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Abstract—Online anomaly detection is an important step
in data center management, requiring light-weight techniaies
that provide sufficient accuracy for subsequent diagnosis rad
management actions. This paper presents statistical teciques
based on the Tukey and Relative Entropy statistics, and aps
them to data collected from a production environment and to
data captured from a testbed for multi-tier web applications
running on server class machines. The proposed techniquesea
lightweight and improve over standard Gaussian assumptios in
terms of performance.

|. INTRODUCTION

Commercial data center environments are increasingly-ch
acterized by extremely large scale and complexity. Indigld
applications like Hadoop MapReduce and Web 2.0 can invol
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characteristics and patterns including day of the week, and
hour of the day patterns of workload behavior. The methods
also need to be aware of and address the dynamic nature
of data center systems and applications, including dealing
with application arrivals and departures, changes in veard]

and system-level load balancing through say, virtual nrehi
migration. Finally, the solutions must exhibit good acayra
and low false alarm for meaningful results.

The state of the art approaches for anomaly detection
deployed in today’s data centers apply a fixed threshold en th
metrics being monitored. These thresholds are usually com-
puted offline from training data and remain constant durirey t
entire process of anomaly detection. Often these threslzoél
applied to each individual measurement separately. M&rian

thousands of servers. Utility clouds like Amazon EC2 agsuch as Multivariate Adaptive Statistical Filtering (MASE]
Google App are able to serve more than 2 millions businessiggitionally maintain a separate threshold for data seggden
to run their own applications, each of which may have difand aggregated by time (e.g., hour of day, day of week). How-
ferent workload characteristics. These facts make dattecerever, these existing techniques assume the data distributi
management a difficult task, especially in systems whei@ be Gaussian for determining the threshold values. This
malfunctions can lead to extensive losses in profit due to lagssumption is frequently violated in practice. Furtherenor

of responsiveness or availability.

fixed thresholds cannot adapt to loads that may change over

Our work seeks to improve system performance and avdilne or intermittent bursts, nor can they react to anomalous
ability by developing online, closed loop management solliehavior that may not show up as extremal large or small

tions that (i) detect problems, (ii) diagnose them to debeem
potential remedies or mitigation methods, and (iii) triggad

values in the data. All of these lead to false alarms and ediuc
accuracy with existing techniques.

carry out such solutions. A key element of such research andVe propose statistical techniques in this paper that over-

the topic of this paper is onlineanomaly detectionwhich

come these limitations improving accuracy and insightseci

is to understand whether a system is behaving as expedwdanomaly flags. More specifically, we make the following
or whether it is behaving in ways that are unusual arentributions:

deserve further investigation and diagnosis. Anomalyaliete

o We select two statistical techniqueRjkey methodand

is important because it must be done continuously, as lorag as
system is running and at scale — for entire data center sgstem
We are interested in online anomaly detection solutions
that can be applied to continuous monitoring scenarios as
opposed to methods that rely on static profiling or limitets se
of historical data. There are several challenges in designi
effective solutions for such online anomaly detection igéa
data centers. These include scale, for which the anomaly
detection methods must be ‘lightweight’, both in terms o th
number of metrics they require to run (the volume of moni-
toring data continuously captured and used), and in terms ofe
their runtime complexity for executing the detection metho
Next, these methods should have the ability to handle meltip
metrics at the different levels of abstraction — hardwaystesn
software, middleware, or applications — present in datéecen

the multinomial goodness-of-fit test based on Redative
Entropy statistic, and adapt them to the specific needs
for anomaly detection in data centers. Algorithms using
these techniques are proposed that compute statistics on
data based on multiple time dimensions - entire past,
recent past, and context based on hour of day and day of
week. These statistics are then employed to determine if
specific points or windows are anomalies. The proposed
algorithms have low complexity and are scalable to
process large amounts of data.

We have experimented the proposed algorithms with
data from a 3-tier RUBIs (Internet Service) testbed with
injected performance and configuration anomalies, as
well as data from production testbeds. Our results have
shown improvement in accuracy and reduction in false

Furthermore, the methods need to accommodate the workload alarm rates compared to state of art Gaussian techniques.
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Further, our techniques are shown to be more adaptabld-inally, we would like to point out that prior to the ap-
to varying workload changes and they learn the multiplglication of an anomaly detection method, pre-processing o
states of operation of the workload over time. Furthedata is usually done. This includes data cleansing to remove
more, we also illustrate how results from multiple timeany invalid and spurious data, as well as smoothing of data
dimensions and multiple techniques can be combineding procedures such as (1) Moving average smoothing, (2)
to provide improved insights on application behavior t&moothing by Fourier transform, or (3) the Wavelet transfor
administrators.

