
Purlieus: Locality-aware Resource Allocation for
MapReduce in a Cloud

Balaji Palanisamy∗ Aameek Singh† Ling Liu∗ Bhushan Jain‡

∗College of Computing, Georgia Tech†IBM Research - Almaden‡IBM India Software Lab
{balaji, lingliu}@cc.gatech.edu aameek.singh@us.ibm.com bhujain1@in.ibm.com

ABSTRACT
We present Purlieus, a MapReduce resource allocation system aimed
at enhancing the performance of MapReduce jobs in the cloud.
Purlieus provisions virtual MapReduce clusters in a locality-aware
manner enabling MapReduce virtual machines (VMs) access toin-
put data and importantly, intermediate data from local or close-by
physical machines. We demonstrate how this locality-awareness
during both map and reduce phases of the job not only improves
runtime performance of individual jobs but also has an additional
advantage of reducing network traffic generated in the clouddata
center. This is accomplished using a novel coupling of, otherwise
independent, data and VM placement steps. We conduct a detailed
evaluation of Purlieus and demonstrate significant savingsin net-
work traffic and almost 50% reduction in job execution times for a
variety of workloads.

1. INTRODUCTION
In most modern enterprises today,big data [5] and big data ana-
lytics play a key role in delivering value to the business. Whether
it is using click stream analysis to identify customer buying behav-
ior [7] or detecting fraud from millions of transactions [9], analyz-
ing large amounts of data efficiently and quickly makes businesses
more profitable. One of the technologies that made big data ana-
lytics popular and accessible to enterprises of all sizes isMapRe-
duce [3] (and its open-source Hadoop [25] implementation).With
the ability to automatically parallelize the application on a cluster
of commodity hardware, MapReduce allows enterprises to analyze
terabytes and petabytes of data more conveniently than ever. Today
MapReduce forms the core of technologies powering enterprises
like Google, Yahoo and Facebook.

Further, MapReduce offered as a service in the cloud provides
an attractive usage model for enterprises. A recent Gartnersurvey
shows increasing cloud computing spending with 39% of enter-
prises having allotted IT budgets for it [1]. A MapReduce cloud ser-
vice will allow enterprises to cost-effectively analyze large amounts
of data without creating large infrastructures of their own. Us-
ing virtual machines (VMs) and storage hosted by the cloud, en-
terprises can simply create virtual MapReduce clusters to analyze
their data.

An important challenge for the cloud provider is to manage mul-
tiple virtual MapReduce clusters executing concurrently,a diverse
set of jobs on shared physical machines. Concretely, each MapRe-
duce job generates different loads on the shared physical infrastruc-
ture – (a) computation load: number and size of each VM (CPU,
memory), (b) storage load: amount of input, output and interme-
diate data, and (c) network load: traffic generated during the map,
shuffle and reduce phases. The network load is of special concern

with MapReduce as large amounts of traffic can be generated in
the shuffle phase when the output of map tasks is transferred to
reduce tasks. As each reduce task needs to read the output ofall
map tasks [3], a sudden explosion of network traffic can signifi-
cantly deteriorate cloud performance. This is especially true when
data has to traverse greater number of network hops while going
acrossracksof servers in the data center [4]. Further, the problem
sometimes is exacerbated by TCPincast [39] with a recent study
finding goodput of the network reduced by an order of magnitude
for a MapReduce workload [14].

To reduce network traffic for MapReduce workloads, we argue
for improved data locality for both Map and Reduce phases of
the job. The goal is to reduce the network distance between stor-
age and compute nodes for both map and reduce processing – for
map phase, the VM executing the map task should becloseto the
node that stores the input data (preferably local to that node) and
for reduce phase, the VMs executing reduce tasks should be close
to the map-task VMs which generate the intermediate data used as
reduce input. Improved data locality in this manner is beneficial in
two ways – (1) it reduces job execution times as network transfer
times are big components of total execution time and (2) it reduces
cumulative data center network traffic. While map locality is well
understood and implemented in MapReduce systems, reduce local-
ity has surprisingly received little attention in spite of its significant
potential impact. As an example, Figure 1 shows the impact ofim-
proved reduce locality for a Sort workload. It shows the Hadoop
task execution timelines for a 10 GB dataset in a 2-rack 20-node
physical cluster1, where 20 Hadoop VMs were placed without and
with reduce locality (top and bottom figures respectively).As seen
from the graph, reduce locality resulted in a significantly shorter
shuffle phase helping reduce total job runtime by 4x.

In this paper, we present Purlieus – an intelligent MapReduce
cloud resource allocation system. Purlieus improves data locality
during both map and reduce phases of the MapReduce job by care-
fully coupling data and computation (VM) placement in the cloud.
Purlieus categorizes MapReduce jobs based on how much data they
access during the map and reduce phases and analyzes the network
flows between sets of machines that store the input/intermediate
data and those that process the data. It places data on those ma-
chines that can either be used to process the data themself orare
close to the machines that can do the processing. This is in contrast
to conventional MapReduce systems which place data independent
of map and reduce computational placement – data is placed on
any node in the cluster which has sufficient storage capacity[3, 25]
and only map tasks are attempted to be scheduled local to the node
storing the data block.

1Complete experimental setup is described in Section 5.

jdigney
Text Box
ACM/IEEE International Conference on SuperComputing (SC2011),
Seattle WA, Nov. 12-18, 2011.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

R
un

ni
ng

 ta
sk

s

Time (sec)

With only Map-locality

Map
Shuffle
Reduce

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

R
un

ni
ng

 ta
sk

s

Time (sec)

With Map and Reduce-locality

Map
Shuffle
Reduce

Figure 1: Impact of Reduce-locality. Timeline plotted using
Hadoop’s job_history_summary. Merge and Wasteseries are

omitted since they were negligible

Additionally Purlieus is different from conventional MapRe-
duce clouds (e.g., Amazon Elastic MapReduce [15]) that use asep-
arate compute cloud for performing MapReduce computation and a
separate storage cloud for storing the data persistently. Such an ar-
chitecture delays job execution and duplicates data in the cloud. In
contrast, Purlieus stores the data in a dedicated MapReducecloud
and jobs execute on the same machines that store the data without
waiting to load data from a remote storage cloud.

To the best of our knowledge Purlieus is the first effort that at-
tempts to improve data locality for MapReduce in a cloud. Sec-
ondly, Purlieus tackles the locality problem in a fundamental man-
ner by coupling data placement with VM placement to provide both
map and reduce locality. This leads to significant savings and can
reduce job execution times by close to 50% while reducing up to
70% of cross-rack network traffic in some scenarios.

2. SYSTEM MODEL
In our system model, customers using the MapReduce cloud ser-
vice load their input datasets and MapReduce jobs into the ser-
vice. This step is similar to any typical cloud service whichre-
quires setting up of the application stack and data. There isone
key distinction, however. Typically cloud service providers use
two distinct infrastructures for storage and compute (e.g.Amazon
S3 [17] for storage and Amazon EC2 [16] for compute). Executing
a MapReduce job in such infrastructures (e.g. using Amazon Elas-
tic MapReduce [15]) requires an additionalloadingstep, in which
data is loaded from the storage cloud into the distributed filesys-
tem (e.g. Hadoop’s HDFS) of the MapReduce VMs running in the
compute cloud before even the job begins execution. Such addi-
tional loading has two drawbacks –(1) depending upon the amount
of data required to be loaded and connectivity between the com-
pute and storage infrastructures, this step adversely impacts perfor-
mance, and (2) while the job is running (often for long durations)
the dataset is duplicated in the cloud – along with the storage cloud
original, there is a copy in the compute cloud for MapReduce pro-
cessing, leading to higher costs for the provider.

