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Abstract—The reduction of artifacts in neural data is a key el-
ement in improving analysis of brain recordings and the develop-
ment of effective brain–computer interfaces. This complex problem
becomes even more difficult as the number of channels in the neu-
ral recording is increased. Here, new techniques based on wavelet
thresholding and independent component analysis (ICA) are de-
veloped for use in high-dimensional neural data. The wavelet tech-
nique uses a discrete wavelet transform with a Haar basis function
to localize artifacts in both time and frequency before removing
them with thresholding. Wavelet decomposition level is automat-
ically selected based on the smoothness of artifactual wavelet ap-
proximation coefficients. The ICA method separates the signal into
independent components, detects artifactual components by mea-
suring the offset between the mean and median of each component,
and then removing the correct number of components based on the
aforementioned offset and the power of the reconstructed signal.
A quantitative method for evaluating these techniques is also pre-
sented. Through this evaluation, the novel adaptation of wavelet
thresholding is shown to produce superior reduction of ocular ar-
tifacts when compared to regression, principal component analysis,
and ICA.
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I. INTRODUCTION

THE STUDY of human brain function can benefit both
engineering and medicine. Clinical neural monitoring is

critical in diagnosing and treating many neurological disorders
such as epilepsy. Brain–computer interfaces (BCIs) present the
possibility of creating a direct link between humans and their
environment, allowing the use of brain-controlled devices to
assist people with disabilities.

One problem in neural signal processing is the presence of
noise and artifacts in neural recordings. Major artifacts can come
from a variety of sources, including eye movement, muscle
movement, cardiac rhythm, outside sources, and even neural
processes other than the one of interest [1]. Artifacts produced
by eye movement and blinks, which are commonly referred to
as ocular artifacts (OA) or electrooculographic (EOG) artifacts,
are typically dominant over other electrophysiological artifacts.

Many methods have been attempted for artifact removal [2].
A common practice has always been to simply reject data con-
taminated with artifacts. For many forms of clinical monitoring,
this is acceptable because there is an abundance of data, but in
BCI research and in many other neural studies, a scarcity of data
or a high percentage of contamination makes this method unus-
able. Another classic solution for dealing with EOG artifacts is
to instruct the person to avoid eye movement and blinking. For
some situations this may not be possible, and it has also been
shown that avoiding blinks introduces a cognitive process in the
brain [3], [4]. This method then removes EOG artifacts while
creating neural artifacts.

The only consistently viable solutions for dealing with ar-
tifacts are to either remove them or, in the case of BCIs, to
develop decoding algorithms that are invariant to them. The lat-
ter method is not always possible, though. Also, it is difficult
to prove invariance without an artifact-free signal for compari-
son. Thus, artifact removal is highly beneficial to both BCI and
general neuroscience research [2], [5].

In part due to advances in neural recording techniques and
computing power, the dimensionality available in neural data has
steadily increased. High-dimensional data are useful for clinical
studies as well as for BCI and neuroscience research, but they
can make artifact removal more difficult. In this paper, artifact
removal methods are evaluated on high-dimensional magne-
toencephalography (MEG) data. The data not only demonstrate
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the feasibility of the techniques on high-dimensional data, but
also ensure that removal methods are evaluated across nearly
the entire surface of the brain. The goal of this paper is to
demonstrate novel EOG removal techniques on these data and
establish their effectiveness through a quantitative comparison
to traditional removal methods.

The first novel technique uses a discrete wavelet transform
with a Haar basis function to localize artifacts in both time and
frequency before removing them with thresholding. A multilevel
wavelet method was developed in order to automatically select
the level of decomposition for optimal time–frequency isolation
of artifacts. This method is based on the smoothness of the
artifactual approximation coefficients.

The second novel method separates the signal into indepen-
dent components and labels some as artifactual by a method
termed distribution offset, which measures the difference be-
tween the mean and the median of each component. The correct
number of components is removed based on distribution offset
and the power of the reconstructed signal.

A major challenge with artifact reduction in neural data is
evaluating the results [6]. Since the true, artifact-free neural
signal is not known, it is difficult to quantitatively assess the
performance of artifact removal techniques. In simulated data
this truth is known, but simulations do not fully capture the
nature of neural recordings. An automated quantitative method
for determining the success of artifact reduction in real data is
needed. Such a method was developed here based on correla-
tion, Euclidean distance, and the difference in power between
the signal before and after EOG removal, as well as the number
of detected artifacts before and after removal. These metrics at-
tempt to measure the effectiveness of the techniques in removing
artifacts while preserving neural data.