The remainder of this paper is organized as follows. Sec- I1l. STATISTICAL APPROACHES
tion I provides background information on existing tech- |, s section, we will examine two classes of statistical

niques. Section Il describes our proposed statisticah-teq) qcedures for anomaly detection. The first class is based on
niques that overcome limitations of existing approaches. E;q1ving thresholds to individual data points. The secdagsc

perimental results are presented in Section IV. Section i\ ,ves measuring the changes in distribution by windain
provides discussion on combining results from multiplegtimp o yata and using that to determine anomalies.
dimensions. Section VI discusses related work, and we yinall

conclude the paper in Section VII.
A. Point thresholds
1. BACKGROUND Within the class of point threshold techniques, we propose
. ) ) . . Tukey[11] method for anomaly detection. Similar to Gaussian
Anomalies manifest in data in a variety of ways. TWQnethods, this method constructs a lower threshold and an
common manifestations are those in which a data point j$ner threshold to flag data as anomalous. However, the Tukey
atypical with reference to the normal behavior of the dagocedure does not make any distributional assumptionstabo
distribution, and secondly those when the distributiont® t e statistical behavior of the data as is the case with Gauss
data changes with time. One way of dealing with fivst \athod.

problem is to use the distribution of the data to compute The Tykey is a simple but effective procedure for identigyin
thresholds. Typical data under normal process behavidr Wil,omalies. We describe it below. Let, 2, ..., x, be a series

oscillate within the threshold limits. Data points fallibgyond ¢ opservations such as the cpu utilization of a server. This

and below the upper and lower thresholds respectively &g, is arranged in an ascending order from the smallest to

flagged as anomalies. These thresholds are obtained uneler gg, |5ygest observation. The ordered data is broken into fou
tain assumptions about the behavior (shape) of the disiitu quarters, the boundary of each quarter defined@byQ,, and

An understanding and quantitative representation of the dg). called the 1st quartile, 2nd quartile, and 3rd quartile re-
distribution is obtained by studying the historical datduisT spectively. The differenc); — Q1] is called the inter-quartile

approach is known as parametric thresholding. To address fhyge The Tukey upper and lower thresholds for anomalies
secondoroblem, the variability in the process over an EXtend(?gspectively areltl = Q; — 3|Qs — Q1] and Qs + 3|Qs — Q1.

period of time is studied and analyzed by using the historicgpservations falling beyond these limits are called seiou
repository of data. From this, an estimate of the varigbility,omalies and any observation, i = 1,2,...,n such that
of the data is characterized and threshold limits are coet[t)th3 15005 — O1] < 21 < Qs 7+ 3'0@37 - é)ll oiled a

This approach avoids the necessity to make assumptions a%ésibleanomaly. Similarly Q1 — 3.0|Q5 — Q1| < z; <

the shape of the distribution of the data. Such methods ¥ — 1.5|Q5 — Q1| a possibleanomaly on the lower side.
known as non-parametric methods. _ The method allows the user flexibility in setting the thrdgho

In many applications involving statistical analysis ofalat ;mits. For example, depending on a user’s experience, the
the Gaussian distribution is the assumed underlying piitityab upper and lower anomaly limits can be set@,+k|Qs— Q1|
model [12]. For example, a popular method for anomalynqg, —k|Q;—Q: |, wherek is an appropriately chosen scalar.
detection in data centers is MASF [3] which relies on thene jower and upper Tukey limits correspond to a distance

Gaussian law. MASF first segments the data by hour of dgy 4 5 ; (standard deviations) from the sample mean if the
and day of week. Subsequently, threshold limits are contbutgistripution of the data is Gaussian.

based on the standard deviatian) (of this segregated data.

