
IEEE TRANSACTIONS ON SERVICE COMPUTING 1

Performance Analysis of Network I/O
Workloads in Virtualized Data Centers

Yiduo Mei, Ling Liu, Senior Member, IEEE,
Xing Pu, Sankaran Sivathanu, and Xiaoshe Dong

Abstract—Server consolidation and application consolidation through virtualization are key performance optimizations in cloud-
based service delivery industry. In this paper we argue that it is important for both cloud consumers and cloud providers to
understand the various factors that may have significant impact on the performance of applications running in a virtualized
cloud. This paper presents an extensive performance study of network I/O workloads in a virtualized cloud environment. We first
show that current implementation of virtual machine monitor (VMM) does not provide sufficient performance isolation to
guarantee the effectiveness of resource sharing across multiple virtual machine instances (VMs) running on a single physical
host machine, especially when applications running on neighboring VMs are competing for computing and communication
resources. Then we study a set of representative workloads in cloud based data centers, which compete for either CPU or
network I/O resources, and present the detailed analysis on different factors that can impact the throughput performance and
resource sharing effectiveness. For example, we analyze the cost and the benefit of running idle VM instances on a physical
host where some applications are hosted concurrently. We also present an in-depth discussion on the performance impact of
co-locating applications that compete for either CPU or network I/O resources. Finally, we analyze the impact of different CPU
resource scheduling strategies and different workload rates on the performance of applications running on different VMs hosted
by the same physical machine.

Index Terms—Cloud computing, performance measurement, virtualization, resource scheduling.

—————————— ——————————

1 INTRODUCTION

E view a virtualized cloud computing environ-
ment as a virtualized data center with a network of
physical computing nodes (machines), and each

physical machine is hosting multiple virtual machines
(VMs). The cloud service providers offer the infrastruc-
ture as a service (IaaS) by allowing cloud consumers to
reserve virtual machines of their desired capacity and pay
only when the applications are actually consuming re-
sources. The promise of virtual machine monitors
(VMMs) for server consolidation and application consoli-
dation is to run multiple services on a single physical ma-
chine (host) while allowing independent configuration of
operating systems (OSs), software, and device drivers on
each VM. By allowing multiplexing hardware resources
among virtual machines running commodity OSs, virtua-
lization helps to achieve greater system utilization, while
lowering total cost of ownership.

However, several studies have documented that cur-
rent implementation of VMMs does not provide sufficient
performance isolation to guarantee the effectiveness of

resource sharing, especially when the applications run-
ning on multiple VMs of the same physical machine are
competing for computing and communication resources
[2], [19], [23], [36], [37]. As a result, both cloud consumers
and cloud providers may suffer from unexpected perfor-
mance degradation in terms of efficiency and effective-
ness of application execution or server consolidation.

We argue that in-depth performance analysis of differ-
ent applications running on multiple VMs hosted by the
same physical machine is an important step towards max-
imizing the benefit and effectiveness of server consolida-
tion and application consolidation in virtualized data cen-
ters. Quantitative and qualitative analysis of performance
bottlenecks that are specific to virtualized environments
also provide deeper insights on the key factors for effec-
tive resource sharing among applications running in vir-
tualized cloud environments.

In this paper we present our performance analysis of
network I/O workloads hosted in different VMs of a sin-
gle physical machine. We focus on workloads that are
either CPU bound or network I/O bound, because net-
work intensive applications are known to be the dominat-
ing workloads in pay-as-you-go cloud-based data centers,
exemplified by Amazon EC2, Google AppEngine, and
Saleforce.com. We report our measurement study on
three categories of resource scheduling problems. First,
we study the impact of running idle guest domains on the
overall system performance, addressing the cost and ben-
efit of managing idle VM instances in virtualized data
centers. When a domain is said to be idle, it means that
there is no other runnable processes and the OS is execut-

 © 2011 IEEE

————————————————
• The first author was a visiting PhD student from 2008-2010 at the Distri-

buted Data intensive Systems Lab (DiSL) in Georgia Institute of Technolo-
gy. He is currently with the department of CS in Xi’An Jiaotong Universi-
ty, Xi’An, P.R. China. E-mail: meiyiduo@gmail.com.

• The second and fourth authors are with the DiSL at the college of compu-
ting, Georgia Institute of Technology. E-mail: {lingliu, sanka-
ran}@cc.gatech.edu.

• The third author was a visiting PhD student from 2008-2010 at the DiSL
in Georgia Institute of Technology. He is currently with the department of
CS in Beijing Institute of Technology, Beijing, P.R. China. E-mail: aben-
pu@gmail.com.

• The fifth author is with department of CS in Xi’An Jiaotong University,
Xi’An, P.R. China. E-mail: xsdong@mail.xjtu.edu.cn.

Manuscript received 2 November 2010.

W

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

ing idle-loop. We conjecture that this experimental study
not only helps cloud service providers to effectively man-
age virtual machines to better meet consumers’ demands,
but also provides useful insights for cloud consumers to
manage idle instances more effectively for seamlessly
scaling out their applications on demand. Second, we
conduct an in-depth measurement analysis of concurrent
network I/O applications co-located in a virtualized
cloud in terms of throughput performance and resource
sharing effectiveness. We focus on the set of key factors
that can maximize the physical host capacity and the per-
formance of independent applications running on indi-
vidual VMs. Finally, we study how different CPU re-
source sharing strategies among VMs hosted on a single
physical machine under different workload rates may
impact the overall performance of a virtualized system.
Our experimental study shows that quantifying the per-
formance gains and losses relative to different VM confi-
gurations provides valuable insights for both cloud ser-
vice providers and cloud consumers to better manage
their virtualized infrastructure and to discover more op-
portunities for performance optimization of their applica-
tions. Our measurement analysis also reveals that appli-
cations running in virtualized data centers should be ma-
naged more carefully to minimize unexpected perfor-
mance degradation and maximize desired performance
gains.

The rest of the paper is organized as follows. We brief-
ly review the related work in Section 2. Section 3 gives an
overview of the basic methodology and measurement
metrics used in this study. Section 4 presents our perfor-
mance analysis on the cost and benefit of managing idle
VM instances. Section 5 describes our measurement study
of co-locating applications that compete for either CPU or
network I/O resources in a virtualized cloud. Section 6
studies the impact of tuning CPU credit scheduler on ap-
plication performance. We conclude the paper in Section
7 with a summary and an outline of our ongoing research.

2 RELATED WORK
A fair number of research and development efforts have
been dedicated to the enhancement of virtualization tech-
nology in the past few years. Most of the efforts to date
can be classified into three main categories: (1) perfor-
mance monitoring and enhancement of VMs hosted on a
single physical machine [5], [6], [13], [17], [21], [25], [26],
[32]; (2) performance evaluation, enhancement, and mi-
gration of VMs running on multiple physical hosts [8],
[16], [30], [34], [35], [41]; (3) performance comparison
conducted with different platforms or different imple-
mentations of VMMs [10], [22], [40], such as Xen [3] and
KVM [20], as well as the efforts on developing bench-
marks [1], [22]. Given that the focus of this paper is on
performance measurement and analysis of network I/O
applications in a virtualized single host, in this section we
provide a brief discussion on the state of art in literature
to date on this topic. Most of the research on virtualiza‐
tion in a single host has been focused on either develop‐
ing the performance monitoring or profiling tools for

VMM and VMs, represented by [14], [15], or conducting
performance evaluation work by varying VM configura-
tions on host capacity utilization or by varying CPU
scheduler configurations [6], [12], [18], [21], [28], especial-
ly for I/O related performance measurements [3], [5], [7],
[23]. For example, some work has focused on I/O per-
formance improvement by tuning I/O related parameter
[11], [13], [17], [25], [26], [32], [39], such as TCP Segmenta-
tion Offload (TSO), network bridging. Recently, some
study showed that performance interference exists among
multiple virtual machines running on the same physical
host due to the shared use of computing resources [5],
[23], [36], [37] and the implicit resource scheduling of dif-
ferent virtual machines done by VMM in the privileged
driver domain [19]. For example, in current Xen imple-
mentation, all the I/O requests have to be processed by
the driver domain, and Xen does not explicitly differen-
tiate the Dom0 CPU usage caused by I/O operations for
each guest domain. The lacking of mechanism for Do-
main0 (Dom0) to explicitly separate its usage for different
VMs is, to some degree, contributing to the unpredictable
performance interference among guest domains (VMs)
[14]. However, none of the existing work has provided in‐
depth performance analysis in the context of performance
interference and application co‐locations.

To the best of our knowledge, this paper is the first one
that provides an in‐depth performance measurement and
analysis on a number of important issues, including the
cost and benefits of running idle VM instances concur-
rently with some applications in a virtualized cloud, the
impact of different CPU resource scheduling strategies on
the performance of network I/O applications under vary-
ing workload rates, and the impact of resource competi‐
tion and performance interference on effectiveness of co‐
locating applications. The measurement study presented
in this paper offers new insights on the set of factors im-
portant for efficient scheduling and tuning of network
I/O applications. Although this paper reports our mea-
surement analysis on the open source version of Xen
VMM and EC2 style cloud platform, we believe that the
results and observationns obtained by this study are in-
structmental to evaluate other implementations of VMM
such as KVM [20] and VMware [38].

3 OVERVIEW

In this section we first briefly review Xen [3], especially
some features and implementation details of Xen, which
are important backgrounds for our performance analysis
and measurement study. Then we briefly outline our ba-
sic methodology for conducting performance measure-
ment and analysis of network I/O applications in virtua-
lized cloud environments.