For comparison to the novel EOG removal techniques, a few
traditional methods based on regression, principal component
analysis (PCA), and independent component analysis (ICA)
were also analyzed. The background for methods used in this
paper is presented in Section II and the implementation of these
methods is given in Section III. The results and discussion are
in Section IV and the conclusion is in Section V.

II. BACKGROUND

A. EOG Artifact Removal Techniques

Neural recordings can be modeled as follows:

X = S + A ∗ N (1)

where the matrix X (m by k) is the neural recording, S (m by k)
contains the actual neural activity at the sites of the recording,
N (p by k) is the noise, and A (m by p) determines the contri-
bution of each noise source to each channel of recorded data.
m is the number of neural recording channels, k is the num-
ber of samples, and p is the number of noise sources. Here, it
will be assumed that the source of noise is eye movement so A
will be null for the columns of all other noise sources. Three
types of EOG artifacts must be accounted for the following:
1) saccadic artifacts produce a near box-shaped waveform;
2) blink artifacts produce a sharp spike; and 3) normal eye

Fig. 1. Effect of EOG artifact on (a) EOG reference channel and (b)–(d)
three neural recording channels. (b) Eye blink artifact is nearly duplicated,
(c) artifact’s effect has opposite polarity and appears slightly delayed, and (d)
no obvious effect is visible. Note that the neural channel numbers in this figure
have no spatial relevance.

movement resembles a low frequency drift. EOG artifacts oc-
cupy a fairly wide frequency band, but are generally strongest
under 4 Hz [7].

It is often possible to obtain a model for an ocular artifact
through EOG reference channels. EOG artifacts occur because
the cornea and retina are oppositely charged, causing the eye to
be a dipole. Movement of this dipole creates a large change in
potential that propagates across the scalp, contaminating neural
recordings. EOG reference channels attempt to measure this
contamination at the source with electrodes placed above and
below and to either side of the eye (to account for both horizontal
and vertical eye movements). Sometimes electrodes are also
used to measure radial eye movement.

Since it is possible to obtain a model for the noise through
EOG recordings, (1) leads naturally to the use of regression to
remove the artifact from the recorded signal. N is approximated
by the EOG channels, and then it is only necessary to calculate
A to solve for S in (1). The problem with the regression method
is that it assumes that the EOG recordings are clean models. In
reality, the contamination is bidirectional and a small amount
of neural data propagates to the sites of the EOG recordings.
In subtracting out the EOG signals, some neural information is
then lost. Also, neural data that propagate to reference channels
are introduced into other recording sites [8].

With correlation between the clean neural signal and the EOG
recording, it is actually impossible to solve for an exact value
of A in the regression model. Even methods that utilize a topo-
graphic map of electrical propagation from the eyes across the
scalp fail due to the inherent variance in such a map caused by
skin and environmental conditions. An EOG artifact can also
affect neural channels in different ways, as shown in Fig. 1.

Another approach for EOG artifact reduction is component-
based methods such as PCA and ICA. The goal in these methods
is to: 1) transform the original signal into a component space;
2) identify components that correspond to artifacts; and then
3) transform back to the original data space using only nonarti-
factual components. This process is shown in Fig. 2.

PCA transforms a dataset into uncorrelated components and
sorts them in order of the amount of variance each component
contributes to the dataset. In the context of noise removal, PCA
can be useful in multichannel datasets in which the same source
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Fig. 2. Illustration of component-based artifact removal process. Here, the eye
blink artifact seen near the end of the signals is isolated to the top component
when the signals are transformed to the component space. The columns are
nulled that correspond to this component in the matrix used for transforming
the components back to the signal space, so this component is removed from
the original signal.

of noise is contaminating all channels, especially if the noise
has a higher amplitude than the signal. This has been shown to
be effective in EOG removal [9]. For this process, the some-
what arbitrary assumption must be made that the signal sources
are spatially orthogonal. Also, while PCA does decorrelate the
signals, it does not guarantee independence.