Under Gaussian assumptions, 95% of the data is within the ]

2 standard deviations} of the mean ), and 99 % of the B- Windowing approaches

data is within 3 standard deviations of the meganA data Identifying individual data points as anomalous can reisult
point falling outside the3o range occurs 27 times out offalse alarms when, for example, sudden instantaneoussspike
10000 opportunities which is deemed as a rare event and tiusCPU or memory utilization are flagged. To avoid this,
is flagged as an anomaly. So the limits can be adjusteddone might seek to examine windows of data consisting of
30 or 4o, etc. The typical limits are: + 30. Although the a collection of points and then make a determination on the
Gaussian assumption holds in general, some data pointstdowimdow. A simple extension of the point threshold approach t
conform to Gaussian behaviors. While, this may not alwayhomaly detection on windowed data is to apply the threshold
be detrimental, it is recommended that other methods that athe mean of the window of the data. The thresholds could be
not rely on restrictive normality assumptions be considerecomputed from the entire past history or merely the past few
We present such methods in Section Il windows. While simple, this approach though fails to captur



a large fraction of anomalies (this will be shown in our résul k£ — 1 degrees of freedom. Therefore the test is performed by
as well). Hence, we instead propose a new approach to det&n’nparingz*n*D(PHP) with a threshold that is determined
anomalies which manifest as changes in the system behawiased on the cumulative distribution function (cdf) of tie-c
inconsistent with what is expected. squared distribution and a desired upper bound on the false
Our approach is based on a classical question in hypothastgative probability.
testing [18], namely determining if the observed data is To apply the multinomial goodness-of-fit test, for the pur-
consistent with a given distribution. In the classical hyyyesis pose of anomaly detection we first quantize the metric being
testing problem, we are required to determine which of twmeasured and discretize it to a few values. For example, the
hypotheses, thaull hypothesisand thealternate hypothesjs percentage of CPU utilization which takes values betw@en
best describes the data. The two hypothesis are each definedrd 100 can be quantized into 10 buckets each of witith
a single distribution or a collection of distributions. Rally, Thus the quantized series of CPU utilization values takes on
let X1, Xs,...,X, denote the observed sample of size of 10 different values. Then we window the data and perform
Let P, denote the distribution representing the null-hypothesimomaly detection for each window. To do so, we select the
and let P, the alternate hypothesis. Then the optimal teguantized data observed in a window, decide on a choice of the
for minimizing the probability of falsely rejecting the rul null hypothesisP, and perform the multinomial goodness-of-
hypothesis under a constraint on the probability of inacttye fit test with a threshold based on an acceptable false negativ
accepting the null hypothesis is given by the Neyman-Peargarobability. If the null hypothesis is rejected, then weseaan
theorem. The theorem states that the optimal test is given &arm that the window contained an anomaly. If it is accepted
determining if thelikelihood ratio then we declare that the window did not contain an anomaly.
Py(X1, X X,) Depending on the choice of the null hypothesis, one can
it L ARLE Rl VS (1) obtain a variety of different tests. We consider two differe
Pr(X, Xz, Xn) choices in this paper. The first choice involves settifg=
where Py(X1, X2, ..., X,) is the probability assigned to the(p1,p2, ... pr) wherep; is the fraction of times appeared in
observed sample by, Pi(X1, Xs,...,X,) is the corre- the pastj.e. before the current window. Intuitively this choice
sponding probability assigned i, andT is a threshold that declares a window to be anomalous if the distribution of the
can be determined based on the constraint on the probabiffigtric values in that window differs significantly from the
of incorrectly accepting the null hypothesis. distribution of metric values in the past. In the second céoi
Sometimes the alternate hypothesis is merely the statements set to be the fraction of timesappears in the past few
that the observed data is not drawn from the null hypothesigindows. This choice declares a window to be anomalous if
Tests designed for this purpose are callgdodness-of-fit the distribution of the metric values in that window differs
tests. For our problem, we invoke a particular test knowsignificantly from the distribution of metric values in thecent
as themultinomial goodness-of-fit te¢see e.g. [18]) that is past. Unlike the first choice, this choice distinguishesveen
applied to a scenario where the daYa are discrete random the cases where the distribution of the metric being moedtor
variables that can take at moktvalues, say{1,2,...,k}. changes in a gentle manner and where the distribution of the
Let Py = (p1,p2,....px) Where > ,p; = 1 denote the metric changes abruptly.
distribution corresponding to the null hypothesis (lenotes  In many real life applications, the nature of the load on a
the probability of observing). Let n;, denote the number data center is often not constant. In fact, it is stronglyted
of times i was observed in the samplé;, X,,..., X,,. Let tothe day of the week and the hour of the day. Thus applying