In contrast, we propose a dedicated MapReduce service, in which
data is directly stored on the same physical machines that run MapRe-
duce VMs. This prevents the need for a wasteful data loading step
before executing a MapReduce job. Since MapReduce input data is
often predominantly used for MapReduce analysis, storing it into

a dedicated cloud service provides the greatest opportunity for op-
timization. The challenge for this design is the ability to transi-
tion data stored on physical machines to the MapReduce VMs ina
seamless manner – i.e. without requiring an explicit data-loading
step. This is accomplished in the following manner.

In our proposed service, when customers upload their data into
the service, the data is broken up into chunks correspondingto
MapReduce blocks and stored on a distributed filesystem of the
physicalmachines. The placement of data – deciding which ma-
chines to use for each dataset – is done intelligently based on tech-
niques described later. When the job begins executing (i.e.MapRe-
duce VMs are initialized) the data on physical machines is seam-
lessly made available to VMs using two specific techniques – (1)
loopback mounts: For a job, when its data is loaded into the cloud,
the chunks being placed on each machine are stored via a loop-
back mount [2] into a single data file (we refer to it as a vdisk-file),
this provides access similar to any local filesystem, even though all
data is being stored in a single file on thephysicalfilesystem. and
(2) VM disk-attach: The vdisk-file is then attached to the VM as a
block device using server virtualization tools (e.g. KVM’svirsh
attach-device command2). The VM can then mount the vdisk
file like it would any typical filesystem. The mount point of this
vdisk-file inside the VM serves as the MapReduce DFS directory
(e.g. Hadoop’sdata.dir configuration variable).

We implemented this architecture on our cluster of CentOS 5.5
physical machines with KVM as the hypervisor. Figure 2 showsthe
sequence of steps used to store data persistently on a physical ma-
chine and seamlessly transfer it to one of its VMs without requiring
additional loading.

1. Create a vdisk file on the hypervisor (for instance, 5 GB)
dd of=vdisk-file bs=1M count=0 seek=5192
2. Format as ext2:
mkfs.ext2 -F vdisk-file
3. Loopback mount the vdisk file:
mount -t ext2 -o loop vdisk-file vdisk-mount
4. Store input data intovdisk-mount in a MapReduce chunk
format e.g. as a simplification, by creating a MapReduce cluster on
the physical machines.
5. Unmount vdisk-mount.vdisk-file represents persistent
data for each VM.
6. Upon VM initialization, the vdisk file is attached to the VMas a
block device
virsh attach-device vm vdisk-file-cfg.xml
7. VM can mount the block device like a new disk
mount -t ext2 /dev/sdb /data-dir
/data-dir contains dataset blocks and used as Hadoopdfs.data.dir
8. Virtual MapReduce cluster is initialized between the VMsby
starting the MapReduce cluster - each VM reports the data blocks
to the MapReduceNameNodeto initialize the filesystem. Then job
execution can begin.
9. After job execution, VMs can be destroyed. On subsequent ini-
tializations, only steps 6 onwards need to be performed.

Figure 2: Dataflow from physical to virtual machines

These series of steps ensure that data is loaded onto the same
physical machines that host the VMs for MapReduce computation
and even while the VMs can be non-persistent (e.g. customer may
destroy VMs between different job executions to minimize cost),
the data is persistently stored on the physical machines. Secondly
by using the VM disk-attach step, we are able to seamlessly tran-

2Similar commands exist for Xen and VMware

C
1

A
1

A
2

D
1

C
2 A

3
A

4
D

2
C

3
A

5
A

6
D

3

E
1

E
2

E
3

B
1

E
4 E

5
E

6
B

2
E

7
E

8
E

9 B
3

Map(A1) – 40%

Map(C1) –40%

Map(A3) –40%

Map(C2) –40%

Map(A5) –40%

Map(C3) –40%

Map(D2) –40%

M
1

M
2

M
3

M
4

M
5

M
6

Map(D1) –40% Map(D3) –40%

D
1 D

2
D

3

Network

Switch

(a) Load-unaware data placement

C
1

A
1

A
2

B
1

C
2 A

3
A

4
B

2
C

3
A

5
A

6
B

3

E
1

E
2

E
3

D
1

E
4 E

5
E

6
D

2
E

7
E

8
E

9 D
3

Map(A1) – 40%

Map(C1) –40%

Map(A3) –40%

Map(C2) –40%

Map(A5) –40%

Map(C3) –40%

Map(D2) –40%

M
1

M
2

M
3

M
4

M
5

M
6

Map(D1) –40% Map(D3) –40%

D
2 D

3
D

1

Network

Switch

(b) Load-aware data placement

Figure 3: Load Awareness in Data placement

sition this data into the VM cluster without requiring explicit load-
ing. In contrast, a separate compute and storage cloud infrastruc-
ture would require paying the data loading overhead each time the
VMs are initialized3. In our architecture, note that if a MapReduce
VM is required to be placed on a physical machine other than the
one containing that job’s data chunks, the vdisk file can be copied
over to the appropriate physical machine and then attached to the
VM. This step is similar to traditional MapReduce’sremote-read
operation. Here, it should be noted that even though some of our
data and VM placement techniques may be applicable in the con-
text of block placement and slot scheduling in Hadoop, this paper’s
focus is mainly on how to improve data locality for MapReducein
a cloud setting while running unmodified Hadoop. Any modifica-
tions to Hadoop inspired from our data and VM placement tech-
niques is beyond the scope of this paper.

3. PURLIUES: PRINCIPLES AND PROBLEM
ANALYSIS

In our proposed system model, the cloud provider faces two key
questions – (1)Data Placement: Which physical machines should
be used for each dataset? and (2)VM Placement: Where should the
VMs be provisioned to process these data blocks? Poor placement
of data or VMs may result in poor performance. Purlieus tack-
les this challenge with a unique coupled placement strategy, where
data placement is aware of likely VM placement and attempts to
improve locality. In this section, we describe the principles of our
design and provide a formal analysis of the problem.

3.1 Principles
We argue that unlike traditional MapReduce, where data is placed
independently of the type of job processing it or the loads onthe
servers, in a multi-tenant virtualized cloud these attributes need to
be accounted during data placement.

1. Job Specific Locality-awareness:Placing data in the MapRe-
duce cloud service should incorporate job characteristics- specif-
ically the amount of data accessed in the map and reduce phases.
For example, a job that processes a lot of reduce data (referred to as
a reduce-input heavyjob) is best served by provisioning the VMs
of MapReduce cluster close to each other on the cluster network,
as each reducer reads the outputs of all mappers. If the VMs are
far from each other, each reducer will read map outputs over longer
network paths increasing job execution time and also increasing
cross-rack traffic in the data center. On the other hand,map-input
heavyjobs that generate little intermediate data do not benefit by

3In Amazon Elastic MapReduce [15], by default VMs are de-
stroyed after job completion, thus requiring data loading for each
run of the job. Alternatively, using a –alive option VMs can be
made persistent across job runs, but users have to pay for them for
the entire duration.

placing its data blocks close to each other on the cluster. Aneffi-
cient data placement scheme could distribute data blocks for such
amap-input heavyjob across the network to preserve resources for
placing reduce-input heavy jobs on closely connected machines.

Specifically, we use three distinct classes of jobs – (1) Map-
input heavy (e.g. a largegrep workload that generates small in-
termediate data simply indicating if a word occurs in input data),
(2) Map-and-Reduce-input heavy (e.g. asort workload: interme-
diate data is equal to input data) and (3) Reduce-input-heavy (e.g. a
permutation generatorworkload which generates permutations of
input strings). Purlieus uses different data placement strategies for
different job types with the goal of improving data locality4.

2. Load Awareness:Placing data in a MapReduce cloud should
also account for computational load (CPU, memory) on the phys-
ical machines. A good technique should place data only on ma-
chines that are likely to have available capacity to executethat job,
else remote-reads will be required to pull data from busy machines
to be processed at less-utilized machines.