ICA is able to achieve independence between components. It
is also one of the most highly studied and successful techniques
for artifact removal in neural signals [15], [17]–[19]. Neural
recordings (other than single-neuron recordings) consist of a
mixture of signal sources at each recording site, so the problem
of removing EOG artifacts can be modeled as a blind source
separation problem. ICA separates the sources by maximizing
independence based on one of a number of possible metrics. A
few assumptions are made when using standard ICA, the most
important here being that at most one of the sources is Gaussian
and that there is negligible signal propagation delay. ICA is also
unable to determine the correct order, scale, or polarity of the
sources, making artifact identification difficult.

The final method examined in this paper uses wavelet decom-
position for EOG removal. This technique has received much
less attention in the research community, but some work has
been done [10], [11] and wavelets have been applied in other
areas of neural signal processing [12], [13].

Wavelet decomposition involves recursively passing the sig-
nal through a pair of quadrature mirror filters and downsampling,
resulting in the coefficients at each level of decomposition hav-
ing higher frequency resolution and lower temporal resolution
than the previous level. The goal in removing artifacts with
wavelet decomposition is normally to isolate the artifact so that
it can be removed with a thresholding function. This can be
done by attempting to match the shape of the wavelet to the
transient of interest, which is an EOG artifact in this case, or by
trying to isolate an artifact based on its time–frequency local-
ization. In either case, the isolated artifact can then be removed
with thresholding before reconstructing the signal. Typically,
this technique does not need a template for the noise channel
and it is also fairly easy to automate, but its performance de-
pends largely on the choice of threshold, basis function, and
decomposition level.

B. Evaluation of Artifact Reduction

Providing a quantitative evaluation for artifact removal is
a difficult problem in itself. With recorded neural data, it
is difficult to even estimate the artifact-free signal since
neural signals are nonstationary. This means that there is
no ground truth to use for comparison with the processed
signal.

If the ground truth is known, such as in simulated data, there
are methods to evaluate the results of EOG removal. Some of
these measures are the correlation coefficient, the ratio of the
standard deviation (STD), and the Euclidean distance between
the processed signal and the true, artifact-free signal [14]. The
correlation coefficient determines how well the shape of the true
signal is retained, the STD ratio determines how much the power
is affected, and the Euclidean distance helps measure both shape
and amplitude. The closer the correlation coefficient and STD
ratio are to 1 and the closer the Euclidean distance is to 0, the
better the results of the EOG removal. These methods must be
adapted for use on real data, though.

Another common evaluation criterion is to look at frequency
correlation (2) [10]. In (2), x̃ and ỹ are the Fourier coefficients
of the two signals, and w1 and w2 are bounds of the frequency
window. This measure is just a windowed version of coherence.
The goal is to show that the processed signal is nearly perfectly
correlated with the original signal at all frequencies except the
band containing the artifact.

cx,y =
0.5 ·

∑w2
w1 x̃∗ỹ+x̃ỹ∗

√∑w2
w1 x̃x̃∗·

∑w2
w1 ỹỹ∗

. (2)

III. METHODS

As stated earlier, high-dimensional neural data can be ex-
tremely useful in clinical studies and in both BCI and neu-
roscience research. The methods presented here overcome the
unique problems encountered in removing EOG artifacts from
high-dimensional data. Both novel and traditional EOG removal
methods based on regression, component analysis, and wavelets
were implemented. The performance of these methods was an-
alyzed using automated, quantitative metrics that are also pre-
sented here. All methods were fully automated and computation
time was measured, as speed and automation are important in
high-dimensional data.

A. Regression-Based Removal

The first removal method examined was regression. As stated
in Section II, regression attempts to calculate A in (1) in order
to solve for S. Many algorithms have been used in solving for
A, and the one used here is given by (3). This equation can
be proven under the false, but necessary assumption that the
correlation between the EOG reference channel N and the clean
neural signal S is zero [14]. Note that in (3), Xm and Np are
zero mean and the ratio is the estimations at zero lag of the
cross covariance between Xm and Np and the autocovariance
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Fig. 3. EOG reference channels and corresponding principal components.
PCA was run on the full data matrix of EOG reference channels and neural data
channels. Most of this saccadic movement artifact is accounted for by the first
principal component since the EOG channels are highly correlated.

of Np .

Am, p =
Xm · NT

p

Np · NT
p

. (3)

Here, it was assumed that A was the same for multiple EOG
channels (i.e., Am,i = Am,j for all i, j), so in (3) p was set to
1 and N1 equaled the sum of the EOG channels. This was a
reasonable assumption for the purposes of this study since the
source, and thus the propagation path, of the EOG channels was
the same. Since A was calculated algorithmically, this removal
method was fully automated.