P = (p1,P2, - ... px) Wherep; = ™ denote the empirical the hypothesis tests as described above directly may nlot yie
distribution of the observed samp}él X5,...,X,. Then the the desired results. Therefore, in such cases it is negessar
likelihood ratio in (1) reduces to to contextualize the data, namely, compute the null hysithe
. 5 based on the hour of day or the day of the week. Furthermore,
L =log —=15 I iziPi nzpz log— some systems may operate in multiple states. For example,
Hf ;" =1 Di the system could encounter very small or no load for most

of the time and higher loads in bursts intermittently. Inttha

. . o case, it is likely that the relative entropy based approsche

Leibler divergence [17]) between tW.O d_|str|but|or@ — outlined here would flag the second stal?g as anomZI%us. This

(a1,92:-- -, qr) ANA P = (p1, p2, ... ’pk) is given by may not be desirable. We present an extension of the goodness

D(Q||P) = qu log g of-fit approach as a way tp a_lmeliorate such p_roblems. In this

extension, the test statistic is computed against sevedal n
hypotheses as opposed to a single one. We formally describe

Thus the likelihood ratio id. = n+ D(P||P). The multinomial how the null hypotheses are selected and how the anomaly

goodness-of-fit test relies on the observation that if thk nigetection is performed in Figure 1. We first describe the isipu

hypothesisP is true, then as the number of sampie§rows and intermediate variables in our algorithm. Inputs:

2% n* D(P||P) converges to a chi-squared distributiomith « Util is the timeseries of the metric on which the anomaly

In o . needs to be detected
A chi-squared distribution withn degrees of freedom is the sum of the . . . . .
squares ofm independent identically distributed zero mean, unit varéa o Nyins is the number of bins into whicl/zil is to be

Gaussian random variables. quantized

Note that therelative entropy(also known as the Kullback-



o Util,y and Util,,., are the minimum and maximumthe current window. If the smallest test-statistic is |dsmtthe
values thatl/til can take

« n is the length of the time series being monitored

o W is the window size

o T is the threshold against which the test statistic is incremented. If neither of the two conditions is satisfied
compared. It is usually set to that point in the chi-squardde window is declared non-anomalous and the appropriate
cdf with Ny;,s — 1 degrees of freedom that correspondsook-keeping performed.
t0 0.95 or 0.99.

e ¢y, IS a threshold against whick; is compared to several advantages. They are non-parametric, namely ey d
determine if a hypothesis has occurred frequently enougtot assume a patrticular form for the distribution of the data

Intermediate variables:
o m tracks the current number of null hypothesis
o Stepsize is the step size in time series quantization

o Util.yrrent 1S the current window of utilization values

threshold but corresponds to a hypothesis that was accepted
less thanc, times in the past, then the window is declared
anomalous, but the number of appearances of that hypothesis

The relative entropy based approaches described here have

They can be easily extended to handle multi-dimensiona-tim

series thereby incorporating correlation, and can be adapt
to workloads whose distribution changes over time. While
relative entropy and hypothesis testing approaches hase be

e Beyrrent IS the current window of bin values obtained byjsed for anomaly detection, we are not aware of any work
quantizing the utilization values
. P, the empirical frequency of the current window basedihe latter provides a systematic way (based on the cdf of the
on Bcu'r‘rem&- A ) ) |
« ¢, tracks the number of windows that agree with hypothalarms are raised. This feature is not always present irr othe
esisP;

Algorithm ANOMALY DETECTION USINGMULTINOMIAL

GOODNESSOF-FIT

|npUt: (Utll, Nbins: Util'min: Utilrnawy n, W, T, Cth)

1) Setm =0

2) SetWindes = 1

3) SetStepsize = (Utilmaz — Utilmin)/Nbins
4) While (Windes * W < n)

that uses it in the context of multinomial goodness of fit.test
chi-squared distribution) to choose a threshold above lwhic

works using the relative entropy metric. We also extend the
technique in a novel manner to adapt to multiple operating
states and for detecting contextual anomalies.

All the algorithms that we propose are computationally
lightweight. The algorithms require computing statistfos
current window and updating historical statistics. The pam
tation overhead for the current window statistics is negley
Updating quantities such as mean and standard deviation can
clearly be performed in linear time, Further this can be dane
an online manner with very little memory as only the sum of

a) SetUtileurrent = Util(Windez —1) ¥ W +1 : Winaes *
W) the observed values and the sum of the squares of the observed
b) SetBeurrent = [((Utilcurrent — Utilmin)/Stepsize)]  values need to be maintained. For the Tukey method, we need
¢) Computer to compute quantiles, and for the relative entropy methuel, t
d tm=0 empirical frequency of previous windows. These can also be
e Seth =P m=1,c=1 , computed in time linear in the input. Further, these quiastit
€) .Elj'e if(2+ W D(P[|Pi) <T) for any hypothesis®., .o he well-approximated in one pass with limited memory,
i_ln?r,ementci by 1 (If more than one suchi exists, without having to store all the observed data points [24].
select the one with lowedD(P||P;))
o If ¢i > cun, IV. THE RESULTS
— Declare window to be non-anomalous
. Else We tested the algorithms discussed in Section Il on two
_ Declare window to be anomalous different types of data. The first data set was one where
f) Else we could inject anomalies and validate the results returned