For example, in Figure 3(a), consider datasetsA, B, C, D and
E placed on six physical machines,M1 to M6. A load unaware
placement may colocate the blocks of datasetsA, C andD together
as shown in Figure 3(a), even if jobs execute onA, C, D more
frequently and generate higher load thanB andE. Here, when the
job on the datasetD arrives and requests for a virtual cluster of 3
VMs, say each with 40% CPU resources of the physical machine,
even though it would be best to place the VMs on the physical
machines,M1, M2 andM3 as they contain the data blocks of the
datasetD, the system may be forced to place the VMs onM4, M5

andM6, resulting in remote reads for the job executing on dataset
D. In contrast, the load-aware data placement shown in Figure3(b)
is able to achieve local execution for all the map tasks as it is able to
host the VMs on the physical machines containing the input blocks.

In Purlieus, while placing data blocks, it is ensured that the ex-
pected load on the servers does not exceed a configurable threshold.
This incorporates the frequency and load generated by jobs execut-
ing on datasets stored on these servers. It is important to note that
information about expected loads is available to a cloud provider by
monitoring the cloud environment. Typically with MapReduce, a
set of jobs are repeatedly executed on a similar input data set – e.g.
periodic execution of indexing on web crawled data. This allows
the cloud provider to understand the load characteristics of such
jobs and use this knowledge to optimize its environment. Addi-
tionally, there are many proposals thatprofile MapReduce jobs via
trial executions on a small subset of data [10, 6, 8, 19]. These show
that understanding MapReduce job characteristics can be quick and
reasonably accurate. For the scope of this work, we assume that

4For completeness a Map-and-Reduce-input light class can also be
considered, however locality has little impact on its performance

the expected load on each dataset is known. Also that the cloud
provider has enough data to estimate job arrival rate and themean
execution time. However, we do not completely rely on the accu-
racy of these estimates, rather use them as an additional guiding
measure. In Section 5, we will demonstrate that our proposedtech-
niques perform well even when such estimates are partly erroneous.

3. Job-specific Data Replication: Traditionally, data blocks in
MapReduce are replicated within the cluster for resiliency. While
the job is executing, any replica of the block can be used for pro-
cessing. Purlieus handles replication in a different manner. De-
pending upon the type and frequency of jobs, we place each replica
of the entire dataset based on a particular strategy. For example, if
an input dataset is used by three sets of MapReduce jobs, two of
which are reduce-input heavy and one map-input heavy, we place
two replicas of data blocks in a reduce-input heavy fashion and the
third one using map-input heavy strategy. This allows maintaining
greater data locality, especially during the reduce phase,since oth-
erwise by processing data block replicasfar from other input data
blocks during the map phase, the reducers may be forced to read
more data over the network.

3.2 The Data Placement Problem
Next, we formally analyze the data placement problem. We start
with notation for representing datasets, physical cloud infrastruc-
ture and their relationship.

Datasets and Jobs: Let D = {Di : 1 ≤ i ≤ |D|} be the set of
datasets that need to be stored in the MapReduce cloud. For the
sake of presentation simplicity, assume that each dataset is asso-
ciated with only one MapReduce job-type and that the replication
factor is 15. Each datasetDi is divided into uniform sized blocks
Bi,j : 1 ≤ i ≤ |D|, 1 ≤ j ≤ Qi} whereQ = {Qi : 1 ≤ i ≤ |Q|}
represent the number of blocks forDi.

We assume that the job arrivals on the datasets follow a Poisson
process and letλ = {λi : 1 ≤ i ≤ |D|} denote the arrival rate
of the jobs on the datasets. After a job starts, it first executes map
tasks. We denote the mean size of the expected map output of each
block of dataset,Di by mapoutput(Di).

Cloud Infrastructure : Let M = {Mk : 1 ≤ k ≤ |M|} denote
the set of physical machines. Each physical machine,Mk has some
compute resources with capacityPcap(Mk)6 and some storage re-
sources (disk) with capacity denoted byScap(Mk). In the data
center, the physical machines are connected to each other bya lo-
cal area network. Letdist(Ml, Mm) denote thedistancebetween
the physical machinesMl andMm – we use number of network
hops as thedist measure.

Relationship Notation: Let Pi ∈ M be the set of servers used to
store the datasetDi andXk

i be a Boolean variable indicating if the
physical machineMk is used to store the datasetDi. Therefore,
Mk ∈ Pi if Xk

i =1. LetN = {Ni : 1 ≤ i ≤ |N |} denote the

5If the dataset is associated with multiple jobs of differentjob
types, as mentioned earlier different replicas are used to support
each type. A detailed problem formulation involving data replica-
tion can be found in [13]
6Though we present a scalar capacity value, compute resources
may have multiple dimensions like CPU and memory. To handle
this, our model can be extended to include a vector of resources
or compute dimensions can be captured in a scalar value, e.g.the
volume metric presented in [12].

number of machines used to storeDi. Thus,
X

k

Xk
i = Ni, ∀i

Within Pi, letY k
i,j be the Boolean variable indicating if the specific

block Bi,j is present in the physical machineMk ∈ M. Thus, in
order to ensure that the blocks are evenly distributed amongthe
nodes inPi, we have

∀i, k
X

1≤j≤Qi

Y k
i,j =

Qi

Ni

Locality based Cost: To capture locality, we define a cost func-
tion that measures the amount of data transfer during job execu-
tion. Consider a job,A on the dataset,Di. Let V (A) be the set
of virtual machines used by jobA and letPnode(v) represent the
physical machine hosting the VM,v ∈ V (A). The total cost of
a MapReduce application is the sum of map and reduce costs that
represent the overhead involved in the data transfers during the map
and reduce phases.

Cost(A,Di) = Mcost(A, Di) + Rcost(A,Di)

Here,Rcost incorporates theshuffle timeof the job. IfSnode(Bi,j)
∈ Pi is the physical machine storing the data block,Bi,j , and its
map task gets scheduled on the physical machine,Cnode(Bi,j)
that hosts some VM,v ∈ V (A), we consider

Mcost(A, Di) =
X

1≤j≤Qi

size(Bi,j) × dist(Snode(Bi,j), Cnode(Bi,j))

This cost definition captures the amount of data and the distance
it travels over the network. Similarly, the reduce cost can be com-
puted as the overhead involved in transferring the map outputs to
the servers where the reducers are executed. LetL(A) be the set
of reduce tasks for jobA. As each reduce task,rtaskl, l ∈ L(A)
needs to see the output of all the map tasks, the map outputs need
to be transferred to the corresponding reduce tasks. Therefore the
reduce cost is given by:

Rcost(A,Di) =
X

1≤j≤Qi,1≤l≤L(A)

dist(Cnode(Bi,j), Cnode(rtaskl)

× mout(A, Bi,j , rtaskl)

wheremout(A, Bi,j , rtaskl) is the amount of output data gener-
ated by the map task on the data block,Bi,j that gets transferred
to reduce task,rtaskl that is run onCnode(rtaskl). To improve
locality, the goal is to minimizeMcost andRcost, subject to not
violating the storage capacity constraint on physical machines

∀k
X

i,j

Y k
i,j ≤ Scap(Mk)

Minimizing Map Cost : To minimize map cost, the computations
should get placed on the same physical machines storing the map-
input blocks (dist is zero). Thedata placementtechnique, in turn,
should try to maximize the probability of such co-location.This
is achieved by upper-bounding the expected resource load onthe
servers for hosting the VMs at any given time. By placing data
blocks such that every server has a low expected utilization, there
is higher probability that the server will be available to host a VM
when a request for a job on the datasets arrives. Concretely,we
model each physical machine,Mk as aM/M/1 single server queue.
Let a dataset,Di have a service time distribution with mean,µi,

whereµi is the mean time to process the blocks by each VM and
ρi = λi

µi

. Therefore the expected number of jobs on the datasetDi

running on the physical machineMk is given by

W k
i =

ρi

ρi − µi

.Xk
i

Now, the expected load on physical machineMk is given by

Ek =
X

i

W k
i × CRes(Di)

whereCRes(Di) denotes the computational resource required by
each VM of the job onDi, given by the type of VM chosen by
the user (e.g. Amazon EC2’ssmallVM instance that uses 1.7 GB
memory and 1 vCPU). We upper-bound the expected load on any
physical machine based on the load parameter,α.