B. Component-Based Removal

With high-dimensional data, PCA and ICA became difficult
since they perform computations on all channels at once. With
PCA the computations were still possible, but it was at times
difficult to load the necessary data into memory at once.

Like regression, PCA was simple to automate. This was
mostly due to the high amplitude of EOG artifacts relative to
neural signals. Since the artifact was distributed throughout the
neural data at various scales, the high amplitude caused the ar-
tifact to contribute a large amount of variance to the data. In
the absence of other high-amplitude artifacts such as interictal
spikes in subjects with epilepsy, it was fairly safe to assume then
that any artifactual components would contribute the highest
amount of variance to the data. Since PCA orders components
by variance, the first p principal components should then contain
the artifacts, where p is the number of EOG channels (Fig. 3). In
transforming the components back to the original signal space,
the first p columns of the transformation matrix were nulled.

ICA faced the most difficulties with high-dimensional data.
In order for ICA to converge, the number of time points usually
needs to be at least several times the square of the number of
data channels [15]. For high-dimensional data, the number of
time points needed often exceeds trial length.

Two solutions were considered for allowing ICA to converge.
First, multiple trials could be concatenated to achieve enough
time points. This method assumes that the neural sources and
the linear mixture model are stationary across trials. Second,
a separate epoch of ICA could be run for each neural data
channel paired with the EOG reference channels, as opposed

to doing one epoch of ICA containing all the data channels.
This is a very time-consuming process, but it also has a few
beneficial side effects such as less of a need to worry about
the mixtures of distinct neural processes at each electrode, i.e.,
spatial stationarity of the underlying neural sources, linearity of
the mixtures, and the number of sources. Here, the latter of the
two methods was used. This is because different trials in the data
could contain different stimuli, and thus, it would be unknown
if the neural sources would remain stationary across trials. To
somewhat alleviate the problem of computation time, the fast
ICA algorithm was used [16].

A further difficulty in using ICA on high-dimensional data
was automating the process of identifying artifactual com-
ponents. Many studies using ICA manually identify artifacts
through visual inspection [17], but for a large dataset that would
be impractical. Multiple methods for automation have been ex-
amined, such as the Hurst exponent [18], kurtosis, Shannon’s
entropy, and Renyi’s entropy [19]. Unfortunately, Renyi’s en-
tropy proved too computationally costly for high-dimensional
data due to the kernel density estimation necessary for each
component. The Hurst exponent was used, and the results were
compared to a novel method for identifying artifactual compo-
nents. For the Hurst exponent method, removing components
with Hurst values in the eye blink range of 0.58–0.64 removed
very few artifacts, so only components with values of 0.70–
0.76 that correspond to data from actual neural processes were
kept while all others were marked as artifacts. These values are
described further in [18].

The novel artifactual component identification method, which
will be referred to as the distribution offset, ranks each compo-
nent by its chances of being an artifactual component. The high
amplitude of an artifact causes the mean of the component’s
distribution to be offset from its median. The mean of a clean
neural signal, even one in the presence of a strong event-related
potential, will not be offset nearly as much. To calculate the
distribution offset, the component was centered, and then the
difference between the number of samples on the same side of
zero and half the number of time points was calculated. This is
shown in (4), where k is the number of samples and C is the
independent component. This measure is similar to skewness,
but skewness also factors in the distances of points from the
mean.

∣∣∣∣∣
k

2
−

k∑

i=1

yi

∣∣∣∣∣ , yi =
{

1, Ci − E [C] > 0
0, otherwise . (4)

The distribution offset was used to initially mark artifactual
components as those where the value in (4) was more than 3% of
the number of samples. The columns in the mixing matrix were
nulled that corresponded to these components. As is the case in
Fig. 4, the distribution offset normally made a good distinction
between artifactual component and neural component, but an
additional step was taken since a small number of components
leave little room for error in the number of components removed.

After remixing, if the signal’s power was far above the power
of a normal neural signal, then the component with the next high-
est distribution offset was removed. Likewise, if the resulting
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Fig. 4. Distribution offset values for components of one epoch of ICA. The
top component is artifactual, as is detected by the distribution offset. The gray
dotted line represents the signal mean.

signal power was far below the power of a normal neural signal,
the removed component with the lowest distribution offset was
added back to create the final signal. Acceptable power levels
corresponded to a STD between 1e−15 and 1e−11, although
these thresholds could vary with neural recording method. This
procedure was also used with the Hurst exponent method, with
the distance of the exponent from 0.73 as the ranking criteria.