o Declare window to be anomalous
o Incrementm by 1, setP,, = P, and¢,, = 1

Fig. 1. Algorithm for anomaly detection with multiple nulypotheses

by our algorithms. It was obtained from an experimental

setup with a representative internet service - RUBIS [19], a
distributed online service implementing the core fundidg

of an auction site. The second type of data set was collected
from production data centers. We present the results from ou
analysis on these two datasets.

The algorithms works as follows. The current window

is selected in Step 4a) and the values in the window are )
guantized in Step 4b). The algorithm computes the empiricf%i RUBIS Testbed Results

frequencyP of the current window as in Step 4c). Observe The RUBIS testbed uses 5 virtual machines (VM1 to VM5)
that P, P, ..., P, denote them null hypotheses at any on Xen platform hosted on two physical servers (Hostl and
point in time. A test-statistic involving® and each of the Host2). VM1, VM2, and VM3 are created on Hostl. The
P;s is computed and compared to the threshibldn Step frontend server processing or redirecting service requests
4e). If the test-statistic exceeds the threshold for allhe tin VM1. The application server handling the applicationitog
null-hypotheses, the window is declared anomalous,is runs in VM2. The database backend server is deployed on
incremented byl and a new hypothesis is created based afM3. The deployment is typical in its use of multiple VMs



Method Statistics Over Recall | FPR .
Gaussian (windowed Entire past 0.06 0.02 B. Production Data Center Results
Gaussian (windowed)] Recent windows | 0.06 | 0.02 In this section, we report results from analyzing data col-
Gaussian(smoothed) Entire Past 0.58 0.08 lected f t diff t | Id t ductiorad
Tukey(smoothed) Entre Past 076 To0d ected from two different real world customer productiortada
Relative entropy Entire past 046 | 0.04 centers over 80 and60 day period respectively (henceforth
Relative entropy Recent past 0.74 | 0.04 called CUST1 and CUST?2 respectively) [21]. The metrics
Relative entropy | Multiple Hypotheses| 086 | 0.04 such as CPU and Memory utilization are sampled every
TABLE | minutes. We segmented this data by hour of day, and day of
RECALL AND FALSE POSITIVERRL:IA;ESSI;:;iDIFFERENT TECHNIQUES WH Week for bOth CUST1 and CUSTZ, and applled the anomaly

detection methods over them, thus performing contextédbase
evaluations. We primarily report results in this sectiortloese
context-based evaluations only. Also, since this is dadanfr

and the consolidation of such VMs onto a smaller number Bfoduction data centers, we had no control of the anomalies
hosts. that manifested, nor do we have knowledge about them. So,

A request load generator and an anomaly injector ait%our evaluations, we simply report the number of anomallies
running on two virtual machines, VM4 and VM5, on HostZGje'[ecte<j by the various techmques, and do a comparison
The generator creates 10 hours worth of service request | ong them. Th? implementation for the Gaussian techniques
for Hostl where the auction site resides. The load emulafg asgd on the industry-standard MA,SF approach [?_’]'

In Figure I, we present a representative plot of the windowed

concurrent clients, sessions, and human activities. [gutie hni he d ¢ £ th :
experiment, the anomaly injector injects 50 anomalies infgchniques on the data of one of the servers for CUST1

the RUBIS online service in Hostl. Those 50 anomali¢®Ntextualizing the data based on hour of day, as explained
come from major sources of failures or performance issul%sec“on lll. The results shown are for a fixed hour during
in online services [20]. We inject them into the testbed gsint e day and for CPU Utlllzatlon.<_jata (th|s.data is measured
a uniform distribution. The virtual machine metrics and thi t€'mMs of number of cores utilized ranging from 0 to 8).

host metrics are collected using Xentop and analyzed in EHE‘ alarms raised by d|fferent techniques are shown. To
anomaly detector. interpret the plots, note that if any of the curves is norezer