∀k, Ek ≤ α × Pcap(Mk)

Here, a low value ofα would indicate a conservative data place-
ment where the expected load on the physical machines is lessand
therefore there is a high probability for a job on a data chunkon a
physical machine to get executed locally.

Minimizing Reduce Cost: With the above method for minimizing
map cost, now the key optimization is to improve reduce locality.
At the time of data placement, the node used to host the VM that
processes the data,Cnode(Bi,j) is not fixed. HenceRcost can not
be obtained precisely during data placement. Instead, we compute
an estimated reduce cost during data placement – we assume that
at the time of job execution, the VMs get placed on the physical
machines storing the data block, which based on the previousmap
cost optimization should be likely. Assuming every VM,v ∈ V (A)

runs equal number of reducers (i.e each VM runs|L(A)|
|V (A)|

reducers)
and every map output being uniformly distributed among the re-
ducers, now the optimization is

min
X

i

Rcostest(A,Di)

Rcostest(A, Di) =
X

1≤j≤Qi,v∈V (A)

dist(Snode(Bi,j), Pnode(v))×
mapoutput(Di)

L(A)
|V (A)|

wherePnode(v) is the physical machine hosting the VM,v and
mapoutput(Di) is the mean size of the expected map output of
each block of dataset,Di. While being an estimate, this definition
serves as a useful guideline for placement decisions, whichas our
evaluations show provides significant benefits.

It is easy to see that an optimal solution for this problem is NP-
Hard – both data and VM placement involve bin-packing, whichis
known to be NP-Hard [30]. Therefore, we use a heuristics based
approach, which is described next.

4. PURLIEUS: PLACEMENT TECHNIQUES
Next, we describe Purlieus’s data and VM placement techniques for
various classes of MapReduce jobs. The goal of these placements is
to minimize the totalCost by reducing thedist function for map
(when input data,Qi is large) and/or reduce (when intermediate
data,mout is large).

4.1 Map-input heavy jobs
Map-input heavy jobs read large amounts of input data for mapbut
generate only small map-outputs that is input to the reducers. For

placement, mappers of these jobs should be placed close to input
data blocks so that they can read data locally, while reducers can be
scheduled farther since amount of map-output data is small.

4.1.1 Placing Map-input heavy data
As map-input heavy jobs do not require reducers to be executed
close to each other, the VMs of the MapReduce cluster can be
placed anywhere in the data center. Thus, physical machinesto
place the data are chosen only based on the storage utilization and
the expected load,Ek on the machines. As discussed in the cost
model,Ek denotes the expected load on machine,Mk.

Ek =
X

i

W k
i × CRes(Di)

To store map-input heavy data chunks, Purlieus chooses machines
that have the least expected load. This ensures that when MapRe-
duce VMs are placed, there is likely to be capacity availableon
machines storing the input data.

4.1.2 VM placement for Map-input heavy jobs
The VM placement algorithm attempts to place VMs on the physi-
cal machines that contain the input data chunks for the map phase.
This results in lowerMCost – the dominant component for map-
input heavy jobs. Since data placement had placed blocks on ma-
chines that have lower expected computational load, it is less likely,
though possible that at the time of job execution, some machine
containing the data chunks does not have the available capacity.
For such a case, the VM may be placed close to the node that stores
the actual data chunk. Specifically, the VM placement algorithm it-
eratively searches for a physical machine having enough resources
in increasing order of network distance from the physical machine
storing the input data chunk. Among the physical machines ata
given network distance, the one having the least load is chosen.

4.2 Map-and-Reduce-input heavy jobs
Map-and-reduce-input heavy jobs process large amounts of input
data and also generate large intermediate data. Optimizingcost for
such jobs requires reducing thedist function during both their map
and reduce phases.

4.2.1 Placing Map-and-Reduce-input heavy data
To achieve high map-locality, data should be placed on physical
machines that can host VMs locally. Additionally, this dataplace-
ment should support reduce-locality – for which the VMs should be
hosted on machines close to each other (preferably within the rack)
so that reduce traffic does not significantly load the data center net-
work. Ideally, a subgraph structure that is densely connected, sim-
ilar to aclique, where every node is connected to every other node
in 1-hop would be a good candidate for placing the VMs. How-
ever, it may not always be possible to find cliques of a given size
as the physical network may not have aclique or even if it does,
some of the machines may not have enough resources to hold the
data or their expected computational load may be high to not al-
low VM placement later. An alternate approach would be to find
subgraph structures similar to cliques. A number of clique relax-
ations have been proposed, one of which isk-club [29]. A k-club
of a graphG is defined as a maximal subgraph ofG of diameter
k. While findingk-club is NP-Complete for a general graph, data
center networks are typically hierarchical (e.g.fat-treetopologies)
and this allows finding ak-clubin polynomial time. In a data center
tree topology, the leaf nodes represent the physical machines and
the non-leaf nodes represent the network switches. To find ak-club

M1 M2 M3
M4 M5 M6

M7 M8 M9
M10 M11

M12

M13 M14 M15
M16 M17

M18

F1= 2 F2=0 F3= 0 F4= 1 F5= 1 F6= 0

F7= 0 F8=1 F9= 0 F10= 1 F11= 1 F12= 1

F13= 1 F14=2 F15= 1 F16= 1 F17= 1 F18= 0

H7 A5 B1 B2 A6 B3 B4 L1 B5 B6 B7 B8 K2 B9
B10 L2 G1 G2 G3A4 H8 H9 I3

K1

L3 K4 D1 D2
C1 C2 D3 D4 C3 C4 C5 C6

C7 C8 D5 D6
E1 E2 E5 E6 E3 E4 E7

E8

A1 G3 G4 K1G1 G2
G6J3

H1 H2 H3I1 H4 H5 H6I2
A2 G5I3

A3 G7
J1 J2G8

I1 I2
I3

(a) Map-phase

M1 M2 M3
M4 M5 M6

M7 M8 M9
M10 M11

M12

M13 M14 M15
M16 M17

M18

F1= 2 F2=0 F3= 0 F4= 1 F5= 1 F6= 0

F7= 0 F8=1 F9= 0 F10= 1 F11= 1 F12= 1

F13= 1 F14=2 F15= 1 F16= 1 F17= 1 F18= 0

H7 A5 B1 B2 A6 B3 B4 L1 B5 B6 B7 B8 K2 B9
B10 L2 G1 G2 G3A4 H8 H9 I3

K1

L3 K4 D1 D2
C1 C2 D3 D4 C3 C4 C5 C6

C7 C8 D5 D6
E1 E2 E5 E6 E3 E4 E7

E8

A1 G3 G4 K1G1 G2
G6J3

H1 H2 H3I1 H4 H5 H6I2
A2 G5I3

A3 G7
J1 J2G8

R1 R2 R3
R2(3)

R1(3)

R1(2)

R3(2)

R2(1)

R3(1)

R1 R2 R3
R2(3)

R1(3)

R1(2)

R3(2)

R2(1)

R3(1)

(b) Reduce-phase

Figure 4: Data and VM placement. Bottom squares shows data blocks placed on each machine. Squares next to a machine (e.g.I1

nearM13 for map-phase in figure 4(a)) indicates reading of the block for map processing.F measure denotes available computational
capacity – for simplicity, number of VMs that can be placed onthat machine. In reduce phase (figure 4(b)) , circledRi indicates map

outputs and squareRi(j) indicates reading of intermediate data for reducerj from map task output, i.

containingn leaf nodes, the algorithm simply finds the sub-tree of
height k

2
containingn or more leaf nodes.

