flash storage, as well as for replication and consistency 
obtained using chain replication on a consistent hashing 
ring. Our evaluation demonstrates that FAWN clusters can 
handle roughly 350 key-value queries per Joule of energy—
two orders of magnitude more than a disk-based system.

1. INTRODUCTION
Large-scale data-intensive applications, such as high-
performance key-value storage systems, are growing in both 
size and importance; they now are critical parts of major 
Internet services such as Amazon (Dynamo7), Linkedln 
(Voldemort), and Facebook (memcached).

The workloads these systems support share several char-
acteristics: they are I/O, not computation, intensive, requir-
ing random access over large datasets; they are massively 
parallel, with thousands of concurrent, mostly independent 
operations; their high load requires large clusters to sup-
port them; and the size of objects stored is typically small, 
for example, 1KB values for thumbnail images, hundreds of 
bytes for wall posts, and twitter messages.

The clusters that serve these workloads must provide both 
high performance and low-cost operation. Unfortunately, 
small-object random-access workloads are particularly ill 
served by conventional disk-based or memory-based clus-
ters. The poor seek performance of disks makes disk-based 
systems inefficient in terms of both system performance 
and performance per Watt. High-performance DRAM-based 
clusters, storing terabytes or petabytes of data, are expensive 
and power-hungry: Two high-speed DRAM DIMMs can con-
sume as much energy as a 1TB disk.

The power draw of these clusters is becoming an increas-
ing fraction of their cost—up to 50% of the 3 year total cost 
of owning a computer. The density of the datacenters that 
house them is in turn limited by their ability to supply and 

cool 10–20 kW of power per rack and up to 10–20 MW per 
datacenter.12 Future datacenters may require as much as 
200 MW,12 and datacenters are being constructed today with 
dedicated electrical substations to feed them.

These challenges necessitate the question: Can we build 
a cost-effective cluster for data-intensive workloads that 
uses less than a tenth of the power required by a conven-
tional architecture, but that still meets the same capacity, 
availability, throughput, and latency requirements?

The FAWN approach is designed to address this question. 
FAWN couples low-power, efficient CPUs with flash storage 
to provide efficient, fast, and cost-effective access to large, 
random-access data. Flash is faster than disk, cheaper than 
DRAM, and consumes less power than either. Thus, it is a 
particularly suitable choice for FAWN and its workloads. 
FAWN represents a class of systems that targets both sys-
tem balance and per node energy efficiency: the 2008-era 
FAWN prototypes used in this work used embedded CPUs 
and CompactFlash, while today a FAWN node might be com-
posed of laptop processors and higher-speed SSDs. Relative 
to today’s highest-end computers, a contemporary FAWN 
system might use dual or quad-core 1.6 GHz CPUs with 
1–4GB of DRAM.

To show that it is practical to use these constrained 
nodes as the core of a large system, we designed and built 
the FAWN-KV cluster-based key-value store, which provides 
storage functionality similar to that used in several large 
enterprises.7 FAWN-KV is designed to exploit the advantages 
and avoid the limitations of wimpy nodes with flash memory 
for storage.

The key design choice in FAWN-KV is the use of a log-
structured per node datastore called FAWN-DS that provides 
high-performance reads and writes using flash memory. 
This append-only data log provides the basis for repli-
cation and strong consistency using chain replication21 
between nodes. Data is distributed across nodes using 
consistent hashing, with data split into contiguous ranges 
on disk such that all replication and node insertion opera-
tions involve only a fully in-order traversal of the subset 
of data that must be copied to a new node. Together with 
the log structure, these properties combine to provide fast 
failover and fast node insertion, and they minimize the 
time the affected datastore’s key range is locked during 
such operations.

The original version of this paper was published in 
Proceedings of the 22nd ACM Symposium of Operating 
Systems Principles, October 2009.
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consumption,2 requiring that all components be scaled back 
with demand. As a result, a computer may consume over 50% 
of its peak power when running at only 20% of its capacity.20 
Despite improved power scaling technology, systems remain 
most energy efficient when operating at peak utilization.

A promising path to energy proportionality is turning 
machines off entirely.6 Unfortunately, these techniques do 
not apply well to FAWN-KV’s target workloads: key-value 
systems must often meet service-level agreements for query 
throughput and latency of hundreds of milliseconds; the 
inter-arrival time and latency bounds of the requests pre-
vent shutting machines down (and taking many seconds to 
wake them up again) during low load.2

Finally, energy proportionality alone is not a panacea: 
Systems should be both proportional and efficient at 100% 
load. FAWN specifically addresses efficiency, and clus-
ter techniques that improve proportionality should apply 
universally.