C. Wavelet-Based Removal

The wavelet approach used here was a novel method that took
advantage of the fact that EOG artifacts are well localized in
time and frequency. The traditional discrete wavelet transform
was used with the goal of isolating the artifact in both time
and frequency in order to minimize the impact of the artifact
removal process on the rest of the neural signal. As in other
wavelet techniques, the wavelet coefficients were thresholded
to remove the artifact before reconstructing the signal from the
thresholded coefficients.

For the wavelet basis function, the Haar wavelet was chosen
as it is the simplest wavelet and computation time is important on
high-dimensional data. The Haar wavelet provides accurate de-
composition and reconstruction with minimum distortions and
data redundance [20]. Also, many of its limitations, such as
nondifferentiability and a chance for detail coefficients to miss
sudden changes, were not a concern here as we were examining
approximation coefficients and then simply thresholding and
reconstructing the data. The strategy of selecting a wavelet that
matches the shape of the transient of interest was not used since
the three types of EOG artifacts have markedly different shapes.

To localize the artifact, it is important to zoom in just the right
amount in time and frequency. This was done by selecting the
proper level of wavelet decomposition. Each level of decom-
position increases frequency resolution and decreases temporal
resolution. Decompose too far and the artifact will be diluted
across frequency bands making it difficult to remove with thresh-
olding and difficult to isolate in time. Decompose too little and
the artifact will not be isolated in frequency, causing neural
data to be unnecessarily lost in the thresholding process. This is
shown in Fig. 5, where the level 3 decomposition failed to isolate
the artifact in frequency and the level 6 decomposition began to
stretch the temporal bounds of the artifact. The proper level of

Fig. 5. Wavelet approximation coefficients at two decomposition levels. Level
3 and level 6 were used to accentuate the differences between levels of decom-
position. Here, the level 3 decomposition still contains neural data, and the level
6 decomposition has stretched the artifact’s temporal bounds.

decomposition depends in large part on whether the artifact is
the result of a blink, or of saccadic or regular eye movement,
and also on the sampling frequency of the data.

To choose the proper decomposition level for each artifact,
a strategy of multilevel wavelet decomposition was used. If an
artifact has been fully isolated, its wavelet coefficients should be
smooth, but cross contamination with neural signals can make it
appear to have higher frequency components (Fig. 5). The mul-
tilevel process attempts to continue the wavelet decomposition
to a depth that is sufficient to remove these higher frequency
components.

In this process, the signal first underwent a minimum level
wavelet decomposition, which was set at level 3. The bounds of
any EOG artifacts were then marked by locating threshold cross-
ings and finding the first local extrema on the outside of those
crossings. The threshold was ± (5e−11 + |median(A)|), where
A is the vector of wavelet coefficients, although the optimal
value of this threshold could again vary with recording method.
To determine smoothness, it was checked if the derivative of the
artifactual coefficients ever changed sign on either side of the
peak. If it did, neural data were assumed to still be present and
the wavelet decomposition went a level deeper. The artifactual
coefficients with an absolute value above the threshold were set
to the median of the set of coefficients outside the artifact. This
differs from typical wavelet denoising (hard, soft, or soft-like
thresholding) in that it is concerned with eliminating the values
above the threshold rather than below. The multilevel wavelet
decomposition technique is illustrated in Fig. 6. For comparison
to this process, wavelet removal was also done with the level
held constant at each value from 3 through 9.

D. Quantitative Analysis of EOG Removal

Analysis of EOG Removal is a difficult process in itself.
The seemingly two most obvious methods of evaluation are
visual inspection and BCI decoding results. Visual inspection
is effective for quick verification or with small datasets, but
it is subject to human bias and error and is impractical for
use on high-dimensional data. BCI decoding results are not a
good criteria because the decoding algorithm could be invariant
to EOG artifacts or eye movement could be biased toward a
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Fig. 6. Illustration of the process for determining the optimal level of wavelet
decomposition. The minimum level decomposition was set at level 3. The
“Check EOG” step checks the smoothness of the coefficients marked as ar-
tifactual as described in the previous paragraph.

certain class, thereby improving decoding results and giving the
impression that the BCI is effective when the system is actually
controlled by eye movement.