For map-and-reduce-input heavy jobs, data blocks get placed in
a set of closely connected physical machines that form ak-clubof
least possiblek (least possible height of the subtree) given the avail-
able storage resources in them. If several subtrees exists with the
same height, then the one having the maximum available resource
is chosen. As an illustration, in Figure 4(a), the input datablocks,
I1, I2, andI3 are stored in a closely connected set of nodesM13,
M14 andM15 that form ak-clubof least possiblek in the cluster.

4.2.2 VM placement for Map and Reduce-input heavy
jobs

As data placement had done an optimized placement by placing
data blocks in a set of closely connected nodes, VM placemental-
gorithm only needs to ensure that VMs get placed on either the
physical machines storing the input data or the close-by ones. This
reduces the distance on the network that the reduce traffic needs
to go over, speeding up job execution while simultaneously reduc-
ing cumulative data center network traffic. In the example shown
in Figure 4, VMs for job on datasetI get placed on the physi-
cal machines storing input data. As a result, map tasks use local
reads (Figure 4(a)) and reduce tasks also read within the same rack,
thereby maximizing reduce locality (Figure 4(b)). In case node
M15 did not have available resources to host the VM, then the next
candidates to host the VM would beM16, M17 andM18, all of
which can access the input data blockI3 by traversing one network
switch and are close to the other reducers executing inM13 and
M14. If any ofM16, M17 andM18 did not have available resources
to host a new VM, then the algorithm would iteratively proceed to
the next rack (M7, M8, M9, M10, M11 andM12) and look for a
physical machine to host the VM. Thus the algorithm tries to max-
imize locality even if the physical machines containing input data
blocks are unavailable to host the VMs.

4.3 Reduce-input heavy Applications
Jobs that are reduce-input heavy read small sized map-inputs and
generate large map-outputs that serve as the input to the reduce
phase. For these type of jobs, reduce locality is more important
than map-locality.

4.3.1 Placing Reduce-input heavy data
As map-input to these jobs is light, the map-locality of the data
is not as important. Therefore, the map-input data can be placed
anywhere within the cluster as it can be easily transferred to the
corresponding VMs during map execution. The data placemental-
gorithm chooses the physical machine with maximum free stor-
age. The example in Figure 4(a) shows the placement of input
data blocks for datasetL consisting ofL1, L2 andL3 on M3, M6

andM7 which are chosen only based on storage availability, even
though they are not closely connected.

4.3.2 VM placement for Reduce-input heavy jobs
Network traffic for transferring intermediate data among MapRe-
duce VMs is intense in reduce-input heavy jobs and hence the set
of VMs for the job should be placed close to each other. For an ex-
ample job using the dataset,L, containingL1, L2, andL3 in Figure
4(a), the VMs can be hosted on any set of closely connected phys-
ical machines, for instance,M10, M11 andM12. These machines
are within a single rack and form a2-club (diameter of 2 with a
single network switch). Although the map phase requires remote
reads from the nodes storing the input data,M3, M6 andM7, it
does not impact job performance much as the major chunk of data
transfer happens only during the reduce phase. In the reducephase,
as VMs are placed in a set of densely connected nodes, the locality
of the reads is maximized, leading to faster job execution.

4.4 Complexity of Techniques
There are two key operations used in our algorithms – (1) finding
a k-club of a given size with available resources and (2) finding a
node close to another node in the physical cluster. As noted before,
with typical data center hierarchical topologies, both of these op-
erations are very efficient to compute. As a result our techniques
scale well with increasing sizes of datasets or the cloud data center.

5. EXPERIMENTAL EVALUATION
We divide the experimental evaluation of Purlieus into two –first,
we provide detailed micro-benchmarking on effectiveness of our
data and VM placement techniques for each MapReduce job class
on a real cluster testbed of 20 physical machines. Then, we present
an extensive macro analysis with mix of job types and evaluate scal-

ability of our approach on a large cloud scale data center topology
through a simulator which is validated based with experiments on
the real cluster. We first start with our experimental setup.

5.1 Experimental setup
Metrics: We evaluate our techniques on two key metrics with the
goal of measuring the impact of data locality on the MapReduce
cloud service – (1)job execution time: techniques that allow jobs
to read data locally result in faster execution; thus this metric mea-
sures the per-job benefit of data locality, and (2)Cross-rack traf-
fic: techniques that read a lot of data across racks result in poorer
throughput [4]; this metric captures such characteristicsof the net-
work traffic.

Data Placement Techniques: We compare two data placement
schemes – our proposedlocality and load-aware data placement
(LLADP)accounts for MapReduce specific job characteristics and
estimated loads on servers while placing data as described in Sec-
tion 4. In contrast, therandom data placement(RDP) scheme does
not differentiate between job categories and places data blocks in a
set of randomly chosen physical machines that have available stor-
age capacity. It also has no knowledge of the server loads (analo-
gous to conventional MapReduce data placement). Note that both
the locality-aware and random data placement schemes are rack-
aware [11]; no two replicas of a given data block are placed onthe
same cluster rack for reliability purposes.

VM Placement Techniques: We compare five techniques:

• Locality-unaware VM Placement(LUAVP): LUAVP places VMs
on the physical machines without taking into consideration
the locations of the input data blocks for the job. The LU-
AVP scheme does try to pick a set of least loaded physical
machines for placing the VMs.

• Map-locality aware VM placement (MLVP): MLVP consid-
ers locality of only the input-data blocks for the map phase
and considers the current load and resource utilization levels
of the machines while placing the VMs (load-aware).

• Reduce-locality aware VM placement (RLVP): RLVP does
not consider map locality, but it tries to improve reduce local-
ity by packing VMs in a set of closely connected machines.
It is also load aware.

• Map and Reduce-locality aware VM placement (MRLVP):
MRLVP is aware of both map and reduce locality and is also
load aware.

• Hybrid locality-aware VM placement (HLVP): Our proposed
HLVP technique adaptively picks the placement strategy based
on type of the input job. It uses MLVP for map-input heavy,
RLVP for reduce-input heavy jobs and MRLVP for map and
reduce-input heavy jobs.

Key Comparison: The important comparison is between the com-
bination of LLADP + HLVP (Purlieus proposal) with RDP + MLVP
– analogous to traditional MapReduce. The other techniqueshelp
us understand the benefit of individual map or reduce locality as
well as benefits gained from data vs. VM placement.

Cluster Setup: Our cluster consists of 20 CentOS 5.5 physical ma-
chines (KVM as the hypervisor) with 16 core 2.53GHz Intel pro-
cessors. The machines are organized in two racks, each rack con-
taining 10 physical machines. The network is 1 Gbps and the nodes

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

MLVP RLVP MRLVP LUAVP

Jo
b

E
xe

cu
tio

n
tim

e
(s

ec
)

VM placement

Locality & load-aware data placement
Random data placement

(a) Job Execution Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

MLVP RLVP MRLVP LUAVP

N
or

m
al

iz
ed

 c
ro

ss
-r

ac
k

tr
af

fic

VM placement

Locality & load-aware data placement
Random data placement

(b) Network Utilization

Figure 5: Map and Reduce-input heavy workload

within a rack are connected through a single switch. Each jobuses
a cluster of 20 VMs with each VM configured with 4 GB mem-
ory and 4 2GHz vCPUs. A description of the various job types
and the dataset sizes is shown in Table 1. Each workload uses
320 map tasks. TheGrep workload uses only one reducer since
it requires little reduce computation while theSort andPermuta-
tion Generatorworkloads use 80 reducers. The Hadoop parame-
ter, mapred.tasktracker.map.tasks.maximumthat controls the max-
imum number of map tasks run simultaneously by a task trackeris
set as 5. Similarly, themapred.tasktracker.reduce.tasks.maximum
parameter is set as 5. Similar to typical data center topologies, the
inter-rack link between the two switches becomes the most con-
tentious resource as all the VMs hosted on a rack transfer data
across this link to the VMs hosted on the other rack. For exam-
ple, with 10 physical machines on each rack, and each physical
machine hosting a nominal 8 VMs, 80 VMs (and thus, Hadoop
nodes) on each rack will contend for the inter-rack link bandwidth
of 1 Gbps. To simulate this contention in a more controlled envi-
ronment that lets us accurately measure per-job improvements, we
set the bandwidth of the inter-rack link to 100 Mbps while running
one job at a time. The other alternative would be to run multiple
jobs at the same time on the cluster, however, that would havemade
micro analysis on a per-job type basis tougher to evaluate.