3. DESIGN AND IMPLEMENTATION
We describe the design and implementation of the system 
components from the bottom up: a brief overview of flash 
storage (Section 3.2), the per node FAWN-DS datastore 
(Section 3.3), and the FAWN-KV cluster key-value lookup sys-
tem (Section 3.4), including replication and consistency.

3.1. Design overview
Figure 1 gives an overview of the entire FAWN system. 
Client requests enter the system at one of several front ends. 
The front-end nodes forward the request to the back-end 
FAWN-KV node responsible for serving that particular key. 
The back-end node serves the request from its FAWN-DS 
datastore and returns the result to the front end (which in 
turn replies to the client). Writes proceed similarly.

The large number of back-end FAWN-KV storage nodes 
is organized into a ring using consistent hashing. As in sys-
tems such as Chord,18 keys are mapped to the node that fol-
lows the key in the ring (its successor). To balance load and 
reduce failover times, each physical node joins the ring as a 
small number (V) of virtual nodes, each virtual node repre-
senting a virtual ID (“VID”) in the ring space. Each physical 
node is thus responsible for V different (noncontiguous) key 
ranges. The data associated with each virtual ID is stored on 
flash using FAWN-DS.

We have built a prototype 21-node FAWN cluster using 
500 MHz embedded CPUs. Each node can serve up to 1300 
256 byte queries/s, exploiting nearly all of the raw I/O capa-
bility of their attached flash devices, and consumes under 
5 W when network and support hardware is taken into 
account. The FAWN cluster achieves 330 queries/J—two 
orders of magnitude better than traditional disk-based 
clusters.

2. WHY FAWN?
The FAWN approach to building well-matched cluster sys-
tems has the potential to achieve high performance and 
be fundamentally more energy-efficient than conven-
tional architectures for serving massive-scale I/O and data-
intensive workloads. We measure system performance in 
queries per second and measure energy efficiency in queries 
per Joule (equivalently, queries per second per Watt). FAWN 
is inspired by several fundamental trends:

Increasing CPU-I/O gap: Over the past several decades, 
the gap between CPU performance and I/O bandwidth has 
continually grown. For data-intensive computing workloads, 
storage, network, and memory bandwidth bottlenecks often 
cause low CPU utilization.

FAWN approach: To efficiently run I/O-bound data-
intensive, computationally simple applications, FAWN uses 
wimpy processors selected to reduce I/O-induced idle cycles 
while maintaining high performance. The reduced proces-
sor speed then benefits from a second trend.

CPU power consumption grows super-linearly with 
speed: Higher frequencies require more energy, and tech-
niques to mask the CPU-memory bottleneck come at the 
cost of energy efficiency. Branch prediction, speculative 
execution, out-of-order execution and large on-chip caches 
all require additional die area; modern processors dedi-
cate as much as half their die to L2/3 caches.9 These tech-
niques do not increase the speed of basic computations, 
but do increase power consumption, making faster CPUs 
less energy efficient.

FAWN approach: A FAWN cluster’s slower CPUs dedi-
cate proportionally more transistors to basic operations. 
These CPUs execute significantly more instructions per 
Joule than their faster counterparts: multi-GHz superscalar 
quad-core processors can execute approximately 100 mil-
lion instructions/J, assuming all cores are active and avoid 
stalls or mispredictions. Lower-frequency in-order CPUs, 
in contrast, can provide over 1 billion instructions/J—an 
order of magnitude more efficient while running at 1/3 the 
frequency.

Worse yet, running fast processors below their full capacity 
draws a disproportionate amount of power.

Dynamic power scaling on traditional systems is sur-
prisingly inefficient: A primary energy-saving benefit of 
dynamic voltage and frequency scaling (DVFS) was its abil-
ity to reduce voltage as it reduced frequency, but modern 
CPUs already operate near minimum voltage at the highest 
frequencies.

Even if processor energy was completely proportional 
to load, non-CPU components such as memory, mother-
boards, and power supplies have begun to dominate energy 

Figure 1. FAWN-KV architecture.
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3.2. Understanding flash storage
Flash provides a non-volatile memory store with several 
significant benefits over typical magnetic hard disks for 
random-access, read-intensive workloads—but it also 
introduces several challenges. Three characteristics of flash 
underlie the design of the FAWN-KV system described in 
this section:

1.  Fast random reads: (1 ms) up to 175 times faster 
than random reads on magnetic disk.17

2.  Efficient I/O: Many flash devices consume less than 
1 W even under heavy load, whereas mechanical disks 
can consume over 10 W at load.

3.  Slow random writes: Small writes on flash are expen-
sive. Updating a single page requires first erasing an 
entire erase block (128–256KB) of pages and then writ-
ing the modified block in its entirety. Updating a single 
byte of data is therefore as expensive as writing an 
entire block of pages.16

Modern devices improve random write performance 
using write buffering and preemptive block erasure. These 
techniques improve performance for short bursts of writes, 
but sustained random writes still underperform.17

These performance problems motivate log-structured 
techniques for flash filesystems and data structures.10, 15, 16 
These same considerations inform the design of FAWN’s 
node storage management system, described next.