3.1 Xen I/O Mechanism
Xen is an x86 VMM (hypervisor) developed based on pa-
ravirtualization. VMM interfaces between the virtual ma-
chine tier and the underlying physical machine resources.
At boot time, an initial domain, called Dom0, is created

AUTHOR ET AL.: TITLE 3

and serves as the privileged management domain, which
uses the control interface to create and terminate other
unprivileged domains, called guest domains, and manag-
es the CPU scheduling parameters and resource alloca-
tion policies.

In Xen, Dom0 also serves as a driver domain by con-
taining: (1) unmodified Linux drivers for I/O devices, (2)
network bridge for forwarding packets to guest domains,
and (3) netback interface to each guest domain. Devices
can be shared among guest operating systems running in
guest domains, denoted as Dom1, Dom2, …, Domn (n>1).
A guest domain implements a virtual network interface
controller driver called netfront to communicate with cor-
responding netback driver in Dom0. Xen processes the
network I/O requests through the event channel mechan-
ism and the page flipping technique. For example, con-
sider the guest domain which is receiving a network
packet, whenever a network packet arrives, the hardware
raises an interrupt. The hypervisor intercepts the inter-
rupt and then initializes a virtual interrupt through the
event channel to inform the driver domain of the arrival
of the packet. When the driver domain is scheduled to
run, it sees the I/O event notification. The device driver
in the driver domain fetches the packet and delivers it to
the network bridge. The network bridge inspects the
header of the packet to determine which netback to send
to. After the network packet is put into proper netback
driver, the network driver notifies the destination guest
domain with a virtual interrupt through the event chan-
nel, and it encapsulates the network packet data into the
form of memory pages. Next time when the guest domain
is scheduled to run, the guest domain sees the notifica-
tion. Then the memory page containing the network
packet data in the netback driver is exchanged with an
unused page provided by the destination guest OS
through the network I/O channel. This process is called
memory page flipping, which is designed to reduce the
overhead caused by copying I/O data across domains
(VMs). The procedure is reversed for sending packets
from the guest domains via the driver domain. Previous
studies also showed the grant mechanism as a significant
source of network I/O overhead in Xen [3], [5], [12], [18],
[29], [32], [33].

3.2 Credit Scheduler
Xen employs the credit scheduler to facilitate load balanc-
ing on symmetric multiprocessing (SMP) host. The non-
zero cap parameter specifies the maximum percentage of
CPU resources that a virtual machine can get. The weight
parameter determines the credit associated with the VM.
The scheduler will charge the running virtual CPU
(VCPU) 100 credits every tick cycle, which is 10 millise-
conds (ms) by default. According to the remaining
amount of credits of each VCPU, its states can be: under (-
1) and over (-2). If the credit is no less than zero, then the
VCPU is in the under state, otherwise, it’s in the over
state. Each physical CPU checks VCPUs in the following
steps before it goes into idle: First, it checks its running
queue to find out the ready VCPU which is in the under
state, then it will check other physical CPU’s running

queue to fetch VCPU that is in the under state. After that
the scheduler will execute the VCPU in the over state in
its own running queue from beginning. It will never go to
idle states before it finally checks other physical CPU’s
running queue to see whether there exists runnable
VCPU in the over state.

A VCPU can be scheduled to run on physical CPU for
30 ms by default before preemption as long as it has suffi-
cient credit. To alleviate the high I/O response latency,
the credit scheduler introduces the boost state to prompt
the I/O processing priority. An idle domain can enter the
boost state when it receives a notification over the event
channel and it is previously in the under state, resulting
in high scheduling priority [6], [9], [18], [29].

3.3 Objectives and Experimental Setup
This section outlines the objectives of this measurement
study and the experimental setup, including the repre-
sentative network I/O workloads, and the virtual ma-
chine configuration.

In a virtualized cloud environment, cloud providers
implement server consolidation by slicing each physical
machine into multiple virtual machines (VMs) based on
server capacity provisioning demands. Cloud consumers
may reserve computing resources through renting VMs
from cloud providers. However, there is lacking of in-
depth study on performance implications of running ap-
plications on multiple VMs hosted by the same physical
machine.

In this paper, we design our measurement study, fo-
cusing on analyzing the following three important issues:
(1) understanding the cost and benefit of maintaining idle
VMs on application performance; (2) understanding the
performance implication of co-locating CPU bound and
network I/O bound applications over separate VMs run-
ning on a shared physical host in a virtualized cloud, es-
pecially in terms of throughput performance and resource
sharing effectiveness; and (3) understanding how differ-
ent CPU resource sharing strategies among guest do-
mains hosted on a physical machine may impact the
overall system performance. By conducting an in-depth
measurement analysis of these issues, we will gain better
understanding of the key factors that can maximize the
physical host capacity and the application performance.
Furthermore, cloud service providers can provide more
effective management of virtual machines to better meet

TABLE 1
EXPERIMENTAL PLATFORM SETUP

Specification Platform I Platform II Client
CPU Family Xeon(TM) Pentium(R) 4 Core(TM) 2
of Processor 2 1 1
Core 1 1 2
Frequency (GHz) 1.7 2.6 2.66
L2 Cache (KB) 256 512 4096
FSB (MHz) 400 533 1333
RAM (MB) 1024 512 2048
DISK (GB) 20 40 250
NIC (Mbit/sec) 100 1024 1024
OS Ubuntu 8.0.4 Ubuntu 8.0.4 Debian 5.0
Xen Hypervisor 3.2 3.2 NA

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

consumers’ demand. Cloud service consumers can learn
from the insights of this study to better manage and scale
their applications.

All experiments were conducted using two slightly dif-
ferent platforms to ensure the consistency of experimental
results (see Table 1). The Platform I is a DELL Precision
Workstation 530 MT with dual 1.7 GHz Intel Xeon pro-
cessors, 1 GB ECC ram, Maxtor 20 GB 7200 RPM IDE disk
and 100Mbps network connection. Platform II is Pentium
4 based server with one single 2.6 GHz processor, 512 MB
ram, 40 GB IDE disk and 1Gbps network connection. We
installed on both of the platforms the Ubuntu 8.0.4 distri-
bution and Xen 3.2 with the default credit scheduler. Each
of the two physical machines hosts multiple virtual ma-
chines. Each VM is running Apache web server to process
web requests from remote clients. Each client generates
file retrieval requests for a particular virtual machine such
that the clients will not become the bottlenecks in our ex-
periments. Each connection issues one file request by de-
fault. A control node coordinates individual clients and
collects profiling data. The industry standard benchmarks
for evaluating web server performance are the SPEC-
web’96, SPECweb’99, SPECweb’06 and SPECweb’09. The
web server performance is measured as a maximum
achievable number of connections per second when re-
trieving files of various sizes. We use httperf [27] to send
client requests for web documents of size 1kB, 10kB, 30kB,
50kB, 70kB, 100kB or 200kB hosted in the Apache web
servers running in guest VMs. In all experiments, we aim
at measuring virtual server performance, thus the client
machines we used are sufficiently powerful to ensure that
the clients do not incur any performance bottleneck.

Finally, we would like to note the importance of using
two slightly different hardware platforms to ensure the
consistency of the measurement study. It is known that
web server performance is CPU bound under a mix of
small size files, and is network bound under a mix of
large files [5] [31]. However, the criteria for small or large
files depend primarily on the capacity of the machine
used in the experiments. For our experimental setup, files
with size larger than 10kB are considered long file in Plat-
form I since applications with file size of 30kB, 50kB and
70kB will saturate the network interface card of Platform
I, but we had to use the files of size 100kB or 200kB to
stress the network interface card of Platform II. This is
because the network interface card of Platform II has
much bigger capacity than the NIC in Platform I, though
the physical server of Platform I is dual processors with
bigger RAM. This further demonstrates the importance of
employing two alternative platforms to conduct our mea-
surement study. Concretely, all the experiments con-
ducted on one platform are repeated on the other plat-
form. We show that the impact of hardware capacity dif-
ference between the two physical servers (platforms) may
have on our understanding and analysis of the cloud per-
formance, though it is also possible that such impact is
insignificant at times. For example, on both platforms,
each idle guest domain can get about 250 microseconds
(µs) for each run as reported in Section 4.1. However, for
Platform I, the peak throughput for the 1kB application is

around 1100 req/sec, while the peak throughput is re-
duced to about 980 req/sec for platform II.

3.4 Performance Metrics
In this section we present the core set of metrics we use to
conduct the performance analysis and measurements re-
ported in this paper.

Different types of resource contention occur in a virtu-
alized environment. Such contentions often are due to
varying network I/O workload sizes being requested, the
variation of applied workload rates, the varying number
of VMs (guest domains), and the types of applications
that are co-located in different VMs hosted on a single
physical machine. Thus, in order to analyze the web serv-
er performance in a virtualized environment, the follow-
ing metrics are used in our measurement study. They are
collected using Xenmon [15] and Xentop monitoring tools.
Server throughput (req/sec). One way to measure web
server performance is to measure the server throughput in
each VM at different workload rates, namely the maximum
number of successful requests served per second when
retrieving web documents.
Normalized throughput. In order to compare throughputs

of different VM configurations and different number of
VMs hosted on a single physical machine, we typically
choose one measured throughput as our baseline refer-
ence throughput and normalize the throughputs of dif-
ferent configuration settings by using the ratio of the
throughput in a given setting over the baseline reference
throughput in order to make adequate comparison.

Aggregated throughput (req/sec). We use aggregated
throughput as a metric to compare and measure the im-
pact of using different number of VMs on the aggre-
gated throughput performance of a physical host. This
metric also helps us to understand other factors that
may influence the aggregated performance.