Workload Type Job Input
data

Output
data

Map-input heavy Grep: word
Search

20 GB 2.43 MB

Reduce-input heavy Permutation
Generator

2 GB 20 GB

Map and Reduce-input
heavy

Sort 10 GB 10 GB

Table 1: Workload types

5.2 Micro-benchmarking Results
We first present evaluation of our proposed techniques for various
MapReduce job types.

5.2.1 Map and Reduce-input heavy workload
In Figure 5, we study the performance for jobs that are both Map
and Reduce-input heavy using theSortworkload on a dataset gen-
erated using Hadoop’s RandomWriter. The job execution timein
Figure 5(a) for map-and-reduce VM placement with locality and
load-aware data placement (LLADP + MRLVP) shows the least
value among all schemes with more than 76% reduction compared
to RDP + MLVP. For data placement, MRLVP with RDP performs
poorly indicating thatwithout a locality-aware data placement, it
is hard to achieve high locality during VM placementand therefore
leads to higher job execution time. This justifies our coupled data
placement and VM scheduling technique.

Also, RLVP does not perform well as it tries to consider only re-
duce locality. The LUAVP scheme places the VMs randomly with-
out considering locality and therefore does not perform well either.

 0

 200

 400

 600

 800

 1000

 1200

MLVP RLVP MRLVP LUAVP

Jo
b

E
xe

cu
tio

n
tim

e
(s

ec
)

VM placement

Locality & load-aware data placement
Random data placement

(a) Job Execution Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

MLVP RLVP MRLVP LUAVP

N
or

m
al

iz
ed

 c
ro

ss
-r

ac
k

tr
af

fic

VM placement

Locality & load-aware data placement
Random data placement

(b) Cross-rack traffic

Figure 6: Map-input heavy workload

An interesting trend here is that MLVP performs well with LLADP
as the locality-awareness in data placement tried to place the data in
a set of closely connected physical machines and hence, whenthe
map-locality aware VM placement tries to place the VMs closeto
the input data, the reduce-locality is implicitly accounted for. These
benefits can be explained by the trend in cross-rack traffic (normal-
ized with respect to RDP + LUAVP) in Figure 5(b), showing 68%
lesser cross rack reads when using LLADP + MRLVP compared to
RDP + MLVP.

 0

 500

 1000

 1500

 2000

MLVP RLVP MRLVP LUAVP

Jo
b

E
xe

cu
tio

n
tim

e
(s

ec
)

VM placement

Locality & load-aware data placement
Random data placement

(a) Job Execution Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

MLVP RLVP MRLVP LUAVP

N
or

m
al

iz
ed

 c
ro

ss
-r

ac
k

tr
af

fic

VM placement

Locality & load-aware data placement
Random data placement

(b) Cross-rack traffic

Figure 7: Reduce-input heavy workload

5.2.2 Map-input heavy workload
Next we evaluate data and VM placement for map-input heavy jobs
using theGrepworkload. Figure 6 compares our metrics with var-
ious schemes. In Figure 6(a), first notice that the job execution
time for the locality-unaware VM placement (LUAVP) and reduce-
locality aware VM placement (RLVP) schemes is much higher than
that of map-locality aware (MLVP) and map-and-reduce locality
aware (MRLVP) VM placements for both the random (RDP) and
locality and load-aware data placement (LLADP) schemes. As
map-input heavy jobs generate only small map-outputs and have
little reduce traffic, thetechniques that optimize for map local-
ity – MLVP and MRLVP perform much better than the reduce-
locality only technique (RLVP) (up to 88% reduction in job execu-
tion time). The job execution time difference can be explained by
cross-rack network traffic (Figure 6(b)), normalized with respect to
RDP + LUAVP, shows that map-locality awareness has a big im-
pact. Lower cross-rack network traffic suggests that the data reads
are more local to the rack, avoiding more than 95% of cross-rack
traffic.

5.2.3 Reduce-input heavy workload
Figure 7 shows the performance for reduce-input heavy workload
using a permutation generator job that generates and sorts the first
10 permutations of each record of a dataset generated by Hadoop’s
RandomWriter. We find in Figure 7(a) that RLVP and MRLVP
have lower execution time for both the random (RDP) and locality-
aware data placement (LLADP), having up to 32% faster execution
time when compared to RDP + MLVP. Reduce-locality awareness
in VM placement ensures that the reducers are packed close toeach
other and reduce traffic does not traverse a long distance on the
network. Here, the underlying data placement scheme makes little
impact as these jobs do not have large input data, so violating map
locality does not cost much.

 0

 500

 1000

 1500

 2000

Grep Sort Perm. Gen.

Jo
b

E
xe

cu
tio

n
tim

e
(s

ec
)

Workload

RDP + MLVP Cluster Setup
Purlieus Cluster Setup

RDP + MLVP Simulation
Purlieus Simulation

(a) Job Execution Time

 0

 5000

 10000

 15000

 20000

 25000

Grep Sort Perm. Gen.

C
ro

ss
-r

ac
k

tr
an

sf
er

 (
M

B
)

Workload

RDP + MLVP Cluster Setup
RDP + MLVP Simulation

Purlieus Cluster Setup
Purlieus Simulation

(b) Cross-rack traffic

Figure 8: Simulator Validation

The LUAVP and MLVP schemes perform poorly since they do
not capture reduce locality which is key for this reduce-intensive
workload. A similar trend is seen for the ratio of cross-rackreads
in Figure 7(b), where the (LLADP + MRVLP) technique has 10x+
higher number of reads within racks as compared to RDP + MLVP.

Summary: This micro-analysis demonstrates that data and VM
placement techniques when applied judiciously to MapReduce jobs
can have a significant impact on the job execution time as wellas
total datacenter traffic. To realize these benefits, the right technique
needs to be applied for each MapReduce job type. Our Purlieus
technique (LLADP + HLVP) identifies and uses the right strategy
for each type of workload.

5.3 Macro Analysis: Mix of workloads, Scal-
ability and Efficiency

Following the per-job-type analysis, next we consider a mixof
workloads and evaluate the scalability of the techniques with re-
spect to the size of data center network and number of VMs in
virtual MapReduce clusters using a mix of workload types.

For a thorough analysis at scales of 100s and 1000s of machines
and with varying job, workload and physical cloud characteristics,
we implemented a MapReduce simulator, called PurSim, similar to
the existing NS-2 based MRPerf simulator [28]. However, unlike
MRPerf, PurSim does not perform a packet-level simulation of the
underlying network. Per-packet approach simulates every single
packet over the network which makes it difficult to scale for even
reasonably large workloads and cluster sizes. For instance, a per-
packet simulator for a cluster size of 1000 hosts sending traffic at
1Gbps would generate3× 1010 packets for a 60 second simulation
and simulating a million packets per second would take 71 hours to
simulate just that one case [23]. Instead we use anetwork flowlevel
simulation. Our discrete event simulator simulates the MapReduce
execution semantics similar to the Hadoop implementation.The
inter-node traffic is simulated in terms of network flows between
the source-destination pairs similar to the approaches adopted in
[23, 24]. The simulation framework uses a data center of 1000
compute nodes with 1 Gbps network configured in the typical tree
topology for the default setting. The performance metrics were
averaged over the jobs executed during a 2 hour simulation period.
By default, we use a mixed workload of jobs consisting of equal
proportions of all MapReduce job types in Table 1. We use a 30 GB
dataset for both theGrep andSort workloads and a 2 GB dataset
for Permutationworkload. For the default setting, a total of 150
datasets were used, 50 for each of the job types and 3 replicaswere
created by default. The arrival rate of the jobs on the datasets is
uniformly distributed from 200 to 2000 seconds.