We present the results of analyzing the CPU utilizationﬂs1en it implies that an alarm was raised by the technique

in Table I. The CPU utilization data was quantized i3t corresponding to the curve. The ‘heights of the curves (.jo
: . . . ot carry any further meaning. We observe that the Gaussian
equally spaced bins, and for the windowing techniques, the

X . reshold based method does not detect the first unusual
window length was set t600. For algorithms that use only the. : o )
increase in CPU utilization as soon as the Goodness-of-fit

recent pasti( W|ndows of data were used. _For the Gaussmggsed methods. The multiple hypothesis version learns the
methods, for each window, anomaly detection was performBehavior of the system and does not raise an alarm during

on the CPU utilization of each of the three virtual servers . :
X . . : Similar subsequent increases.
and an alarm raised if an anomaly is detected in at least
one of them. For the relative entropy methods, the sum nf
the test statistics of each of the servers is compared tc
threshold (computed based on the fact that the sum of c
squared random variables is a chi-squared random variab
As mentioned, there were total anomalies injected, and in
our evaluation, an anomaly is said to be detected if an ala
is raised in a window containing the anomaly. The results a
presented in terms of statistical metrics - Recall and Fal
Positive Rate (FPR).

—— CPU Utilization

- - - - Gaussian method

 Relative entropy

Relative entropy -multiple hypotheses

CPU Utilization

# of succesful detections
Recall = - (2)
# of total anomalies

E 100 120
Time in minutes

# of false alarms

False Positive Rate (FPR} 7 of total alarms

Fig. 2. Anomaly detection on real-world data (CUST1)

From Table |, it is clear that the windowed Gaussian tech-

nigues perform poorly when applied to the RUBIS data. Next, we present some results from CUST2 data. We exam-
The relative entropy-based algorithms and the Tukey methimed the CPU utilization of one of the servers and interldave
perform much better with the multiple hypothesis relativéhe data according to hour of day. More specifically, for each
entropy technique giving the best results (detecting 86% ofc {0,1,2,...,23}, we grouped together all the measure-
the anomalies with a minimal false positive rate). Alsongsi ments made betweenhours andc+1 hours on weekdays. We
the few past windows to select the null hypothesis providéssted the pointwise Gaussian and Tukey techniques, as well
better accuracy than using the entire past. as the relative entropy technique with multiple hypothe$es



Hour of day | # Anomalies | # Anomalies | # Anomalies | Common | Unique to RE | Unique to | Unique to
(Relative (Gaussian) (Tukey) Anomalies Gaussian Tukey
Entropy-RE)
0000 6 7 7 6 0 0 0
0100 4 6 1 1 0 2 0
0200 2 4 [9] 0 [9] 2 0
0300 5 4 2 1 2 0 0
0400 5 5 2 2 [9] 0 0
0500 4 5 2 1 1 1 0
0600 5 7 3 3 0 2 0
0700 4 6 7 4 0 0 1
0800 6 2 3 2 3 0 0
0900 7 2 14 2 0 0 7
1000 6 2 13 2 0 0 7
1100 7 2 3 1 5 0 0
1200 4 2 2 2 2 0 0
1300 1 2 1 1 0 1 0
1400 5 5 5 4 1 0 0
1500 6 5 12 4 1 0 6
1600 4 5 2 2 1 2 0
1700 4 3 3 2 2 0 0
1800 4 3 0 0 1 0 0
1900 5 3 3 3 2 0 0
2000 3 2 0 0 2 1 0
2100 6 5 8 4 1 0 2
2200 5 4 0 0 2 1 0
2300 6 10 6 5 0 3 0

TABLE Il
COMPARISON OF VARIOUS TECHNIQUES ON REAL CUSTOMER DATACUST2): NUMBER OF ANOMALIES DETECTED BY EACH TECHNIQUE IN EACH HOUR
FOR WEEKDAYS

determine the limits for the pointwise Gaussian and Tukeprresponding to these hours reveals that the CPU uttizati
technigues, we used the first half of the data set to estimalgring these hours was mostly very low ().5) leading to the

the mean, standard deviation and relevant quantiles. We theter-quartile range being very small and therefore rasgiin
applied the thresholds on the second half of the data setat@ery low upper threshold. As a result, the algorithm flagged
detect anomalies. The server in question had been alloeatesl large number of windows as anomalous and it is reasonable
maximum of 16 cores and thus the values of CPU utilizatido surmise that some of these may be false alarms. On the
ranged between 0.0 and 16.0. To apply the relative entropther hand, the data corresponding to hawé0 results in
detector, we used a bin width @f0 which corresponds t8 the relative entropy technique returniiganomalies that the
bins. The window size was$2 data points which correspondsother two techniques do not flag. Some of these anomalies
to an hour. Thus the relative entropy detector, at the end ae interesting when examined closely. The typical belavio
each hour, declares that window to be anomalous or otherwisé the CPU utilization is as follows: it hovers betweérd