Reply time (millisecond). This metric measures the time
elapsed between the client sent the first byte of the re-
quest and received the first byte of the reply.

Transfer time (millisecond). Different from the reply time,
the transfer time measures the time took for the client to
receive the entire reply.

CPU time per execution (µs/exe). The CPU time per execu-
tion (µs/exe) is a performance indicator that shows the
average obtained CPU time in microseconds (µs) during
each running of the domain.

Execution per second (exe/sec). The execution per second
metric measures the counts of domain for being sche-
duled to run on a physical CPU over the unit time dura-
tion.

CPU utilization (%). To understand the CPU resource
sharing across VMs running on a single physical ma-
chine, we measure the average CPU utilization of each
VM, including Dom0 and guest domain CPU usage re-
spectively. The summation of all VM CPU utilizations
represents the total CPU consumption.

Net I/O per second (kB/sec). We measure the amount of

AUTHOR ET AL.: TITLE 5

network I/O traffic in kB per second, transferred
to/from a web server during the corresponding work-
load.

Memory pages exchange per second (pages/sec). We
measure the number of exchanged memory pages per
second in I/O channel. This metric indicates how effi-
cient the I/O processing is.

Memory pages exchange per execution (pages/exe). This
metric is a performance indicator that shows the aver-
age memory pages exchange during each running of the
domain.

4 RUNNING IDLE INSTANCES: IMPACT ANALYSIS
In this section we provide a detailed performance analy-
sis of maintaining idle VM instances, focusing on the cost
and benefit of maintaining idle guest domains in the
presence of network I/O workloads on a separate VM
sharing the same physical host. Concretely, we focus our
measurement study on addressing the following two
questions: First, we want to understand the advantages
and drawbacks of keeping idle instances from the pers-
pectives of both cloud providers and cloud consumers.
Second, we want to measure and understand the start-up
time of creating one or more new guest domains on a
physical host, and its impact on existing applications.

Consider a set of n (n>0) VMs hosted on a physical
machine, at any given point of time, a guest domain (VM)
can be in one of the following three states: (1) execution
state, namely the guest domain is currently using CPU; (2)
runnable state, namely the guest domain is on the run
queue, waiting to be scheduled for execution on the CPU;
and (3) blocked state, namely the guest domain is blocked
and is not on the run queue. A guest domain is called idle
when the guest OS is executing idle-loop.

4.1 Cost of Maintaining Idle Guest Domains

Both cloud providers and cloud consumers are interested
in understanding the cost and benefit of maintaining idle
guest domains in comparison to acquiring guest domains
on demand. We attempt to answer this question by con-
ducting a series of experiments. First, we use our test Plat-
form I, on which we started one single guest domain, de-
noted as Dom1. Dom1 serves all http requests. We stress
Dom1 with as high workload as possible to find out its
service limit. Then, we started the next three sets of expe-
riments. We setup m guest domains on the Platform I ma-
chine with Dom1 serving http requests and the remaining
m-1 guest domains being idle where m=2,3,4. In order to
measure and compare the cost of starting up an applica-
tion on an idle domain v.s. the cost of acquiring a new
guest domain from scratch, we start the Apache web
server automatically in an idle domain to simulate the
situation that an instance which has been booted up can
respond to http requests immediately.

Table 2 shows the results of the four sets of experi-
ments. Dom1 is running I/O application in high workload
rate, with zero, one, two, or three other VMs in idle ex-
ecution state. Each of the four sets of experiments records
the maximum achievable throughputs for the five differ-
ent network I/O applications (1kB, 10kB, 30kB, 50kB and
70kB). We observe a number of interesting facts from Ta-
ble 2. First, there is no visible performance penality in
terms of the cost of keeping the idle domain(s) running
when Dom1, the running domain, is serving 30kB, 50kB
and 70kB applications, because these applications are
network bounded on Platform I. Second, the 1kB applica-
tion, in contrast, shows the worst performance degrada-
tion and is CPU bound. Compared with the single VM
case where no idle domain is maintained, the highest
throughput value achieved is 1070 req/sec, and we see
6.6% performance degradation (1 − 999/1070) when the
number of guest domains is four (999 req/sec). From
these four sets of experiments, we observe that adding
idle guest domains can impact the performance of CPU
intensive applications in the running domain. Such over-
head increases as the number of idle VMs grows.

We conduct more detailed measurements on the per-
formance impact of maintaining idle instances in order to
quantitatively characterize the overhead occurred for 1kB
application running on Platform I. Figure 1 and Figure 2
present the results. We run 1kB application in Dom1 un-
der two scenarios, and measured the CPU time per execu-
tion and the number of execution counts per second respect-
tively. The first scenario is one VM with no idle domain

Fig. 1. CPU time per ex ecution [µs/exe] for 1kB
application with 0 and 3 idle guest domains o n
Platform I.

Fig. 2. Execution counts per second for 1kB appli-
cation with 0 and 3 idle guest domains on Platform
I.

Fig. 3. Switches with different configurations on
Platform II.

TABLE 2
MAXIMUM THROUGHPUT FOR DOM1 ON PLATFORM I [REQ/SEC]

App.
(# of guest domains, # of idle domains) Worst

Degradation (1,0) (2,1) (3,2) (4,3)
1kB 1070 1067 1040 999 6.6%
10kB 720 717 714 711 1.3%
30kB 380 380 380 380 0
50kB 230 230 230 230 0
70kB 165 165 165 165 0

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

and the second scenario is four VMs with three idle. We
make two observations from Figure 1 and Figure 2. First,
each of the three idle guest domains on average can get
about 250µs CPU time per execution, which is about 10%
of the CPU time of Dom0 for each execution. Second,
comparing the scenario of 4 VMs with 3 idle with the sin-
gle VM scenario, we see that the CPU time for each execu-
tion is dropped from 2464µs to 2130µsin Dom0 and from
2407µs to 2046µs in Dom1 (Figure 1). Similarly, the execu-
tion count per second is dropped from 400,000 to 300,000
in Dom1, though the execution count per second in Dom0
shows a slight increase (Figure 2). The drop in CPU time
per execution and the number of executions per second is
primarily due to two factors: (1) the overhead incurred by
the execution of timer tick for the idle guest domains and
the overhead of associated context switch, and (2) the
overhead of processing network packets, such as address
resolution protocol (ARP) packets, which causes I/O
processing in guest domain.

To ensure the consistency of our observations from ex-
periments with Platform I physical machine, we con-
ducted similar experiments on Platform II physical ma-
chine to gain more insights on impact of running idle
guest domains. Similarly, we consider the two scenarios:
1 VM and 4 VM with 3 idle. In order to learn about other
possible factors that may impact the performance of idle
domains, in addition to throughput and throughput de-
gration, we also measure reply time, transfer time, and
their degradations, by varying the workload rates for the
1kB application. Table 2 confirms that keeping idle guest
domains may lead to some degree of performance degra-
dation and such degradation differs from network I/O

bounded applications to CPU bounded applications. In
addition, there are multiple factors that influence the de-
gree of performance degradation. We observe from Table
3 that when we run single application on a shared cloud
hardware platform with throughput as the performance
metric for the CPU bounded application, workload rate
determines the extent of the throughput degradation.
When the workload rate is at 900 or 980 req/sec, we expe-
rience some throughput degradation from 1.1% ro 3.2%.
However, changing workload rates has neither explicit
impact on the throughput performance for network I/O
bounded applications (e.g., 30kB, 50kB or 70kB) nor per-
formance impact on CPU bounded applications (e.g., 1kB)
serving at lower workload rates (e.g., 200 or 500 req/sec).
But if we consider the reply time or the transfer time, we
could observe some obvious performance degradation in
terms of the reply time and transfer time for applications
of larger file sizes (e.g., 100kB, 200kB) running on Plat-
form II. Also the RT degradation column in Table 3 shows
that 100kB and 200kB applications suffer more serious
performance degradation at the high workload rate of 200
req/sec. Similar observations can be found with respect
to the transfer time degradation (TT Deg column). Given
that the reply for 1kB application was less than one milli-
second, too short to be measured at µs unit, and thus
transfer time was zero.

4.2 In-depth Performance Analysis
As shown in the previous section, there are more factors
that impact the cost and benefit of maintaining idle guest
domains in addition to throughput. In this section, we
will provide an in-depth measurement on the various

TABLE 3
PERFORMANCE DEGRADATION ON PLATFORM II

Req Rate
(req/sec)

w. r. t. [App.]

Throughput Thr.
Deg.

Reply Time
milliseconds

RT
Deg

Transfer Time
milliseconds

TT
Deg

(1,0) (4,3) (1,0) (4,3) (1,0) (4,3)
980 [1k] 958 927 3.2% 53 77 45% 0 0 0
900 [1k] 897 887 1.1% 28 51 82% 0 0 0
500 [1k] 500 500 0 0.9 0.91 1.1% 0 0 0
200 [1k] 200 200 0 0.9 0.9 0 0 0 0
200[50kB] 200 200 0 0.9 0.9 0 2.2 2.2 0
200[100kB] 200 200 0 2.0 4.5 125% 5.8 11.9 105%
200[200kB] 200 200 0 3.6 10.9 200% 9.4 30.0 219%
100[200kB] 100 100 0 0.9 1.0 11.1% 5.1 5.2 2%
50[200kB] 50 50 0 0.9 1.0 11.1% 4.9 5.1 4%

Figure 4. Blocks / Wakes differences between tests
running with 0 and 3 idle guest domains on Plat-
form II.