There are two main criteria that should be used to evaluate an
EOG removal technique: 1) how well the artifact was removed
and 2) how well the neural data were preserved. The methods
used here to measure these criteria were in large part taken
from previous methods given in Section II-B [10], [14], but
modifications were made to improve performance and adapt to
using real neural data rather than simulated. This is a key since
the main difficulties in evaluating EOG removal arise with real
data where the ground truth is not known.

To determine how well the neural data were preserved, a
number of measures were used. For many of these measures,
only those portions of the signals that were originally artifact
free were used. These portions of the signal should remain the
same after EOG removal. EOG artifacts were marked by low
pass filtering at 10 Hz and then detecting threshold crossings. On
the uncontaminated portion of the signal, correlation coefficient
and Euclidean distance were used as discussed in Section II-B.
The STD ratio was replaced due to a couple of pitfalls that could
arise with this metric. With any average there is the potential
for a result that seems good, but is actually highly skewed or
multimodal. Also, use of the ratio presents the possibility that
a denominator near 0 for any trial would be a large enough
outlier to ruin the overall average. Instead of the STD ratio,
the mean-squared difference between the STD of the original
and processed signals was used. This will be referred to as the
exterior STD difference.

To determine how well the artifact was removed, the main
metric was the percentage of contaminated trials where an EOG
artifact was still detected after the reduction process (using the
filtering and thresholding method discussed in the previous para-
graph). It should be noted that the absolute percentage of re-
moved artifacts is not as important as the relative percentages
between methods since the artifact detection itself is not perfect.
Also, the difference between STD of the entire processed signal
and that of the artifact-free portion of the original signal was
calculated. This will be referred to as the total STD difference.
Using the entire signal should reduce the impact of the signal’s
nonstationarity, and since the power of a portion of the signal
can deviate to either side of the mean, taking the mean over a
large number of trials should still produce a value as close to

0 as possible. Finally, the frequency correlation was examined
to determine the effect of the removal process on the signal’s
spectrum.

IV. RESULTS AND DISCUSSION

The datasets used here contained 306-channel MEG neural
recordings, sampled at 1 kHz, of both language processes and
motor functions. In the language sets, subjects are observing
various words and images. Trials are 5 s long, and there are a
total of 540 trials. The motor datasets contain 2.5-s trials of both
overt (775 trials) and imagined (640 trials) wrist movement.
All subjects had normal brain function and data collection was
approved by the Institutional Review Boards of the University
of Pittsburgh and Carnegie Mellon University. The different
datasets were used to test EOG removal methods on data of
different trial lengths and with different frequencies of each type
of EOG artifact. EOG recordings were made above and lateral
to the eye. It has been shown that having vertical and horizontal
EOG channels produces better results than one channel [21].

Table I and Fig. 7 show the results of the quantitative perfor-
mance metrics discussed in Section III-D after performing EOG
removal on the aforementioned datasets. The running time of
each removal process relative to the fastest method (regression)
is also given. Surprisingly, regression performed well in mea-
sures of preservation of the neural data. The poor performance
in removing artifacts nulls any value associated with retention
of neural data, though. The removal percentage is extremely
low, and the negative total STD difference indicates that not
enough power was removed from the contaminated portion of
the signal. These results indicate that the regression coefficients
[A in (1)] are too small. Using a regression method in which
the regression coefficients are calculated separately for each
EOG channel might improve results, but it could not proba-
bly increase removal percentage to a satisfactory level while
maintaining high preservation of neural data due to the neural
contamination in EOG channels.

PCA was also inefficient in removing artifacts. This is most
likely an inherent limitation of using PCA for EOG removal
in that PCA was unable to fully separate the artifacts from the
neural data. This is mostly due to PCA only decorrelating the
data, and the requirement of spatial orthogonality of the sig-
nal components is an additional restriction that might prevent
separation of artifacts from the neural components. Methods
of detecting additional artifactual components or residuals dis-
tributed throughout the neural components could improve re-
sults, but such an effort would most likely not be worthwhile in
light of results from other removal techniques.

ICA showed a large improvement over PCA and regression
in removing artifacts. The novel distribution offset method out-
performed the Hurst exponent method in identification of ar-
tifactual components. Distribution offset had a higher removal
percentage, but its main advantage was that it far exceeded the
Hurst exponent in preserving neural data. Since the Hurst val-
ues eliminated were associated with any noninteresting data
rather than just EOG artifacts, as in [18], it is possible that the
Hurst method removed additional noise, such as line noise or
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TABLE I
EVALUATION OF EOG REMOVAL TECHNIQUES

Fig. 7. Frequency correlation between original and processed signals. Here,
ICA uses distribution offset for identification of artifactual components.

electromyography artifacts, rather than vital neural data, but it
is doubtful that the large amount of information removed could
be fully accounted for by noise.