To facilitate an apples-for-apples comparison, we prassand 2.0 with occasional spikes. But often after spiking to a
the alarms raised by the Gaussian and Tukey methodsvatue greater tha6.0 for a few measurements, it drops back
follows. For each of the techniques, if within one windowdown to a value aroun2l0. But in a couple of cases, the value
at least one alarm is raised, then the window is deemddes not drop down entirely and remains betwé®nand6.0,
anomalous. This way we are able to compare the numberindicating perhaps a stuck thread. The Gaussian and Tukey
windows that each of the techniques flags as anomalous. Thethods do not catch this anomaly as it does not manifest as
above comparison is performed for each of fehours. The an extreme value. However, it is interesting that the nedati
results are presented in Table II. entropy is able to catch this.

The first column in Table Il specifies the hour of day that
was analyzed. The next three columns indicate number
anomalies detected by the three techniques. The fifth colu%
states the number of anomalies detected by all of them
the sixth, seventh and eighth columns the anomalies tha wi
uniquely detected by each of the techniques. For instaree
sixth column records the number of anomalies detected by
relative entropy technique but not by the other two.

#:inally, we present results for data segmented by hour for
given day of the week only. In other words, we string
ether data by each hour for a given day over the entire data
lection period. The results we present consist of anadyz

e hours between 10 AM and 5 PM on Mondays only over the
llection period. Both cpu-utilization and memory utition
2thods were analyzed. The summary of the analysis is that

while fewer anomalies are flagged there are some significant

To briefly summarize the results, we observe that in mostips. This is presumably due to the server utilization over
cases the relative entropy technique identifies the anemalshort, hourly periods tend to be stable with sudden bursts
detected by the other two techniques, and flags a few moreadsactivity. The data is summarized in Table IlIl. It is clear
well. There are three notable exceptions hout®60, 1000 from the tabulated results that CPU-utilization shows more
and1500 where the Tukey method flags- 7 more anomalies variability than Memory utilization. The two anomaly detec
than the other techniques. A closer examination of the ddtan techniques flag few anomalies common to each other.



o'?%u;y Parameter ﬁg‘;‘;’gﬂ'ﬁf ? ?{‘fkrg;“es iﬁ;;“;ﬁ;’;‘ In enterprise environments with dedicated infrastructpite
10 CPU 0 0 0 might be straightforward to select the appropriate histori
19 | Memory = - ’ period and organization of data. However, in cloud andtutili
11 Memory 0 0 0 computing environments with limited prior knowledge of
e Mgrf]gry > Y : workload behavior, high churn, and shared infrastructore f
13 CPU 2 2 2 workloads, the most appropriate historical period and wirga
ii Mg;‘g'y : é é zation of data to choose may be challenging and expensive to
14 Memory 0 0 0 determine over large scale. Instead, we suggest an alternat
ig Mgrf]gry ig 101 101 approach in which at any given time, we do multiple runs
6 CPU 5 0 0 of the anomaly detection algorithm in parallel, each run
ig Mgrggry 8 g 8 leveraging data analyzed from a different historical perio
17 Memory 0 0 0 The results from these individual runs could then be contbine

TABLE Il to provide overall insight and system statusidicator to the

COMPARISON OFGAUSSIAN AND TUKEY METHODS FORMONDAYs onLy  @dministrator. For performing of multiple runs to be fedeib

(CUST2). THE DATA IS ANALYZED BY HOUR OF DAY AND DAY OF WEEK.  the algorithm has to be lightweight. As discussed in previou
sections, our proposed algorithms are lightweight and ctoul
be used for this approach.