Figure 5. CPU utilization [%] for 1kB application
under 200, 500 and 900 workload rates with 0 and
3 idle guest domains on Platform II.

Figure 6. Block time [%] for 1kB application under
200, 500 and 900 workload rates with 0 and 3 idle
guest domains on Platform II.

AUTHOR ET AL.: TITLE 7

performance metrics in order to better manage the idle
guest domains.

Figure 3 and Figure 4 measure the switches, blocks or
waits for five scenarios on Platform II: they are 1kB at 200
req/sec, 1kB at 500 req/sec, 1kB at 900 req/sec, 50kB at
200 req/sec and 100kB at 200 req/sec. Figure 3 shows
when Dom1 is serving the CPU bound 1kB application,
the context switches with running 0 and 3 idle guest do-
mains are slightly different for all five scenarios on Plat-
form II (1kB at 200 req/sec, 1kB at 500 req/sec, 1kB at 900
req/sec, 50kB at 200 req/sec and 100kB at 200 req/sec).
Take the 1kB with 200 req/sec as an example, when run-
ning Dom1 alone, Xenmon [15] recorded only 872,614
switches, compared with 990,169 switches occurred when
running 3 idle guest domains. Figure 4 show similar re-
sults when we considered the Blocks or Wakes as metrics.
As we increase the idle guest domains from 0 to 3, there is
an increase in terms of switches, blocks or wakes due to
the introduction of the idle guest domains which are ex-
ecuting idle loops.

Figure 5 shows CPU utilization for 1kB application
with varying workload rate and varying number of idle
guest domains. Two observations are made from Figure 5.
First, each of the idle guest domains takes about 1% CPU
resource on Platform II. Second, when Dom1 is serving
low and medium workload rate (e.g., 200 req/sec and 500
req/sec), Dom1 consumes a slightly more CPU than Dom0.
However, the demand for CPU resource by Dom1 grows
as the workload rate increases. At 900 req/sec, the Dom1
CPU capacity is almost saturated. It is observed that the
CPU share for Dom1 drops from 55% to 52% when we
switched the number of idle guest domains from 0 to 3
with the workload rate at 900 req/sec. This further ex-
plains the performance degradation in terms of reply time
and transfer time shown in Table 3.

Figure 6 measures the percentage of block time for 1kB

application with varying workload rate and varying
number of idle guest domains. Table 4 lists the same re-
sult in concrete values. From this table and Figure 6, we
observe that Dom1 block time drops dramatically com-
pared with Dom0 at the workload rate of 900 req/sec re-
gardless whether the 1kB application is running on Dom1
with zero idle instance or three idle instances. This obser-
vation appears to be counter-intuitive since with the same
workload and the same application (1kB) one would
think that both Dom0 and Dom1 should get similar block
time because they have almost the same amounts of net-
work packets to process. By taking a closer look at the
experimental results, we see that two important facts.
First, at high workload rate of 900 req/sec and with the
default behavior of the credit scheduler (which is trying
to equally share CPU resources among multiple working
domains), Dom0 works efficiently to respond to Dom1’s
I/O events. Thus, Dom1 needs more CPU time to quickly
respond to I/O event issued from Dom0, leading to low
percentage of block time at Dom1. Second, at 900 req/sec
rate, the CPU share for Dom1 drops from 55% to 52%
when the number of idle guest domains is changed from
0 to 3. We see that the highest block time is for the idle

TABLE 4
BLOCK TIME FOR 1KB APPLICATION WITH VARYING WORKLOAD

RATES

Domain

Request Rate (REQ/SEC)
(# of guest domains, # of idle domains)

200 500 900
(1,0) (4,3) (1,0) (4,3) (1,0) (4,3)

Dom0 79.2 76.2 53.8 51.0 40.7 39.3
Dom1 84.0 82.6 58.5 56.4 11.8 8.4
Dom2 － 96.8 － 95.7 － 95.7
Dom3 － 96.2 － 96.5 － 96.5
Dom4 － 96.5 － 95.9 － 96.2

Figure 7. Waiting time [%] for 1kB application
under 200, 500 and 900 workload rates with 0 and
3 idle guest domains on Platform II.

Figure 8. CPU utilization [%] for 50kB, 100kB,
200kB applications under 200 workload rate with 0
and 3 idle guest domains on Platform II.

Figure 9. Waiting time [%] for 50kB, 100kB, 200kB
applications under 200 workload rate with 0 and 3
idle guest domains on Platform II.

Figure 10. Block time [%] for 50kB, 100kB, 200kB
applications under 200 workload rate with 0 and 3
idle guest domains on Platform II.

Figure 11. Coefficient of variation for 1kB applica-
tion under 500 workload rate w ith 0 and 3 i dle
guest domains on Platform II.

Figure 12. Coefficient of v ariation for waiting time
for 1kB application under v arying workload rates
with 0 and 3 idle guest domains on Platform II.

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

guest domains, and also comparing to the block time of
Dom1 with no idle instance, the block time dropped more
for Dom1 with 3 idle instances running next door. We can
illustrate the block time differences in two steps. First, our
experiments show that processing a 1kB file request re-
quires to transfer at least 5 TCP/IP network packets be-
tween the client and a web server. Thus, when Dom1 and
Dom0 are working hard at each CPU cycle in order to
cope with the 900 req/sec workload rate, the idle do-
mains are consequently blocked longer because idle do-
mainshave to wait until Dom0 either finishes all the other
packets that have higher priorities or finishes its current
CPU cycle before being scheduled by the local I/O sche-
duler in Dom0. The more idle instances are kept, the high-
er block time Dom1 will experience as a consequence for
CPU intensive workloads.

In addition to the block time, the wait time and the
CPU utilization are also important performance measures
for understanding the cost of maintaining idle instances.
Figure 7 shows the waiting time for 1kB application un-
der 200, 500 and 900 workload rates. We have two obser-
vations: (1) the waiting time is very low for all idle guest
domains at all workload rates for the two configuration
scenarios, because once the I/O event reaches the idle
guest domain, the idle guest domain is promoted into the
BOOST status, then it can get to the head of running
queue. (2) Compared with 1 VM with no idle instance,
when we run the configuration of 4 VMs with 3 idle in-
stances, the waiting time for Dom1 is always higher at the
medium or high workload rate (500 or 900 req/sec). This
is because with high workload rate, Dom1 is overcharged
with its default credit. Thus, the credit scheduler will
mark it as OVER state, then it will be put to the end of the
running queue. The consequence of the high waiting time
illustrates the reply time degradation shown in Table 3.

To further valid our observation above, we conduct the
second set of experiments by setting the workload rate to
200 req/sec. We also vary the application from serving
files with 50kB to 200kB. Figure 8 to Figure 10 recorded
the CPU utilization, waiting time and block time for the
three applications under 200 req/sec workload rate for
both zero and three idle guest domain configurations.

Compared with the first set of experiments in Figure 7,
a noticeable difference is observed from Figure 8 and Fig-
ure 9: Dom0 demands more CPU resources than Dom1 for
network I/O bound applications. This is because the data
processing incurs memory page management interfe-
rences, such as packets lost for high latency, fragmenta-
tions and increased data copying overhead. Also the im-
balance in terms of demand for CPU resources by Dom0
and Dom1 will influence the allocation of CPU resources
by the credit scheduler. Dom0 gets more than its equal
part of CPU share compared to Dom1 (Figure 8). Thus,
Dom0 will have to wait longer in the running queue of the
physical CPU (Figure 9), thus Dom0 can not always get its
desired CPU on time (Dom0 has longer waiting time), and
consequently it can not process I/O event destined for
Dom1 or the idle guest domains, leading to high block
time for Dom1 and idle domains and short block time for
Dom0 (Figure 10).

4.3 Stability of Performance Metrics
We have shown in the previous sections that different
performance metrics, such as CPU utilization, block time,
wait time, throughput, are all important performance
indicators. However, collecting all these measures fre-
quently in real time can be costly. Some research [24] has
shown that the monitoring service will not report the oc-
currence of some event until when the accumulated level
of certain violations exceeds a specified threshold. In this
section we discuss briefly our experiences in terms of
measuring the Coefficient of Variation (CoV) for CPU
utilization, block time and waiting time, which captures
the fluctuation of each measurement statistic.

Figure 11 shows that when Dom1 is serving 1kB appli-
cations with fixed rate of 500 req/sec, the CoV for CPU
utilization (UT), block time (BL) and waiting time (WA)
with respect to zero and three idle guest domains. We
observe that the CPU utilization is the most stable per-
formance indicator to illustrate CPU allocation, whereas
the waiting time is the most frequently fluctuated factor.
This observation tells us that if the monitoring resource is
limited, one needs to track on a smallest set of statistics to
detect performance saturation in a virtualized cloud, then
the CPU utilization is a good and stable performance in-
dicator to use. However, if more comprehensive metrics
may be needed to monitor and notify the arrival of some
specific event, then using the tolerance degree or toler-
ance interval of waiting time can be more informative
than the CPU utilization and block time.

Another interesting observation from Figure 11 is that
the waiting time has the highest CoV while the CPU utili-
zation has the lowest CoV. The CPU utilization has the
lowest CoV is because we use the default settings of
Apache web server, for example, the KeepAlive time and
MaxClients are set by the default values. When the re-
quest rate is fixed, the CPU utilization and the demand
for memory resources are fixed [42]. This means that the
credit scheduler allocates a certain amount of CPU cycles
to specific domain at the initial stage and the credit sche-
duler will revise its allocation of the CPU cycles based on
the credits consumed. Take Dom1 as an example, it means
at the beginning Dom1 gets its fair amount of CPU cycles
in under states, and Dom1 will be put into the running
queue in a FIFO way. Consequently, Dom1 will get the
normal waiting time. However, after Dom1 consumes its
pre-assigned credits, it goes into the over state, that
means once Dom1 is ready to run, it will be put to the end
of the running queue, which means longer waiting time.
As a result, the waiting time appears in an unstable fa-
shion.