Even using distribution offset, ICA was not as effective as
other methods in preserving neural data. This tradeoff was ex-
pected, and the overall results show ICA to be a much more vi-
able option for EOG artifact removal than regression and PCA.
Based on the neural preservation metrics and the positive total
STD difference, ICA removes too much data, which is most
likely a result of neural data not being fully separated from
artifactual components. The frequency correlation graph also
shows this as ICA (distribution offset method) has the smallest
correlation of any removal technique.

A method that computes ICA on the full data matrix might
be able to better separate the data, but on a dataset such as ours
this would require concatenation of trials to obtain enough time
points, which requires the assumption of spatial stationarity
of the neural sources across trials. This would be a difficult
assumption to make given that our trials contained different
stimuli, although it should be noted that some studies have
found it satisfactory to only compute the ICA unmixing matrix
once with as little as 10 s of data [8]. That technique also helps
alleviate ICA’s large computation time.

The most effective method examined was the wavelet method.
Not only did the wavelet technique produce the best results in
removing EOG artifacts, but it was far superior to ICA in retain-
ing neural data. It was also much more consistent than ICA in
all measures as indicated by the STDs in Table I. Additionally,
the wavelet method produced results that had the highest fre-

TABLE II
REMOVAL PERCENTAGES FOR DIFFERENT DATASETS

quency correlation with the original signal above 20 Hz. Last,
the wavelet technique has the distinct advantage of not needing
the EOG reference channels, thereby decreasing experimental
complexity and possible sources of error while increasing the
subject’s comfort.

Wavelets, along with ICA, were also more robust to the dif-
ferent datasets (Table II). Regression and PCA performed over
40% worse at removal in the motor datasets compared to the
language set. There was no significant difference between the
imagined and overt motor sets for any removal method, though,
which would seem to indicate that the large drop in removal
percentage from the language set was due to the change in trial
length from 5 to 2.5 s.

To evaluate the effectiveness of the multilevel wavelet tech-
nique, its results were compared to the results of using wavelets
with optimal constant decomposition levels, which were found
to be levels 4 and 5 through the same metrics presented in Table I.
Levels 4 and 5 are shown in Table I, and the multilevel method
produced superior results. Although multilevel wavelets were
not the best in every metric, the overall results are slightly bet-
ter than any single level. As expected, the multilevel technique
removed artifacts as well as level 4 decompositions as indicated
by removal percentage, while still leaving behind the proper
amount of power in the contaminated portion of the signal as
shown by the total STD difference. The multilevel technique
also saves the time of manually finding the optimal level. If the
optimal level for nearly all artifacts is the same, though, then
the multilevel method adds unnecessary computation time.

In visual inspection of a sample of signals, the multilevel
wavelet technique again showed the best results. Fig. 8 shows
typical results from multilevel wavelets in which it is clear that
the noncontaminated portions of the signal were left untouched,
and two types of EOG artifacts appear to have been removed
while still retaining the neural data.
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Fig. 8. EOG removal with multilevel wavelets. At the beginning of the signal,
there is an eye movement artifact, and at the end of the signal an eye blink
occurs. Both artifacts were removed while retaining neural data.

V. CONCLUSION

The main contributions of this paper are the development of a
novel wavelet technique for removal of OA from neural data, a
novel method for automatic identification of ocular artifact com-
ponents in ICA, and a set of quantitative metrics for automatic
evaluation of the effectiveness of EOG removal on real neural
data. As discussed in Section IV, multilevel wavelets were most
effective in terms of EOG artifact removal and preservation of
neural data. This conclusion is supported by the quantitative
metrics (see Table I; Fig. 7) as well as by visual inspection of
a sample of signals (such as Fig. 8). This method also did not
require EOG reference channels.

Although ICA encountered complications with the high-
dimensional data, it has been the gold standard for EOG artifact
removal in low-dimensional datasets. Here, distribution offset,
the novel method that was developed for automatic artifact iden-
tification, outperformed the Hurst exponent technique in both
artifact removal and preservation of neural data. Neither ICA
method performed nor the wavelets, but both were far superior
to regression and PCA.
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