) i Table 1V(a) illustrates how the approach would work. The
Only in the hours of 12, 13, and 15 do they trigger COMMQAQp e shows a sample trace and output of an anomaly detection
anomalies albeit few. Note that there is significant vatighi ;1 rithm over time using data from different historicatipels
in the performance of the two techniques. In the 10 A.M. hoYantire past, recent past) with and without consideratibn o
W_h'le the Gaussian technlq_ue flags 12 anomalies, the_Tu@ntext. An output of 1 indicates that an anomaly flag is dhise
trigger none for memory ut|I|za_\t|on. On Fhe other hand, i@ thy,, yhat time period, and O indicates otherwise. To combine
hour 11 A.M. hour, the Gaussian technique does not flag ay. resuits, we propose a weighted combination of these
anomalies, while the Tukey flags as many as 13 each of lowgf, it flags. This weighted combination can be mapped to
and upper anomalies in cpu-utilization (total 26). Althbuthe 5 +|oring scheme shown in Table IV(b). The color represents
Tukey method flags more anomalies overall (51) as opposgd qyerall system status for the system being monitored.

to 46 by the Gaussian technique, the Tukey is better suitgg)q IV(a) shows the results when different weights areluse
to anomaly detect_|on because of its generality, flexihiktyd Column 5 shows the system status with equal weights to
ease of computation. the different historical periods, Column 6 shows the system
status when workload patterns (hence context) are givdrehig
V. DISCUSSION weight (1, 0.5, 1 for Columns 2, 3 and 4 respectively), and

As seen, the statistical algorithms for anomaly detectid@olumn 7 shows the system status when historical knowledge
analyze monitoring data over historical periods to makér thés given higher weight (1, 0.5, 0.5 for Columns 2, 3, and 4
decisions. This historical period could be the entire pdst mespectively).
the workload operation, or it could be restricted to receastp ~ While not shown, it is easy to see that the same approach
values only. In either of these cases, the considered datd cacan be extended to combine results from multiple algorithms
be organized based on continuous history over time, or iidcows well. This could lead to two level of combinations - com-
be segregated by context, e.g. hour of day or day or wedlnations for different historical periods for a given afiglom,
Which historical period and organization type is chosen haad then combinations of those across multiple algorithms.
an effect on the results of the anomaly detection algorithnbhe feasibility of this hybrid approach would however be
For example, for Gaussian and Tukey methods, this will affedependent on the complexity of algorithms so as to be able to
the value of thresholds chosen, and for Relative Entropyillit execute multiple algorithms on online data.
affect the null hypotheses against which the current windowMore broadly, the discussion in this section points us to the
is evaluated. different dimensions that anomaly detection algorithmgeha

Several factors play a role in selecting the appropriate consider, and how a systematic approach can enable us to
historical period. Workload behavior and pattern is one @ftain improved understanding of system behavior in corple
them. If the workload has a periodic behavior, then receahd large-scale shared computing infrastructures suckiag b
past values that can give enough statistical significanegmirepresented by utility clouds.
suffice. Further, if the pattern is based on weekly or hourly
behavior, then organizing the data by context is preferable
If the workload is long running and has exhibited aperiodic
behavior in the past, the entire past data would help smadth o Most of current industry monitoring tools use fixed thresh-
averages. If the workload has varying behavior that is timetds for anomaly detection. Fixed upper and lower bounds
dependent or if it is originating from virtual machines thaare determined apriori and remain constant during the eentir
have been migrated or subject to varying resource allat&tio process of anomaly detection. MASF [3] is one of the popular
shared environments, considering only recent windows mighreshold-based techniques being adopted in industry. MAS
help to eliminate noise from past variable behavior. applies thresholds to data segmented by hour of day, andfday o

V1. RELATED WORK



(a) Anomaly Flags and Combined System Status (b) Color Mapping of Weighted Sum
Time Anomaly Flags System Status Weighted Sum (w) | Color Problem Intensity
Entire Past Recent Past| Recent Past | Equal weight| Weighted by | Weighted by w>=3 Red Very Severe
(with Context) | (No Context) | (with Context) context history 2<=w<3 Orange Severe
t1 0 0 0 Green Green Green 1<=w<2 Yellow Mild
[ 0 0 0 Green Green Green w<1 Green None
t20 1 0 [9] Yellow Yellow Yellow
t21 1 1 0 Orange Yellow Yellow
t60 1 1 1 Red Orange Orange
t61 1 1 1 Red Orange Orange
t90 1 0 1 Orange Orange Yellow
TABLE IV

ILLUSTRATION OF COMBINED SYSTEM STATUS

week. As discussed earlier, these techniques have liontti further refinements to the techniques presented in thisrfape
of accuracy and false alarm rates due to their assumed dataltiple metrics and for aggregation across multiple maesi
distributions, and limited adaptibility to changing wasklds. at large scale. We also plan to do evaluations with othercclou
These techniques also have poor scalability and lack oeeorworkloads and benchmarks.
lation analysis.
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