In order to understand other factors that may impact
the CoV, we conduct another set of experiments. Figure
12 shows the CoV of the waiting time for the 1kB applica-
tion under changing workload rate. We see a dramatic
increase in the waiting time of Dom1 and Dom0 when the
applied workload rate is high. This is because when the
workload rate is high, there is a great opportunity for
Dom1 and Dom0 going into the OVER state, leading the
fluctuations and high CoV in the waiting time for Dom1
and Dom0.

AUTHOR ET AL.: TITLE 9

4.4 Starting up Guest Domains on Demand
We have studied the cost of keeping idle instances run-
ning in the previous sections. In this section we study the
cost of starting a virtual instance on demand. Concretely,
we want to study how CPU intensive application and
network I/O intensive application may impact the
throughput performance of the running guest domain
when new instances are started on demand next door. We
also want to understand the startup time for creating one
or more new guest domains on demand and the set of
factors that may impact such start-up time.

There are two steps to start new service on demand:
First, a cloud consumer needs to request new virtual ma-
chine instances from the cloud provider and the cloud
service provider needs to find some existing idle in-
stances or create new virtual machine instances in re-
sponse to the consumer’s request. Second, the cloud con-
sumers need to set up the pre-installed or pre-configured
instances that are ready to respond to client requests. The
creation of new virtual machine is time consuming. We
measured the creation time for new virtual machine with
1GB, 2GB or 4GB disk on Platform I. Figure 13 shows that
the creation time increases as the disk size that the in-
stance posses increases. We also measured the startup
time of new instances on Platform I. The instances are
1GB, 2GB or 4GB respectively. The results show that the
difference among the startup time of these instances is
insignificant.

In order to study the startup time of new instances, we
set up one guest domain on Platform I where Dom1 is
serving the 1kB or 70kB applications. Then we create one
or two idle instances on demand. Figure 14 shows the
fluctuations in Dom1’s throughput and startup time for
the idle guest domains for three sets of experiments: (1)
running Dom1 alone (Exp1), (2) running Dom1 with star-
tup one VM on demand (Exp2), and (3) running Dom1
with startup two VMs on demand (Exp3). In this set of
experiments, the request rate is fixed at 900 req/sec for
the 1kB application or 150 req/sec for the 70kB applica-
tion, both of which are approaching 90% of maximum
throughput values given in Table 2. The primary y-axis
(left) is the normalized throughput with 900 req/sec for
1kB application or 150 req/sec for 70kB application as the
baseline, The second y-axis (right) denotes the start-up
time (sec) for starting one (alone), one with Dom1 running,
or two VMs on demand with Dom1 running. Note that
the circles in Exp1 denote the startup time for one single

instance without running Dom1.
Figure 14 presents us with three interesting observa-

tions. First, on demand start-up of guest domains has se-
vere short term impact on the performance of running
domain no matter what type of application is hosted by it.
This is because starting up a VM instance is I/O intensive.
In our experiment, it means to create one 2GB guest do-
main instance. Thus, the average CPU consumption for
starting up a new VM is about 20%, and the peak CPU
consumption can be as high as 75%, and the virtual block
device read is about a total of 900 and the virtual block
device write is about a total of more than 200. These I/O
related activities due to start-up new domains cannot be
finished without the presence of Dom0, which also plays a
critical role in processing Dom1’s web workloads in our
experiments. The second observation is that the 70kB ap-
plication suffers relatively less in terms of start-up time
than the 1kB application. This is because the performance
of the 70kB application is network bounded, and it con-
sumes less CPU, which alleviates the CPU and disk re-
source contention at Dom0. Concretely, for 1kB applica-
tion running in Dom1, it will consume about 90% CPU
resources in addition to about 5400 memory page ex-
changes per second between Dom0 and Dom1 to serve at
900 req/sec rate. In contrast, only 60% CPU resource is
reserved to serve the 70kB application at 150 req/sec rate.
Furthermore, for the 1kB application, the startup time for
creating two guest domains in Exp3 grows from 47 sec in
Exp1 to 75 sec, about 1.5 times bigger. In contrast, for
70kB application, the difference in start-up time from
creating two VMs to one VM is relatively smaller. This
indicates that the start-up time for creating new VMs on
demand is related to both the type of resource-bound ap-
plications in the running domain and the number of new
VMs being created. Given the CPU and disk I/O de-
mands involved in creating new domains, both CPU in-
tensive or disk I/O intensive applications in running do-
main will cost more start-up time than network I/O
bounded applications. Third but not the least, we observe
that the duration of performance degradation expe-
rienced due to creating new VMs on demand is typically
bounded within 100 seconds in our experiments, and is
also related with the machine capacity, the workload rate
supported in the running domain, and the number of new
VM instances to be started. We argue that by understand-
ing the cost of maintaining idle instances and the cost of
starting up new instances on demand, both cloud provid-
ers and cloud consumers can make their respective deci-

Figure 13. Create time [sec] for virtual machine
with size of 1GB, 2GB and 4GB on Platform I.

Figure 14. Nomalized throughputs for 1 kB and
70kB applications and startup time [sec] of one and
two new guest domains on Platform I.

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

sions based on concrete scaling requirements of their ser-
vices.

5 IMPACT OF NEIGHBORING APPLICATIONS
In a virtualized cloud, some resources like CPU, memory
are sliced across multiple VMs, whereas other resources
like the network and the disk subsystem are shared
among multiple VMs. We design three groups of experi-
ments to perform an extensive measurement study on
performance impact of co-locating applications with dif-
ferent resource usage patterns and different number of
VMs. The first group and the second group of experi-
ments focus on performance impact of running applica-
tions with different resource usage patterns. To isolate the
number of factors that impact on the performance of co-
locating patterns of applications, we choose the five I/O
applications of 1kB, 10kB, 30kB, 50kB and 70kB in our
experiments, but divide the experiments into three steps.
In the first group, we run identical application on all VMs
for all five applications. In the second step we study the
slightly more complex scenarios where different applica-
tions are running on different VMs. In the third group of
experiments, we study the problem of distributing work-
loads among multiple VMs. Note that, all the results re-
ported in this section are for experiments conducted on
Platform I.

5.1 Co-locating Identical Applications
In this group of experiments, we design two guest do-
mains, Dom1 and Dom2, both serve identical web requests
issuing at the same workload rates. In this simplified sce-
nario, our experimental results show that when two iden-
tical I/O applications are running together, the credit
scheduler can approximately guarantee their fairness in
CPU slicing, network bandwidth consumption, and the

resulting throughput.
Figure 15 shows the experimental results for two VMs

when both are serving 1kB applications with 50% work-
load rate. We measured throughput, CPU utilization, Net
I/O. For example, Dom1 consumes 36.1% CPU resources
while Dom2 consumes 36.8% CPU resources. And the
throughputs and network bandwidths for Dom1 and
Dom2 are: 480 req/sec and 487 req/sec, 609 kB/sec and
622 kB/sec respectively. We present these three metrics in
normalized values to show their similarities. For each
metrics pair, we use the value for Dom1 as the compara-
tive baseline. From Figure 15 we see that the difference
between the measurement in Dom1 and the measurement
in Dom2 is trivial and can be ignored.

Figure 16 measures the average throughput of Dom1
and Dom2 for all five I/O applications. We observe that (1)
all the applications arriving at the peak performance un-
der applied workload of 50% or 60%, (2) there is crucial
difference between small-sized file application and large-
sized file application. For small-sized file application such
as 1kB and 10kB, obvious performance degradation can
be observed at workload rates higher than 50% or 60%.
However, this is not the case for large-sized file applica-
tions. The significant skew happened in the 1kB applica-
tion because: (1) its performance is bounded by the CPU
resources, (2) the guest domain spends much more time
to deal with the fast arrival of network packets when the
workload rate is high, (3) compared with the single do-
main experiment for all five applications shown in Table
2, the overhead has increased due to the network bridg-
ing happened in Dom0, and context switch between two
guest domains.

Figure 17 measures the CPU usages for 1kB and 70kB
applications under varying workload rates. We add up
CPU used by Dom1 and Dom2 together since the results in
Figure 15 indicate that Dom1 and Dom2 always get almost

Figure 18. Dom1 throughput [req/sec] when Dom1
is serving 1kB appliaction and Dom2 is serving 1kB
to 70kB applications.

Figure 19. Dom2 throughput [req/sec] when Dom1
is serving 1kB application and Dom2 is serving 1kB
to 70kB applications.

Figure 20. Aggregated throughput ratio for Dom1
and Dom2 across five applied workload rates.

Figure 15. Normali zed throughput, CPU utilization
and Net I/O between Dom1 and Dom2, both with
identical 1kB application at 50% workload rate.

Figure 16. Average throughput [req/sec] per guest
domain, with both guest domains running identical
application at the same workload rate.

Figure 17. CPU u sage [%] for Dom0, aggregated
CPU usage for guest domains, and percentage of
idle CPU.