3.3. The FAWN datastore
FAWN-DS is a log-structured key-value store. Each store con-
tains values for the key range associated with one virtual ID. It 
acts to clients like a disk-based hash table that supports Store, 
Lookup, and Delete.

FAWN-DS is designed to perform well on flash storage 
and to operate within the constrained DRAM available on 
wimpy nodes: all writes to the datastore are sequential, and 
reads require a single random access. To provide this prop-
erty, FAWN-DS maintains an in-DRAM hash table (Hash 
Index) that maps keys to an offset in the append-only Data 
Log on flash (Figure 2a). This log-structured design is simi-
lar to several append-only filesystems such as the Google 
File System (GFS) and Venti, which avoid random seeks on 
magnetic disks for writes.

Mapping a key to a value: FAWN-DS uses an in-memory 
(DRAM) Hash Index to map 160 bit keys to a value stored in 
the Data Log. It stores only a fragment of the actual key in 
memory to find a location in the log; it then reads the full 
key (and the value) from the log and verifies that the key it 
read was, in fact, the correct key. This design trades a small 
and configurable chance of requiring two reads from flash 
(we  set it to roughly 1 in 32,768 accesses) for drastically 
reduced memory requirements (only 6 bytes of DRAM per 
key-value pair).

FAWN-DS’s Lookup procedure extracts two fields from 
the 160 bit key: the i low order bits of the key (the index bits) 
and the next 15 low order bits (the key fragment). FAWN-DS 
uses the index bits to select a bucket from the Hash Index, 
which contains 2i hash buckets. Each bucket is 6 bytes: a 15 
bit key fragment, a valid bit, and a 4 byte pointer to the loca-
tion in the Data Log where the full entry is stored.

Lookup proceeds, then, by locating a bucket using the 
index bits and comparing the key against the key fragment. 
If the fragments do not match, FAWN-DS uses hash chain-
ing to continue searching the hash table. Once it finds a 
matching key fragment, FAWN-DS reads the record off 
of the flash. If the stored full key in the on-flash record 
matches the desired lookup key, the operation is complete. 
Otherwise, FAWN-DS resumes its hash chaining search of 
the in-memory hash table and searches additional records. 
With the 15-bit key fragment, only 1 in 32,768 retrievals 
from the flash will be incorrect and require fetching an 
additional record.

The constants involved (15 bits of key fragment, 4 
bytes of log pointer) target the prototype FAWN nodes 
described in Section 4. A typical object is between 
256 bytes and 1KB, and the nodes have 256MB of DRAM 
and approximately 4GB of flash storage. Because each 
physical node is responsible for V key ranges (each with 
its own datastore file), it  can address 4GB * V bytes of 
data. Expanding the in-memory storage to 7 bytes per 
entry would permit FAWN-DS to address 1TB of data per 
key range. While some additional optimizations are pos-
sible, such as rounding the size of objects stored in flash 
or reducing the number of bits used for the key fragment 
(and thus incurring, e.g., a 1-in-1000 chance of having to 
do two reads from flash), the current design works well 
for the key-value workloads we study.

Figure 2. (a) FAWN-DS appends writes to the end of the Data Log. (b) Split requires a sequential scan of the data region, transferring  
out-of-range entries to the new store. (c) After scan completes, the datastore list is atomically updated to add the new store.  
Compaction of the original store cleans up out-of-range entries.
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Reconstruction: The Data Log contains all the informa-
tion necessary to reconstruct the Hash Index from scratch. 
As an optimization, FAWN-DS periodically checkpoints the 
index by writing the Hash Index and a pointer to the last 
log entry to flash. After a failure, FAWN-DS uses the check-
point as a starting point to reconstruct the in-memory 
Hash Index.

Virtual IDs and semi-random writes: A physical node has 
a separate FAWN-DS datastore file for each of its virtual IDs, 
and FAWN-DS appends new or updated data items to the 
appropriate datastore. Sequentially appending to a small 
number of files is termed semi-random writes. With many 
flash devices, these semi-random writes are nearly as fast 
as a single sequential append.15 We take advantage of this 
property to retain fast write performance while allowing 
key ranges to be stored in independent files to speed the 
maintenance operations described in the following.

3.3.1. Basic functions: Store, lookup, delete
Store appends an entry to the log, updates the corre-
sponding hash table entry to point to the offset of the newly 
appended entry within the Data Log, and sets the valid bit 
to true. If the key written already existed, the old value is 
now orphaned (no hash entry points to it) for later garbage 
collection.

Lookup retrieves the hash entry containing the offset, 
indexes into the Data Log, and returns the data blob.