5.3.1 Simulator Validation
Before presenting our simulation experiments, we provide aval-
idation of the simulator based on the experiments on our real20

node cluster. To bootstrap the simulator, we used measurements
obtained from the cluster experiments to configure simulator pa-
rameters, e.g. map and reduce compute times. We used the same
settings from our cluster setup including the cluster network topol-
ogy and workload characteristics in Table 1. As the key compari-
son is between the (RDP + MLVP) and Purlieus (LLADP + HLVP)
schemes, we compare these two techniques for various job types.

In figure 8(a), we compare the job execution time of the two
schemes for the three workloads. We find that for most cases, the
execution time produced by the simulator is within 10% of theex-
ecution time obtained in our cluster experiments. The cross-rack
transfer in Figure 8(b) shows that the simulator estimated cross-
rack transfer matches closely with that of our cluster experiments,
having less than 5% error in the cross-rack transfer estimated by
the simulator. While not validated against large scale clusters, these
low error rates when compared to our 20-node cluster experiments,
provide good confidence in the quality of the simulator.

5.3.2 Mixed workload
For our first macro analysis, we study the performance with a com-
posite workload that consists of an equal mix of all MapReduce
job categories with the default setting of 150 datasets and jobs us-
ing 20 VMs per job. Recall that Purlieus’s HLVP decides on the
placement policy based on the type of MapReduce job. For exam-
ple, it uses RLVP for reduce-input heavy jobs and MRLVP for jobs
that are both map and reduce heavy. The execution time in Fig-
ure 9(a) shows that HLVP works best for a mixed workload com-
pared to all other VM placement policies. As discussed earlier, a
reduce-locality aware VM placement would lose map localityfor
map-input heavy jobs and a map-locality VM placement might lose
reduce-locality while trying to achieve map-locality. While the map
and reduce locality-aware VM placement could be a conservative
policy for all types of jobs, it may not be needed in all cases and in
fact may use valuable dense-collection of machines for jobsthat do
not need it. This explains the difference between HLVP and MR-
LVP. – HLVP uses the right kind of resources for each job type.
Overall, HLVP with LLADP shows 2x faster execution time when
compared to RDP + MLVP schemesand a 9.1% improvement with
most conservative policy of LLADP + MRVLP. Figure 9(b) shows
the same trend with the normalized cross-rack traffic – LLADP+
HLVP shows a lower cross-rack traffic (only 30.1%) compared to
the RDP + MLVP. Overall, it is vivid thatwith random data place-
ment, it is hard to achieve a higher ratio of rack-local readsno
matter what VM placement algorithm is used, thus validatingour
claim made in the Purlieus design.

 0

 500

 1000

 1500

 2000

MLVP RLVP MRLVPLUAVP HLVP

M
ea

n
E

xe
cu

tio
n

tim
e

(s
ec

)

VM placement

Locality & load-aware data placement
Random data placement

(a) Job Execution Time

 0

 0.5

 1

 1.5

 2

MLVP RLVP MRLVP LUAVP HLVP

N
or

m
al

iz
ed

 c
ro

ss
-r

ac
k

tr
af

fic

VM placement

Locality & load-aware data placement
Random data placement

(b) Cross-rack traffic

Figure 9: Mixed workload

5.3.3 Impact of number of VMs
We study the impact of varying the number of VMs used for a given
job in Figure 10 using the default PurSim setting. In figure 10(a),
the number of VMs is varied from 10 to 200 and the average job
execution time is compared. The job execution time decreases with
increasing number of VMs but that decrease almost stops beyond

a certain number of VMs (100 VMs in this case). The initial in-
crease in number of VMs increases the computational parallelism
and improves execution time. But as the number of VMs exceed a
certain value, the reduce tasks gets distributed across thenetwork
since not all of them can be placed on a set of closely connected
machines (racks get exhausted). This reduction in data locality and
increased network transmission time counters the improvedparal-
lelism. This also shrinks the advantage of Purlieus approach over
RDP + MLVP. For instance, there is a performance gain of 2.3x in
execution time while using 20 VMs and it drops down to a gain of
1.7x when 100 VMs are used. This is expected since when a large
virtual cluster is provisioned, it is tough to provide both map and
reduce locality. This impact can be further analyzed by visualizing
the CDFs of number of network hops in both schemes with varying
number of VMs in Figures 10(b) and 10(c). When number of VMs
increase, there are more reads over longer network paths. However,
we always find higher percentage of closer reads with (LLADP +
HLVP) compared to (RDP + MLVP).

Overall, there are two key take-aways. First, Purlieus approach
outperforms other approaches for varying sizes of virtual MapRe-
duce clusters per job. Secondly, we notice that for a given job
and cloud topology, there is a sweet-spot in the size of the virtual
MapReduce cluster which gives the most bang for the buck. A tool
that helps customers identify this would be very valuable.

5.3.4 Varying Network Size
In this experiment, we measure the job execution time and cross-
rack traffic for various sizes of the cloud topology using 50 VMs
for each job. The other parameters are based on PurSim’s default
setting. The job execution time in figure 11(a) is fairly constant for
various network sizes with LLADP + HLVP. However, with RDP
+ MLVP, the data blocks gets distributed all over the networkand
with bigger clusters, the VMs are spread across the network and
hence the reduce phase obtains poor locality leading to longer ex-
ecution times. The normalized cross-rack traffic in Figure 11(b) is
also indicative of the same trend. Thus,Purlieus techniques work
well with varying size of the cloud datacenter topology while con-
ventional technique perform worse for larger network topologies.

 0

 200

 400

 600

 800

 1000

100 200 500 1000 1500

M
ea

n
E

xe
cu

tio
n

T
im

e
(s

ec
)

No of physical machines

LLADP + HLVP
RDP + MLVP

(a) Job Execution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

100 200 500 1000 1500

N
or

m
al

iz
ed

 c
ro

ss
-r

ac
k

tr
af

fic

No of physical machines

LADP + HLVP
RDP + MLVP

(b) Cross-rack traffic

Figure 11: Varying Network Size

5.3.5 Impact of Load-aware Data Placement
Our next experiment evaluates the effectiveness of load-awareness
in data placement. The experiments use the workload in the default
PurSim setting using 20 VMs for each job. A good load-aware
technique should make good decisions even with reasonably accu-
rate estimates. We study the locality and load aware data place-
ment (LLADP) with only locality-aware data placement (LADP)
and random data placement (RDP). Figure 12 compares the LADP
scheme with RDP and LLADP scheme for several load estimation
error values,e. The estimation error,e directly corresponds to the
percentage error in the estimation of the job arrival rates on the
datasets. In figure 12(a), we find that without any load estimation
error, LLADP (e = 0%) performs better than the load-unaware

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

10 20 50 100 200

M
ea

n
E

xe
cu

tio
n

T
im

e
(s

ec
)

No of Virtual machines

LLADP + HLVP
RDP + MLVP

(a) Job Execution time

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 T

ra
ffi

c

No of network hops

10 VMs
20 VMs
50 VMs

100 VMs
200 VMs

(b) CDF of Traffic with LLADP
and HLVP

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 T

ra
ffi

c

No of network hops

10 VMs
20 VMs
50 VMs

100 VMs
200 VMs

(c) CDF of Traffic with RDP and
MLVP

Figure 10: Varying number of Virtual Machines

 0

 500

 1000

 1500

 2000

LADP LLADP
(e=0%)

LLAP
(e=20%)

LLADP
(e=40%)

RDP

M
ea

n
E

xe
cu

tio
n

tim
e

(s
ec

)

Data Placement Algorithm

HLVP

(a) Job Execution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

LAP LLAP
(e=0%)

LLAP
(e=20%)

LLAP
(e=40%)

RDPN
or

m
al

iz
ed

 C
ro

ss
-r

ac
k

tr
af

fic

Data Placement Algorithm

HLVP

(b) Cross-rack traffic

Figure 12: Load Aware Data placement

(LADP) and random placement (RDP) schemes. Also, we find
that even with an estimation error of 20 % or 40%, the LLADP
scheme performs better than the random and load-unaware (LADP)
schemes. A similar trend is seen in 12(b) for the cross-rack traffic
normalized with respect to (RDP + HLVP). It suggests thateven an
approximate estimate of the arrival rate of the jobs on the datasets
helps balance the expected load among physical machines andin-
creases data locality.