AUTHOR ET AL.: TITLE 11

the same amount of CPU allocation. Figure 17 presents an
interest observation: under the same workload rate, the
guest domain CPU usage for 1kB file is much larger than
that of the 70kB application, despite the fact from our re-
sults that the memory page exchange rate for 1kB file is
much less than that of the 70kB application. This verifies
the CPU bounded nature of the 1kB application. The CPU
consumed to process network requests is mainly com-
posed of two major components: the time spent in estab-
lishing TCP connections, and the time spent in transport-
ing web file content. Furthermore, for the 1kB application,
the connection phase demands significantly more CPU
resources than the transportation phase (refer to Table 3).

5.2 Co-locating Different Applications
From experimental results in the previous subsection, we
know that when two applications are identical, then ap-
proximate fairness can be obtained by using the default
credit scheduler in Xen. Thus the main factors that impact
the performance of applications co-located on the same
physical host are applied workload rates and resource
usage patterns of applications. In this subsection we ex-
amine the performance for guest domains when they are
serving different applications as this is more likely to
happen in real world scenario. We simulate two cloud
consumers, one is using Dom1 and serving the 1kB appli-
cation, the other is using Dom2, running the application,
which is by design varying from 1kB to 70kB.

Figure 18 and Figure 19 measure the throughputs for
Dom1 and Dom2 under the 70% workload respectively.
We observe two interesting facts: (1) although Dom1 al-
ways serves the 1kB file, its performance highly depends
on the application running in its neighbor Dom2. For ex-
ample, in the 1kB and 70kB combination (661 req/sec for
the highest 1kB throughput in Dom1) compared with in
the 1kB and 1kB combination (494 req/sec for the highest

1kB throughput in Dom1), the performance difference can
be 34%. (2) The highest throughput points occurring in
Figure 18 and Figure 19 show considerably different ten-
dency. Take the 1kB and 70kB application combination as
an example, for the two guest domains, the highest
throughput points come out under different applied
workloads: the highest point for the 1kB file appears at 70%
workload rate, while it comes at 100% workload for the
70kB application. Clearly, this phenomenon is due to the
resource usage pattern of 1kB and 70kB applications, 1kB
is CPU bounded and 70kB is network bounded.

Figure 20 measures the aggregated throughput ratio as
a function of workload rate. We use the maximum
throughput of single VM for five applications in the first
column of Table 2 as the baseline to get individual
throughput ratio for each guest domain under each spe-
cific workload. For example, the throughput for Dom1 is
661 req/sec at 70% workload rate, thus the throughput
ratio is about 62% (661/1070). Similarly we have the
throughput ratio of 68% for the 70kB application. Thus
the aggregated throughput ratio is 130%. From the results
for five combinations of neighboring applications in Fig-
ure 20, we observe that the best co-locating case is the 1kB
and 70kB combination with the highest aggregated
throughput ratio of 1.3, and the worst case is the 1kB and
1kB combination with the highest aggregated throughout
ratio of 0.92, The performance difference could be more
than 40% ((1.3-0.92)/0.92=41%).

5.3 Co-locating Applications among Multiple VMs
We have studied the impact of co-locating applications on
two guest domains hosted on a single physical node. In
this section we dedicate our measurement study to ex-
amine the impact of multiple VMs on application co-
location strategy.

Our first set of experiments is designed by varying the

Figure 21. Average CPU u tilization [%] for each
guest domain w hen varying the number of guest
domains from one to six, each is serveing 10%
workload rate.

Figure 22. CPU u sage [%] by one an d two guest
domains with varying workload rates.

Figure 23. CPU usage [%] for one, two, three, four
and six guest domains with 120% workload rate.

Figure 24. Throughputs for three groups of experi-
ments with varying the w eightings among Dom0
and guest domains.

Figure 25. CPU u tilization [%] for 1kB appliacation
at 800 req/sec and 70KB at 150 req/sec with differ-
ent weightings assigned to Dom0 and guest do-
mains.

Figure 26. Waiting time [%] for 1kB appliacation at
800 req/sec and 70KB at 150 req/sec with different
weightings assigned to Dom0 and guest domains.

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

number of guest domains from one to six and each guest
domain serves 10% applied workload. Total workload
rate can be calculated by multiplying the number of guest
domains with the applied workload rate. Using 10%
workload applied to each guest domain guarantees no
severe resource contention will occur. Figure 21 shows
when there are six guest domains running, the CPU time
spent (9.8%) to process the same amount of I/O data (10%
workload per guest domain) equals to 1.5 times of the
CPU time spent (6.9%) in the single guest domain case.
This group of experiments intends to show that compared
with single guest domain case, when multiple guest do-
mains are running, the context switches among the guest
domains will lead to more frequent cache miss and TLB
miss [26], which will result in more CPU time consump-
tion in serving the same data. The cost of VM context
switches is typically proportional to the number of guest
domains hosted on a physical machine.

For the second set of experiments, we fix the total
workload rates to 20%, 40%, 60%, 80% and 100%. The 1kB
and 70kB application are chosen as they are the two rep-
resentative applications. Figure 22 shows the CPU utiliza-
tion measured for both driver domain and guest domain
under two types of virtual machine configurations: single
VM and two VMs. For example, 01k-1VM-Dom0 denotes
the measurement of Dom0 CPU utilization for 1kB appli-
cation running on a single VM. 01k-2VM-Dom0 denotes
the measurement of Dom0 CPU utilization for 1kB appli-
cation running on two VMs. 01k-2VM-Dom1+Dom2
measures the combined CPU usage of both Dom1 and
Dom2 for 1kB application. Two VCPUs are configured for
each guest domain. When two guest domains are running,
six VCPUs are waiting for being scheduled into the phys-
ical CPUs, compared with four VCPUs in single guest
domain case. Frequent context switches incur undesirable
cache miss and TLB miss. For the two guest domain expe-
riments, Dom0 has to deal with both the context switch
and the scheduling overhead, also the network bridging
overhead is raised due to transferring packets to individ-
ual guest domains. Thus Dom0 gets larger fraction of CPU
resources for the two guest domain setting. This set of
experimental results also shows that the CPU usage in the
guest domain increases sharply as the workload rate ap-
proaches 100%.

Figure 23 shows the CPU usages under high conten-
tion situation. We varied the total workload rates to 120%.
As seen from the figure, when the number of guest do-
mains grows from one to six, the CPU share for Dom0

reduces at a more gradual rate for the 70kB application
(32.5% to 31.3%). In contrast, when the number of guest
domains is changed to six, the CPU utilization at Dom0
for the 1kB application is reduced from 33.8% to 18.6%.
For the 1kB application, the significant reduction in Dom0
CPU utilization indicates the growing CPU contention
due to the continuous growth in the guest domain CPU
usages. The credit scheduler tries to fairly share CPU slic-
es among domains including Dom0.

6 IMPACT OF TUNING CREDIT SCHEDULER
In all the previous experiments, Dom0 is allocated equal
amount of CPU shares as the rest of the guest domains in
Xen. In this section, we conduct a group of experiments to
measure the impact of tuning the credit scheduler on the
overall performance of the applications. We show that
significant opportunity exists in optimizing the overall
system performance by simply tuning the weight parame-
ter of the credit scheduler. In the cloud computing envi-
ronment, if the cloud provider could carefully design and
tune the scheduling parameters, considerable perfor-
mance gain can be achieved.

We design this group of experiments by configuring
each experiment with different amount of CPU allocated
to Dom0 relative to Dom1 and Dom2. For example, 0.5:1:1
means that Dom0 is assigned half of the weight of Dom1
and Dom2, and 2:1:1 means that Dom0 obtains twice as
much the CPU weight as that of Dom1 and Dom2. Note,
Dom1 and Dom2 always obtain identical CPU weight. The
settings for the three sets of experiments are as follows. In
Experiment 1, each of the two clients is sending 10kB ap-
plication with the rate 360 req/sec for one virtual ma-
chine. In Experiment 2, two clients send 70kB file retrieval
requests to two different VMs, each at a fixed rate of 82
req/sec. In Experiment 3, one guest domain is processing
1kB file requests at the rate of 800 req/sec, and the other
guest domain is processing 70kB file requests at the rate
of 150 req/sec. Note that, all the experiments reported in
this section were conducted on Platform I.

Figure 24 summarizes throughputs for three experi-
mental settings. For 10kB and 70kB case, we show the
aggregated throughputs. For the 10kB test, compared to
the best case of assigned ratio of 0.5:1:1 (720 req/sec), the
performance of the worst case (534 req/sec), which ap-
pears at the ratio of 2:1:1, goes down by about 25%. For
the 70kB case, the flattened behavior of the curve is due to
the network bound nature of the 70kB applications. For

Figure 27. Blo ck time [%] for 1kB appliacation at
800 req/sec and 70KB at 150 req/sec with different
weightings assigned to Dom0 and guest domains.

Figure 28. Allocated CPU time per execution
[µs/exe] for 1kB appliacation at 800 req/sec and
70KB at 150 req/sec with different weightings
assigned to Dom0 and guest domains.

Figure 29. Execution per second [1/sec] for 1kB
appliacation at 80 0 req/sec and 70KB at 150
req/sec with different weightings assigned to Dom0
and guest domains.

AUTHOR ET AL.: TITLE 13

the 1kB and 70kB application combination, for the 1kB
file, when the configuration switches from 0.5:1:1 to 2:1:1,
about 30% performance degradation can be observed,
while for the 70kB application about 16% performance
gain can be obtained.