Delete invalidates the hash entry corresponding to the 
key and writes a Delete entry to the end of the data file. The 
delete entry is necessary for fault tolerance—the invalidated 
hash table entry is not immediately committed to non-
volatile storage to avoid random writes, so a failure follow-
ing a delete requires a log to ensure that recovery will delete 
the entry upon reconstruction. Because of its log structure, 
FAWN-DS deletes are similar to store operations with 0 
byte values. Deletes do not immediately reclaim space and 
require compaction to perform garbage collection. This 
design defers the cost of a random write to a later sequential 
write operation.

3.3.2. Maintenance: Split, merge, compact
Inserting a new virtual node into the ring causes one key 
range to split into two, with the new virtual node gaining 
responsibility for the first part of it. Nodes handling these 
VIDs must therefore Split their datastore into two datas-
tores, one for each key range. When a virtual node departs the 
system, two adjacent key ranges must similarly Merge into 
a single datastore. In addition, a virtual node must periodi-
cally Compact its datastores to clean up stale or orphaned 
entries created by Split, Store, and Delete.

These maintenance functions are designed to work well 
on flash, requiring only scans of one datastore and sequen-
tial writes into another.

Split parses the Data Log sequentially, writing each 
entry in a new datastore if its key falls in the new datastore’s 
range.

Merge writes every log entry from one datastore into the 
other datastore; because the key ranges are independent, 
it does so as an append. Split and Merge propagate delete 

entries into the new datastore.
Compact cleans up entries in a datastore, similar to 

garbage collection in a log-structured filesystem. It skips 
entries that fall outside of the datastore’s key range, which 
may be leftover after a split. It also skips orphaned entries 
that no in-memory hash table entry points to, and then skips 
any delete entries corresponding to those entries. It writes all 
other valid entries into the output datastore.

3.3.3. Concurrent maintenance and operation
All FAWN-DS maintenance functions allow concurrent reads 
and writes to the datastore. Stores and Deletes only 
modify hash table entries and write to the end of the log.

Maintenance operations (Split, Merge, and Compact) 
sequentially parse the Data Log, which may be growing due 
to deletes and stores. Because the log is append only, a log 
entry once parsed will never be changed. These operations 
each create one new output datastore logfile. The mainte-
nance operations run until they reach the end of the log, and 
then briefly lock the datastore, ensure that all values flushed 
to the old log have been processed, update the FAWN-DS 
datastore list to point to the newly created log, and release 
the lock (Figure 2c).

3.4. The FAWN key-value system
In FAWN-KV, client applications send requests to front ends 
using a standard put/get interface. Front ends send the 
request to the back-end node that owns the key space for the 
request. The back-end node satisfies the request using its 
FAWN-DS and replies to the front ends.

3.4.1. Consistent hashing: Key ranges to nodes
A typical FAWN cluster will have several front ends and 
many back ends. FAWN-KV organizes the back-end VIDs 
into a storage ring-structure using consistent hashing.18 
Front ends maintain the entire node membership list and 
directly forward queries to the back-end node that contains 
a particular data item.

Each front-end node manages the VID membership list 
and queries for a large contiguous chunk of the key space. 
A front end receiving queries for keys outside of its range 
forwards the queries to the appropriate front-end node. 
This design either requires clients to be roughly aware of 
the front-end mapping or doubles the traffic that front ends 
must handle, but it permits front ends to cache values with-
out a cache consistency protocol.

The key space is allocated to front ends by a single man-
agement node; we envision this node being replicated 
using a small Paxos cluster,13 but we have not (yet) imple-
mented this. There would be 80 or more back-end nodes 
per front-end node with our current hardware prototypes, 
so the amount of information this management node 
maintains is small and changes infrequently—a list of 125 
front ends would suffice for a 10,000 node FAWN cluster. 
When a back-end node joins, it obtains the list of front-
end IDs. It uses this list to determine which front ends to 
contact to join the ring, one VID at a time. We chose this 
design so that the system would be robust to front-end node 
failures: The back-end node identifier (and thus, what keys 
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it is responsible for) is a deterministic function of the back-
end node ID. If a front-end node fails, data does not move 
between back-end nodes, though virtual nodes may have to 
attach to a new front end.

FAWN-KV uses a 160 bit circular ID space for VIDs and 
keys. Virtual IDs are hashed identifiers derived from the 
node’s address. Each VID owns the items for which it is the 
item’s successor in the ring space (the node immediately 
clockwise in the ring). As an example, consider the cluster 
depicted in Figure 3 with five physical nodes, each of which 
has two VIDs. The physical node A appears as VIDs A1 and A2, 
each with its own 160 bit identifiers. VID A1 owns key range 
R1, VID B1 owns range R2, and so on.