Figure 25, Figure 26 and Figure 27 show CPU utiliza-
tion, block time and waiting time respectively for Dom0,
Dom1 and Dom2 with different configurations of the
scheduler, where Dom1 runs the 1kB application at 800
req/sec, and Dom2 runs the 70kB application at 150
req/sec. From Figure 25, we could see that as the weight-
ing allocated to Dom0 is increased, Dom0 CPU utilization
is also increased while Dom1 CPU utilization is dropped
as expected. A side effect of this tuning is the increase in
Dom2 CPU utilization. This also explained the 30% per-
formance degradation for the 1KB application and the
16% performance gain for the 70kB application shown in
Figure 24. Figure 26 shows that only Dom0 waiting time is
improved when we increase the weighting to Dom0. This
is because the weighting parameter determines how
much CPU resources to be allocated when multiple do-
mains are competing for CPU cycles. As a result, when
we increase the weighting for Dom0, the waiting time for
Dom0 is reduced, at the same time, the priority for
processing guest domains reduced, thus the waiting time
for both Dom1 and Dom2 are increased as shown in Fig-
ure 26. Dom1 has the highest waiting time because Dom1

is demanding more CPU and it often over charges its cre-
dits, and is switched to the Over state, leading to the larg-
est waiting time in all the weight configurations.

Figure 27 shows that the block time for Dom1 and
Dom2 is reduced due to the improvement of Dom0 wait-
ing time, which means Dom0 can run faster and process
I/O event destined for guest domains on time. However,
as the waiting time for Dom1 and Dom2 is increased when
we switch the configurations from 0.5:1:1 to 2:1:1, Dom1
and Dom2 can no longer process I/O event destined for
Dom0 quickly, resulting in some increase in Dom0 block

time.
To further illustrate the up and down in CPU utiliza-

tion shown in Figure 25, we design another set of experi-
ments to measure the allocated CPU time per execution
and the execution count per second. Figure 28 shows that
as we switch the Dom0 weight configuration from 0.5:1:1
to 2:1:1, Dom1 suffers the most, and its allocated CPU
time per execution (2:1:1) is dropped to about 1/3 of the
original setting (0.5:1:1). Compared with Dom1, we could
see that the allocated time per execution for Dom0 and
Dom2 remain at almost the same level. However, the ex-
ecution counts per second for Dom0 and Dom2 are in-
creased. Combining Figure 28 and Figure 29, we observe
that when we switch the configuration from 0.5:1:1 to
2:1:1, Dom0 and Dom2 remain the same level of Allocated
CPU time per execution, allowing them to benefit from
the increased execution count per second. As a result,
they are allocated more CPU resources. This illustrates
the CPU utilization reallocation shown in Figure 25.

Figure 30 to Figure 32 show the CPU utilization, wait-
ing time and block time respectively for dual 10kB at 360
req/sec with different weightings assigned to Dom0,
Dom1 and Dom2. Not surprisingly, as the weighting allo-
cated to Dom0 increases, we observe that: (1) Dom0 CPU
utilization is increased, (2) the waiting time for Dom0 is
reduced and the waiting times for Dom1 and Dom2 are
increased, and (3) Dom1 block time and Dom2 block time
are improved by making Dom0 working more efficiently.
An interesting observation is that when the weight confi-
guration is 0.5:1:1, Dom1 and Dom2 can get more CPU
than Dom0 and at the same time Dom0 can work more
efficiently than any other weight configurations. This can
be illustrated through measuring the number of memory
page exchanges per execution for different weight confi-
gurations. As shown in Table 5, the memory pages ex-
changed per execution for Dom0 drops dramatically as the
weighting allocated to Dom0 increases.

Table 5 summarizes performance statistics for Dom0
over three configurations. The execution count per second
increased with the weight allocated to Dom0 grows,
which means the context switches frequency increased.
At the same time, memory pages exchanged per second for
Dom0 grows as the weight assigned to Dom0 decreases,
which means that the driver domain is capable of
processing more network packets during the best case
(0.5:1:1). The memory pages exchanged per execution, the
memory pages exchanged per second and the memory pages
exchanged per execution describe the efficiency of

Figure 30. CPU utilization [%] for dual 10kB at 360
req/sec with different weightings assigned to Dom0

and guest domains.

Figure 31. Block time [%] for dual 10kB at 360
req/sec with different weightings assigned to Dom0
and guest domains.

Figure 32. Waiting time [%] for dual 10kB at 360
req/sec with different weightings assigned to Dom0

and guest domains.

TABLE 5.
PERFORMANCE METRICS RELATED TO THREE CONFIGURA-

TIONS FOR DOM0 WITH DUAL 10KB APPLICATIONS
Metrics Configuration

0.5:1:1 1:1:1 2:1:1
Aggregated Throughput [req/sec] 720 608 534
Network I/O [kB/sec] 7147 6296 5300
Dom0 Exe/sec [1/sec] 950 1102.7 1846

CPU/exe [μs/exe] 308672 211771 184084
Mem/sec [pages/sec] 11520 9728 8544
Mem/exe [pages/exe] 12.1 8.8 4.6

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

processing network packets upon Dom0 being scheduled
to run on physical CPU.

7 CONCLUSION
We have presented an in-depth performance measure-
ment study foused on network I/O application, one of the
dominating workloads in cloud-based virtual data centers.
We first show that current implementation of virtual ma-
chine monitor does not provide sufficient performance
isolation to guarantee the effectiveness of resource shar-
ing across multiple virtual machine instances running on
a single physical host machine, especially when applica-
tions running on neighboring VMs are competing for
computing and communication resources. Then we
present the detailed analysis on different factors that can
impact the throughput performance and resource sharing
effectiveness. Concretely, we presented our measurement
study and analysis along three dimensons: (1) the per-
formance impact of idle instances on applications that are
running concurrently on the same physical host; (2) the
performance impact of co-locating applications in a virtu-
salized data center; and (3) how different CPU resource
scheduling and allocation strategies and different work-
load rates may impact the performance of a virtualized
system. In the first dimension of study, our experimental
results show that in general CPU utilization, block time,
waiting time, throughput are all important performance
indicators for running idle instances. Furthermore, disk
size and resource usage patterns (CPU intensive or net-
work IO intensive) may impact the creation time of new
instances. In the second study, we show that both applied
workload rates and the resource usage patterns are two
important factors for performance of co-located applica-
tions. Also the cost of VM switches is typically propor-
tional to the number of guest domains hosted on a physi-
cal machine. Such context switches will lead to more fre-
quent cache miss and TLB miss, which results in more
CPU time in serving the same data. In the third study, we
show that significant opportunity exists in optimizing the
overall system performance by simply tunning the weight
parameters of the credit scheduler. Several factors impact
the settings of such weights, including memory page ex-
changed per execution, memorg page exchanged per
second, execution count per second. We argue that by
exploiting optimizations for co-locating different applica-
tions, performance improvement for cloud consumers can
be as high as 34%, and at the same time, the cloud pro-
viders can achieve over 40% performance gain by strateg-
ically co-locating network I/O applications together.

ACKNOWLEDGMENT
This work is partially supported by grants from NSF CISE
NetSE program, NSF CISE CyberTrust program, and an
IBM faculty award, an IBM SUR grant, and a grant from
Intel Research Council. The first author performed this
research as a visiting PhD student at the Distributed Data
Intensive Systems Lab (DiSL) in the College of Compu-
ting, Georgia Institute of Technology, supported by China

Scholarship Council and Department of CS in Xi’An Jiao-
tong University from 2008-2010. The last author is partial-
ly supported by National Natural Science Foundation of
China with grant number 60773118.

REFERENCES
[1] P. Apparao, R. Iyer, X. Zhang, D. Newell, T. Adelmeyer, “Cha-

racterization & Analysis of a Server Consolidation Benchmark,“
Proc. ACM/USENIX International Conference on Virtual Execution
Environments (VEE), 2008, pp. 21-29.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.
Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica and M.
Zaharia, “Above the Clouds: A Berkeley View of Cloud Com-
puting,“ Technical Report UCB/EECS-2009-28,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-28.html. 2010.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of Vir-
tualization,“ Proc. ACM Symposium on Operating Systems Prin-
ciples (SOSP), 2003, pp. 164-177.

[4] Z. Chen, D. Kaeli, and K. Murphy, “Performance Evaluation of
Virtual Appliances,“ Proc. First International Workshop on Virtua-
lization Performance: Analysis, Characterization, and Tools (VPACT
08), April, 2008.

[5] L. Cherkasova, R. Gardner, “Measuring CPU Overhead for I/O
Processing in the Xen Virtual Machine Monitor.“ Proc. USENIX
Annual Technical Conference (ATC), 2005, pp. 24-24.

[6] L. Cherkasova, D. Gupta, A. Vahdat, “Comparison of the Three
CPU Schedulers in Xen,“ ACM SIGMETRICS Performance Evalu-
ation Review, Vol. 35, Issue 2, September 2007. pp. 42-51.

[7] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J.
Herne, J. N. Matthews, “Xen and the Art of Repeated Re-
search,“ Proc. USENIX Annual Technical Conference (ATC), 2004,
pp. 135-144.

[8] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I.
Pratt, and A. Warfiel, “Live Migration of Virtual Machines,“
Proc. USENIX Symposium on Network Systems Design and Imple-
mentation (NSDI), 2005, pp. 273-286.

[9] Credit Based CPU Scheduler.
http://wiki.xensource.com/xenwiki/CreditScheduler. 2010.

[10] T. Deshane, Z. Shepherd, J. N. Matthews, M. Ben-Yehuda, A.
Shah, B. Rao, “Quantitative Comparison of Xen and KVM,“ Xen
Summit Boston 2008,
http://xen.org/xensummit/xensummit_summer_2008.html.
2010.

[11] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, H. Guan. “High Perfor-
mance Network Virtualization with SR-IOV,“ Proc. IEEE 16th
International Symposium on High Performance Computer Architec-
ture (HPCA), 2010, pp. 1-10.