3.4.2. Replication and consistency
FAWN-KV offers a configurable replication factor for fault 
tolerance. Items are stored at their successor in the ring 
space and at the R − 1 following virtual IDs. FAWN-KV uses 
chain replication21 to provide strong consistency on a per 
key basis. Updates are sent to the head of the chain, passed 
along  to each member of the chain via a TCP connection 
between the nodes, and queries are sent to the tail of the 
chain. By mapping chain replication to the consistent hash-
ing ring, each virtual ID in FAWN-KV is part of R different 
chains: it is the “tail” for one chain, a “mid” node in R − 2 
chains, and the “head” for one. Figure 4 depicts a ring with 

six physical nodes, where each has two virtual IDs (V = 2), 
using a replication factor of 3. In this figure, node Cl is the 
tail for range Rl, mid for range R2, and tail for range R3.

Figure 5 shows a put request for an item in range R1. 
The front end sends the put to the key’s successor, VID A1, 
which is the head of the replica chain for this range. After 
storing the value in its datastore, A1 forwards this request 
to B1, which stores the value and forwards the request to the 
tail, C1. After storing the value, Cl sends the put response 
back to the front end and sends an acknowledgment back 
up the chain indicating that the response was handled 
properly.

For reliability, nodes buffer put requests until they 
receive the acknowledgment. Because puts are written 
to an append-only log in FAWN-DS and are sent in-order 
along the chain, this operation is simple: nodes maintain 
a pointer to the last unacknowledged put in their datastore 
and increment it when they receive an acknowledgment. 
By using a log-structured datastore, chain replication in 
FAWN-KV reduces to simply streaming the datastore from 
node to node.

Get requests proceed as in chain replication—the front 
end directly routes gets to the tail of the chain for range R1, 
node Cl, which responds to requests. Any update seen by 
the tail has therefore also been applied by other replicas in 
the chain.

4. EVALUATION
We begin by characterizing the baseline I/O performance 
of a node. We then show that FAWN-DS’s performance is 
similar to the node’s baseline I/O capability. To illustrate 
the advantages of FAWN-DS’s design, we compare its per-
formance to an implementation using the general-purpose 
BerkeleyDB, which is not optimized for flash writes. We 
then study a prototype FAWN-KV system running on a 
21-node cluster, evaluating its energy efficiency in queries 
per second per Watt.

Evaluation hardware: Our FAWN cluster has 21 back-end 
nodes built from commodity PCEngine Alix 3c2 devices, 
commonly used for thin clients, kiosks, network firewalls, 
wireless routers, and other embedded applications. These 
devices have a single-core 500 MHz AMD Geode LX pro-
cessor, 256MB DDR SDRAM operating at 400 MHz, and 
100 Mbit/s Ethernet. Each node contains one 4GB Sandisk 
Extreme IV CompactFlash device. A node consumes 3 W 
when idle and a maximum of 6 W when using 100% CPU, 
network, and flash. The nodes are connected to each other 
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and to a 27 W Intel Atom-based front-end node using two 
16-port Netgear GS116 GigE Ethernet switches.

Evaluation workload: We show query performance for 
256  byte and 1KB values. We select these sizes as proxies 
for small text posts, user reviews or status messages, image 
thumbnails, and so on. They represent a quite challenging 
regime for conventional disk-bound systems and stress the 
limited memory and CPU of our wimpy nodes.

4.1. Individual node performance
We benchmark the I/O capability of the FAWN nodes using 
iozone and Flexible I/O tester. The flash is formatted with 
the ext2 filesystem. These tests read and write 1KB entries, 
the lowest record size available in iozone. The filesystem I/O 
performance using a 3.5GB file is shown in Table 1.

4.1.1. FAWN-DS single node local benchmarks
Lookup speed: This test shows the query throughput 
achieved by a local client issuing queries for randomly 
distributed, existing keys on a single node. We report the 
average of three runs (the standard deviations were below 
5%). Table 2 shows FAWN-DS 1KB and 256 byte random 
read queries/s as a function of the DS size. If the datastore 
fits in the buffer cache, the node locally retrieves 50,000–
85,000 queries/s. As the datastore exceeds the 256MB of 
RAM available on the nodes, a larger fraction of requests 
go to flash.

FAWN-DS imposes modest overhead from hash look-
ups, data copies, and key comparisons; and it must read 
slightly more data than the iozone tests (each stored entry 
has a header). The query throughput, however, remains 
high: tests reading a 3.5 GB datastore using 1 KB values 
achieved 1,150 queries/s compared to 1,424 queries/s 
from the filesystem. Using 256 byte entries achieved 1,298 
queries/s from a 3.5 GB datastore. By comparison, the raw 
filesystem achieved 1,454 random 256 byte reads/s using 
Flexible I/O.

Bulk store speed: The log structure of FAWN-DS ensures 
that data insertion is entirely sequential. Inserting 2 million 

entries of 1KB each (2GB total) into a single FAWN-DS log 
proceeds at 23.2MB/s (nearly 24,000 entries/s), which is 96% 
of the raw speed that the flash can be written through the 
filesystem.

Put speed: Each FAWN-KV node has R * V FAWN-DS files: 
each virtual ID adds one primary data range, plus an addi-
tional R − 1 replicated ranges. A node receiving puts for dif-
ferent ranges will concurrently append to a small number of 
files (“semi-random writes”). Good semi-random write per-
formance is central to FAWN-DS’s per range data layout that 
enables single-pass maintenance operations. Our recent 
work confirms that modern flash devices can provide good 
semi-random write performance.1

4.1.2. Comparison with BerkeleyDB
To understand the benefit of FAWN-DS’s log structure, we 
compare with a general purpose disk-based database that 
is not optimized for flash. BerkeleyDB provides a simple 
put/get interface, can be used without heavy-weight trans-
actions or rollback, and performs well vs. other memory 
or disk-based databases. We configured BerkeleyDB using 
both its default settings and using the reference guide sug-
gestions for flash-based operation.3 The best performance 
we achieved required 6 hours to insert 7 million, 200 byte 
entries to create a 1.5GB B-Tree database. This corresponds 
to an insert rate of 0.07MB/s.

The problem was, of course, small writes: When the 
BDB store was larger than the available RAM on the nodes 
(<256MB), BDB had to flush pages to disk, causing many 
writes that were much smaller than the size of an erase 
block.

That comparing FAWN-DS and BDB seems unfair is ex
actly the point: even a well-understood, high-performance 
database will perform poorly when its write pattern has 
not been specifically optimized to flash characteristics. 
We evaluated BDB on top of NILFS2, a log-structured 
Linux filesystem for block devices, to understand whether 
log-structured writing could turn the random writes into 
sequential writes. Unfortunately, this combination was 
not suitable because of the amount of metadata created for 
small writes for use in filesystem checkpointing and roll-
back, features not needed for FAWN-KV—writing 200MB 
worth of 256 bytes key-value pairs generated 3.5GB of meta-
data. Other existing Linux log-structured flash filesystems, 
such as JFFS2, are designed to work on raw flash, but mod-
ern SSDs, compact flash, and SD cards all include a Flash 
Translation Layer that hides the raw flash chips. While 
future improvements to filesystems can speed up naive DB 
performance on flash, the pure log structure of FAWN-DS 
remains necessary even if we could use a more conven-
tional back end: It provides the basis for replication and 
consistency across an array of nodes.

4.1.3. Read-intensive vs. write-intensive workloads
Most read-intensive workloads have some writes. For exam-
ple, Facebook’s memcached workloads have a 1:6 ratio of 
application-level puts to gets.11 We therefore measured the 
aggregate query rate as the fraction of puts ranging from 0 

Table 1. Baseline CompactFlash statistics for 1KB entries.  
QPS = Queries/second.

Seq. Read Rand Read Seq. Write Rand. Write

28.5MB/s 1424 QPS 24MB/s 110 QPS

Table 2. Local random read speed of FAWN-DS.

DS Size
1KB Rand Read 
(in queries/s)

256 bytes Rand Read
(in queries/s)

10KB 72352 85012
125MB 51968 65412
250MB 6824 5902
500MB 2016 2449
1GB 1595 1964
2GB 1446 1613
3.5GB 1150 1298
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(all gets) to 1 (all puts) on a single node (Figure 6).
FAWN-DS can handle more puts per second than gets 

because of its log structure. Even though semi-random write 
performance across eight files on our CompactFlash devices 
is worse than purely sequential writes, it still achieves higher 
throughput than pure random reads.

When the put-ratio is low, the query rate is limited by the 
get requests. As the ratio of puts to gets increases, the faster 
puts significantly increase the aggregate query rate. On the 
other hand, a pure write workload that updates a small sub-
set of keys would require frequent cleaning. In our current 
environment and implementation, both read and write 
rates slow to about 700–1000 queries/s during compaction, 
bottlenecked by increased thread switching and system 
call overheads of the cleaning thread. Last, because deletes 
are effectively 0 byte value puts, delete-heavy workloads are 
similar to insert workloads that update a small set of keys 
frequently. In the next section, we mostly evaluate read-
intensive workloads because it represents the target work-
loads for which FAWN-KV is designed.