[12] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, A. Sivasubra-
maniam, “Xen and Co.: Communication-aware CPU Schedul-
ing for Consolidated Xen-based Hosting Platforms,“ Proc.
ACM/USENIX International Conference on Virtual Execution Envi-
ronments (VEE), 2007, pp. 126-136.

[13] A. Gulati, A. Merchant, P. Varman, “mClock: Handling
Throughput Variability for Hypervisor IO Scheduling,“ Proc.
9th USENIX Symposium on Operating System Design and Imple-
mentation (OSDI), 2010.

[14] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforc-

AUTHOR ET AL.: TITLE 15

ing Performance Isolation across Virtual Machines in Xen,“
Proc. ACM/IFIP/USENIX 7th International Conference on Middle-
ware (Middleware), 2006, pp. 342-362.

[15] D. Gupta, R. Gardner, L. Cherkasova, “XenMon: QoS Monitor-
ing and Performance Profiling Tool,“ Technical Report HPL-
2005-187, http://www.hpl.hp.com/techreports/2005/HPL-
2005-187.html. 2010.

[16] M. Hines and K. Gopalan, “Post-copy based Live Virtual Ma-
chine Migration using Adaptive Pre-Paging and Dynamic Self-
Ballooning,“ Proc. ACM/USENIX International Conference on Vir-
tual Execution Environments (VEE), 2009, pp. 51-60.

[17] M. Kesavan, A. Gavrilovska, K. Schwan, “Differential Virtual
Time (DVT): Rethinking I/O Service Differentiation for Virtual
Machines,“ Proc. ACM Symposium on Cloud Computing (SOCC),
2010, pp. 27-38.

[18] H. Kim, H. Lim, J. Jeong, H. Jo, J. Lee, “Task-aware Virtual
Machine Scheduling for I/O Performance,“ Proc. ACM/USENIX
International Conference on Virtual Execution Environments (VEE),
2009, pp. 101-110.

[19] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu,
“An Analysis of Performance Interference Effects in Virtual En-
vironments,“ Proc. IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2007, pp. 200-209.

[20] KVM.
http://www.linux-kvm.org/page/Main_Page.

[21] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, S. Yajnik,
“Supporting Soft Real-Time Tasks in the Xen Hypervisor,“ Proc.
ACM/USENIX International Conference on Virtual Execution Envi-
ronments (VEE), 2010, pp. 97-108.

[22] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dima-
tos, G. Hamilton, M. McCabe, J. Owens, “Quantifying the Per-
formance Isolation Properties of Virtualization Systems,“ Proc.
Workshop on Experimental Computer Science, 2007, pp. 5-5.

[23] Y. Mei, L. Liu, X. Pu, S. Sivathanu, “Performance Measurements
and Analysis of Network I/O Applications in Virtualized
Cloud,“ Proc. IEEE International Conference on Cloud Computing,
2010, pp. 59-66.

[24] S. Meng, T. Wang and L. Liu, “Monitoring Continuous State
Violation in Datacenters: Exploring the Time Dimension“, Proc.
26th IEEE International Conference on Data Engineering (ICDE),
2010, pp. 968-979.

[25] A. Menon, A. L. Cox, W. Zwaenepoel, “Optimizing Network
Virtualization in Xen,“ Proc. USENIX Annual Technical Confe-
rence (ATC), 2006, pp. 15- 28.

[26] A. Menon, J.R. Santos, Y. Turner, G.J. Janakiraman, and W.
Zwaenepoel, “Diagnosing Performance Overheads in the Xen
Virtual Machine Environment,“ Proc. ACM/USENIX Interna-
tional Conference on Virtual Execution Environments (VEE), 2005,
pp. 13-23.

[27] D. Mosberger, T. Jin, “Httperf-A Tool for Measuring Web Serv-
er Performance,“ ACM SIGMETRICS Performance Evaluation Re-
view, Vol. 26, Issue 3, December 1998. pp. 31-37.

[28] N. Nishiguchi, “Evaluation and Consideration of the Credit
Scheduler for Client Virtualization,“ Xen Summit Asia 2008,
http://www.xen.org/xensummit/xensummit_fall_2008.html.
2010.

[29] D. Ongaro, A. L. Cox, S. Rixner, “Scheduling I/O in Virtual
Machine Monitors,“ Proc. ACM/USENIX International Conference
on Virtual Execution Environments (VEE), 2008, pp. 1-10.

[30] P. Padala, X. Zhu, Z. Wang, S. Singhal, K. G. Shin, “Perfor-

mance Evaluation of Virtualization Technologies for Server
Consolidation,“ Technical Report HPL-2007-59R1,
http://www.hpl.hp.com/techreports/2007/HPL-2007-
59R1.html. 2010.

[31] F. Prefect, L. Doan, S. Gold, and W. Wilcke, “Performance Li-
miting Factors in Http (Web) Server Operations,“ Proc. 41st
IEEE International Computer Conference, (COMPCON’96), 1996,
pp. 267-273.

[32] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, S. Rixner, “Achiev-
ing 10 Gb/s using Safe and Transparent Network Interface Vir-
tualization,“ Proc. ACM/USENIX International Conference on Vir-
tual Execution Environments (VEE), 2009, pp. 61-70.

[33] K. K. Ram, J. R. Santos, Y. Turner, “Redesigning Xen's Memory
Sharing Mechanism for Safe and Efficient I/O Virtualization,“
Technical Report HPL-2010-39,
http://www.hpl.hp.com/techreports/2010/HPL-2010-39.html.
2010.

[34] A. Ranadive, M. Kesavan, A. Gavrilovska, K. Schwan, “Perfor-
mance Implications of Virtualizing Multicore Cluster Ma-
chines,“ Proc. Workshop on System-level Virtualization for High
Performance Computing, 2008, pp. 1-8.

[35] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and
M. Rosenblum. “Optimizing the Migration of Virtual Comput-
ers,“ Proc. 5th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2002, pp. 377-390.

[36] S. Sivathanu, L. Liu, Y. Mei, and X. Pu, “Storage Management
in Virtualized Cloud Environment,“ Proc. IEEE International
Conference on Cloud Computing, 2010, pp.204-211.

[37] G. Somani and S. Chaudhary, “Application Performance Isola-
tion in Virtualization,“ Proc. IEEE International Conference on
Cloud Computing, 2009, pp. 41-48.

[38] VMware.
http://www.vmware.com/.

[39] J. Wang, K. Wright, K. Gopalan, “XenLoop: A Transparent
High Performance Inter-vm Network Loopback,“ Proc. 17th In-
ternational Symposium on High Performance Distributed Computing
(HPDC), pp. 109-118.

[40] T. Wood, L. Cherkasova, K. Ozonat, and Prashant Shenoy,
“Profiling and Modeling Resource Usage of Virtualized Appli-
cations,“ Proc. ACM/IFIP/USENIX 9th International Conference on
Middleware (Middleware), 2008, pp. 366-387.

[41] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif,
“Black-box and Gray-box Strategies for Virtual Machine Migra-
tion,“ Proc. USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2007, pp. 229-242.

[42] D. Yixin, N. Gandhi, J.L. Hellerstein, S. Parekh, D.M. Tilbury,
“Using MIMO Feedback Control to Enforce Policies for Interre-
lated Metrics with Application to the Apache Web Server,“
Proc. IEEE/IFIP Network Operations and Management Symposium
(NOMS), 2002, pp. 219-234.

16 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Yiduo Mei is currently a PhD student in the depart-
ment of CS in Xi’An Jiaotong University. His main re‐
search interests include cloud computing, system virtua‐
lization, performance optimization and trust manage‐
ment in distributed and virtualized systems.

Ling Liu is a full Professor in the School of Computer
Science at Georgia Institute of Technology. There she di-
rects the research programs in Distributed Data Inten-
sive Systems Lab (DiSL), examining various aspects of
data intensive systems with the focus on performance,
availability, security, privacy, and energy efficiency.
Prof. Liu is a recipient of the best paper award of ICDCS
2003, WWW 2004, the 2005 Pat Goldberg Memorial Best
Paper Award, and 2008 Int. conf. on Software Engineer-
ing and Data Engineering. Prof. Liu has served as gener-
al chair and PC chairs of numerous IEEE and ACM con-
ferences in data engineering, distributed computing,
service computing and cloud computing fields and is a
co-editor-in-chief of the 5 volume Encyclopedia of Data-
base Systems (Springer). She is currently on the editorial
board of several international journals, such as Distri-
buted and Parallel Databases (DAPD, Springer), Journal
of Parallel and Distributed Computing (JPDC), ACM
Transactions on Web, IEEE Transactions on Service
Computing (TSC), and Wireless Network (WINET,
Springer). Dr. Liu’s current research is primarily spon-
sored by NSF, IBM, and Intel.

Xing Pu received the BE degree in school of Computer
Science and Technology from Beijing Institute of Tech‐
nology in 2004. Currently, he is a PhD student in school
of Computer Science and Technology, Beijing Institute of
Technology. His main research interests include I/O
model, memory management, security, and performance
isolation in virtualized system.

Sankaran Sivathanu received his PhD in Computer
Science at the College of Computing in Georgia Institute
of Technology in 2011. Prior to that he obtained his Mas‐
ters in Computer Science at Georgia Tech, and his Bache‐
lors degree in Anna University, India in 2007. His re‐
search interests include storage systems and System Vir‐
tualization.

Xiaoshe Dong is a professor in the department of CS
in Xi’An Jiaotong University. His research interests are
performance optimization, energy efficiency, resource
scheduling, and trust management.