4.2. FAWN-KV system benchmarks
System throughput: To measure query throughput, we pop-
ulated the KV cluster with 20GB of values and then mea-
sured the maximum rate at which the front end received 
query responses for random keys. Figure 7 shows that the 
cluster sustained roughly 36,000 256 byte gets per second 
(1,700 per second per node) and 24,000 1KB gets per second 
(1,100 per second per node). A single node serving a 512MB 
datastore over the network could sustain roughly 1,850 256 
byte gets per second per node, while Table 2 shows that it 
could serve the queries locally at 2,450 256 byte queries per 
second per node. Thus, a single node serves roughly 70% of 
the sustained rate that a single FAWN-DS could handle with 

local queries. The primary reasons for the difference are 
the addition of network overhead, request marshaling and 
unmarshaling, and load imbalance—with random key dis-
tribution, some back-end nodes receive more queries than 
others, slightly reducing system performance.

System power consumption: Using a WattsUp power 
meter that logs power draw each second, we measured 
the power consumption of our 21-node FAWN-KV cluster 
and two network switches. Figure 8 shows that, when idle, 
the cluster uses about 83 W, or 3 W/node and 10 W/switch. 
During gets, power consumption increases to 99 W, and 
during insertions, power consumption is 91 W. Peak get 
performance reaches about 36,000 256 bytes queries/s for 
the cluster serving the 20GB dataset, so this system, exclud-
ing the front end, provides 364 queries/J.

The front end connects to the back-end nodes through a 
1 Gbit/s uplink on the switch, so the cluster requires about 
one low-power front end for every 80 nodes—enough front 
ends to handle the aggregate query traffic from all the 
back ends (80 nodes * 1500 queries/s/node * 1KB/query = 
937 Mbit/s). Our prototype front end uses 27 W, which adds 
nearly 0.5 W/node amortized over 80 nodes, providing 330 
queries/J for the entire system. A high-speed (4 ms seek 
time, 10 W) magnetic disk by itself provides less than 25 
queries/J—two orders of magnitude fewer than our existing 
FAWN prototype.

Network switches currently account for 20% of the 
power used by the entire system. Moving to FAWN requires 
roughly one 8-to-1 aggregation switch to make a group of 
FAWN nodes look like an equivalent-bandwidth server; we 
account for this in our evaluation by including the power 
of the switch when evaluating FAWN-KV. As designs such 
as FAWN reduce the power drawn by servers, the impor-
tance of creating scalable, energy-efficient datacenter net-
works will grow.

5. ALTERNATIVE ARCHITECTURES
When is the FAWN approach likely to beat traditional archi-
tectures? We examine this question by comparing the 3 
year total cost of ownership (TCO) for six systems: three 
“traditional” servers using magnetic disks, flash SSDs, and 
DRAM; and three hypothetical FAWN-like systems using 
the same storage technologies. We define the 3 year TCO 
as the sum of the capital cost and the 3 year power cost at 
10 cents/kWh.

Because the FAWN systems we have built use several-
year-old technology, we study a theoretical 2009 FAWN node 
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using a low-power CPU that consumes 10W–20 W and costs 
∼$150 in volume. We in turn give the benefit of the doubt to 
the server systems we compare against—we assume a 2 TB 
disk exists that serves 300 queries/s at 10 W.

Our results indicate that both FAWN and traditional sys-
tems have their place—but for the small random-access 
workloads we study, traditional systems are surprisingly 
absent from much of the solution space, in favor of FAWN 
nodes using either disks, flash, or DRAM.

Key to the analysis is a question: why does a cluster need 
nodes? The answer is, of course, for both storage space and 
query rate. Storing a DS gigabyte dataset with query rate QR 
requires N nodes:

With large datasets with low query rates, the number of 
nodes required is dominated by the storage capacity per 
node: thus, the important metric is the total cost per GB for 
an individual node. Conversely, for small datasets with high 
query rates, the per node query capacity dictates the number 
of nodes: the dominant metric is queries per second per dol-
lar. Between these extremes, systems must provide the best 
trade-off between per node storage capacity, query rate, and 
power cost.

Table 3 shows these cost and speculative performance 
statistics for several candidate systems circa 2009; while 
the numbers are outdated, the trends likely still apply. The 
“traditional” nodes use 200 W servers that cost $1,000 each. 
Traditional + Disk pairs a single server with five 2 TB high-
speed (10,000 RPM) disks capable of 300 queries/s, each disk 
consuming 10 W. Traditional + SSD uses two PCI-E Fusion-IO 
80GB flash SSDs, each also consuming about 10 W (Cost: 
$3 K). Traditional + DRAM uses 8GB server-quality DRAM 
modules, each consuming 10 W. FAWN + Disk nodes use 
one 2 TB 7200 RPM disk: FAWN nodes have fewer connec-
tors available on the board. FAWN + SSD uses one 32GB Intel 
SATA flash SSD capable of 35,000 random reads/s,17 con-
suming 2 W ($400). FAWN + DRAM uses a single 2GB, slower 
DRAM module, also consuming 2 W.

Figure 9 shows which base system has the lowest cost for 
a particular dataset size and query rate, with dataset sizes 
between 100GB and 10PB and query rates between 100 K 

and 1 billion/s.
Large datasets, low query rates: FAWN + Disk has the 

lowest total cost per GB. While not shown on our graph, 
a traditional system wins for exabyte-sized workloads if it 
can be configured with sufficient disks per node (over 50), 
though packing 50 disks per machine poses reliability 
challenges.

Small datasets, high query rates: FAWN + DRAM costs the 
fewest dollars per queries per second, keeping in mind that 
we do not examine workloads that fit entirely in L2 cache on 
a traditional node. This somewhat counterintuitive result is 
similar to that made by the intelligent RAM project, which 
coupled processors and DRAM to achieve similar benefits4 
by avoiding the memory wall. We assume the FAWN nodes 
can only accept 2GB of DRAM per node, so for larger data-
sets, a traditional DRAM system provides a high query rate 
and requires fewer nodes to store the same amount of data 
(64GB vs. 2GB/node).

Middle range: FAWN + SSDs provide the best balance 
of storage capacity, query rate, and total cost. If SSD cost 
per GB improves relative to magnetic disks, this combina-
tion is likely to continue expanding into the range served 
by FAWN +  Disk; if the SSD cost per performance ratio 
improves relative to DRAM, so will it reach into DRAM 
territory. It is therefore conceivable that FAWN + SSD could 
become the dominant architecture for many random-
access workloads.

Are traditional systems obsolete? We emphasize that this 
analysis applies only to small, random-access workloads. 

Table 3. Traditional and FAWN node statistics.

System Cost W QPS Queries/Joule GB/Watt TCO/GB TCO/QPS

Traditionals
5–2TB Disks $2K 250 1500 6 40 0.26 1.77
160GB PCIe SSD $8K 220 200K 909 0.72 53 0.04
64GB DRAM $3K 280 1M 3.5K 0.23 59 0.004

FAWNs
2TB Disk $350 20 250 12.5 100 0.20 1.61
32GB SSD $500 15 35K 2.3K 2.1 16.9 0.015
2GB DRAM $250 15 100K 6.6K 0.13 134 0.003
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Sequential-read workloads are similar, but the constants 
depend strongly on the per byte processing required. 
Traditional cluster architectures retain a place for CPU-
bound workloads, but we do note that architectures such 
as IBM’s BlueGene successfully apply large numbers of low-
power, efficient processors to many supercomputing appli-
cations—but they augment their wimpy processors with 
custom floating point units to do so.

Our definition of “total cost of ownership” ignores 
several notable costs: In comparison to traditional archi-
tectures, FAWN should reduce power and cooling infra-
structure but may increase network-related hardware and 
power costs due to the need for more switches. Our current 
hardware prototype improves work done per volume, thus 
reducing costs associated with datacenter rack or floor 
space. Finally, our analysis assumes that cluster software 
developers can engineer away the human costs of man-
agement—an optimistic assumption for all architectures. 
We similarly ignore issues such as ease of programming, 
though we selected an x86-based wimpy platform for ease 
of development.

6. RELATED WORK
Several projects are using low-power processors for datacen-
ter workloads to reduce energy consumption.5, 8, 14, 19 These 
systems leverage low-cost, low-power commodity compo-
nents for datacenter systems, similarly arguing that this 
approach can achieve the highest work per dollar and per 
Joule. More recently, ultra-low power server systems have 
become commercially available, with companies such as 
SeaMicro, Marvell, Calxeda, and ZT Systems producing low-
power datacenter computing systems based on Intel Atom 
and ARM platforms.

FAWN builds upon these observations by demonstrating 
the importance of re-architecting the software layers in obtain-
ing the potential energy efficiency such hardware can provide.

7. CONCLUSION
The FAWN approach uses nodes that target the “sweet spot” 
of per node energy efficiency, typically operating at about 
half the frequency of the fastest available CPUs. Our expe-
rience in designing systems using this approach, often 
coupled with fast flash memory, has shown that it has sub-
stantial potential to improve energy efficiency, but that 
these improvements may come at the cost of re-architecting 
software or algorithms to operate with less memory, slower 
CPUs, or the quirks of flash memory: The FAWN-KV key-
value system presented here is one such example. By suc-
cessfully adapting the software to this efficient hardware, 
our then four-year-old FAWN nodes delivered over an order 
of magnitude more queries per Joule than conventional 
disk-based systems.

Our ongoing experience with newer FAWN-style systems 
shows that its energy efficiency benefits remain achievable, 
but that further systems challenges—such as high kernel 
I/O overhead—begin to come into play. In this light, we view 
our experience with FAWN as a potential harbinger of the 
systems challenges that are likely to arise for future many-
core energy-efficient systems.
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