6. RELATED WORK
To the best of our knowledge, Purlieus, with its coupled dataand
VM placement, is unique in exploiting both map and reduce lo-
cality for MapReduce in a cloud. We briefly review some of the
related work in this area. There have been several efforts that in-
vestigate efficient resource sharing while considering fairness con-
straints [36]. For example, Yahoo’s capacity scheduler uses differ-
ent job queues, so each job queue gets a fair share of the cluster
resources. Facebook’s fairness scheduler aims at improving the re-
sponse times of small jobs in a shared Hadoop cluster. Sandholm et
al [35] presented a resource allocation system using regulated and
user-assigned priorities to offer different service levels to jobs over
time. Zaharia et al. [26] developed a scheduling algorithm called
LATE that attempts to improve the response time of short jobs
by executing duplicates of some tasks in a heterogenous system.
Herodotou et al. proposeStarfishthat improves MapReduce perfor-
mance by automatically tuning Hadoop configuration parameters
[33]. The techniques in Purlieus are complementary to theseabove
mentioned optimizations. Recent work,Mantri, tries to minimize
outliers by making network-aware task placement, task restarting
and protecting the output of valuable tasks [4]. It also identifies
that cross-rack traffic during the reduce phase is a crucial factor for
MapReduce performance. However, without a locality-awaredata
placement scheme inMantri, there are only limited opportunities
for optimizations during task placement. Purlieus solves the fun-
damental problem of optimizing data placement so as to obtain a
highly local execution of the jobs during scheduling, minimizing
the cross-rack traffic during both map and reduce phases. As seen
in evaluations, Purlieus benefits from its locality-aware data as well
as computation placement.

A large body of work has explored the placement of applications

in a virtualized data center to minimize energy consumption[38],
perform load balancing [37] or perform server consolidation [34].
These approaches primarily focus on thebin-packingaspect and
place applications (VMs) independent of the underlying data place-
ment. Purlieus differs from these in terms of its consideration of
both input and intermediate data locality for MapReduce. Recently,
motivated by MapReduce, there has been work on resource alloca-
tion for data intensive application, especially in the cloud context
[31, 18]. Gunarathne et al.[18] present a new MapReduce runtime
for scientific applications built using Microsoft Azure cloud infras-
tructure services. Tashi [31] identifies the importance of location
awareness but does not propose a complete solution. Tara [40]
presents an architecture for optimized resource allocation using a
genetic algorithm. Quincy [27] is a resource allocation system for
scheduling concurrent jobs on clusters, but it considers only input
data locality and does not optimize for locality of any intermedi-
ate data generated during job execution which is a key factorto
scaling MapReduce in large data centers. Purlieus differentiates
from these through its locality optimizations achieved forboth in-
put and intermediate data. Also, as discussed in Section 4, with-
out an efficient underlying data placement, even a sophisticated
locality-aware compute placement may not be able to achievehigh
data locality.

7. CONCLUSIONS
This paper presents Purlieus, a resource allocation systemfor MapRe-
duce in a cloud. We present a system architecture for the MapRe-
duce cloud service and describe how existing data and virtual ma-
chine placement techniques lead to longer job execution times and
large amounts of network traffic in the data center. We identify data
locality as the key principle which if exploited can alleviate these
problems and develop a unique coupled data and VM placement
technique that achieves high data locality. Uniquely, Purlieus’s pro-
posed placement techniques optimize for data locality during both
map and reduce phases of the job by considering VM placement,
MapReduce job characteristics and load on the physical cloud in-
frastructure at the time of data placement. Our detailed evaluation
shows significant performance gains with some scenarios showing
close to 50% reduction in execution time and upto 70% reduction
in the cross-rack network traffic.

We plan to extend our work in two directions. First, for place-
ment techniques we would like to capture relationships between
datasets, e.g. if two datasets are accessed together (MapReduce
job doing ajoin of two datasets), their data placement can be more
intelligent while placing their blocks in relation to each other. Sec-
ond, we plan to develop online techniques to handle dynamic sce-
narios like changing job characteristics on a dataset. While core
principles developed in this work will continue to apply, such sce-
narios may use other virtualization technologies like livedata and
VM migration.

8. REFERENCES
[1] B. Igou “User Survey Analysis: Cloud-Computing Budgets

Are Growing and Shifting; Traditional IT Services Providers
Must Prepare or Perish”. Gartner Report, 2010

[2] http://en.wikipedia.org/wiki/Loop_device
[3] J. Dean and S. Ghemawat. Mapreduce: Simplified data

processing on large clusters. InOSDI, 2004.
[4] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,

Y. Lu, B. Saha and E. Harris. Reining in the Outliers
inMap-Reduce Clusters using Mantri. InOSDI, 2010.

[5] http://en.wikipedia.org/wiki/Big-data
[6] S. Babu. Towards Automatic Optimization of MapReduce

Programs. InSOCC, 2010.
[7] http://en.wikipedia.org/wiki/Clickstream
[8] K. Kambatla, A. Pathak and H. Pucha. Towards Optimizing

Hadoop Provisioning in the Cloud. InHotCloud, 2009.
[9] Cloudera.http://www.cloudera.com/blog/2010/08/hadoop-

for-fraud-detection-and-prevention/
[10] K. Morton, A. Friesen, M. Balazinska, D. Grossman.

Estimating the Progress of MapReduce Pipelines. InICDE,
2010.

[11] Hadoop DFS User Guide.http://hadoop.apache.org/.
[12] T. Wood, P. Shenoy, A. Venkataramani and M. Yousif.

Black-box and Gray-box Strategies for Virtual Machine
Migration. InNSDI, 2007.

[13] Purlieus: Locality-aware Resource Allocation for
MapReduce in a Cloud.
http://www.cc.gatech.edu/~pbalaji/purlieus

[14] Y. Chen, R. Griffith, J. Liu, R. H. Katz and A. D. Joseph.
Understanding TCP Incast Throughput Collapse in
Datacenter Networks. InWREN, 2009.

[15] Amazon Elastic MapReduce.
http://aws.amazon.com/elasticmapreduce/

[16] Amazon Elastic Compute Cloud.
http://aws.amazon.com/ec2/

[17] Amazon Simple Storage Service.http://aws.amazon.com/s3/
[18] T. Gunarathne, T. Wu, J. Qiu, G. Fox MapReduce in the

Clouds for Science. InCloudCom, 2010.
[19] M. Cardosa, P. Narang, A. Chandra, H. Pucha and A.

Singh. STEAMEngine: Optimizing MapReduce provisioning
in the cloud.Dept. of CSE, Univ. of Minnesota, 2010.

[20] M. Al-Fares, A. Loukissas and A. Vahdat. A scalable,
commodity data center network architecture. InSIGCOMM,
2008.

[21] C. Guo, H. Wu, K. Tan, L. Shiy, Y. Zhang, S. Luz. DCell:
A Scalable and Fault-Tolerant Network Structure for Data
Centers. InSIGCOMM, 2008.

[22] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C.
Kim, P. Lahiri, D. A. Maltz, P. Patel, S. Sengupta. VL2: A
Scalable and Flexible Data Center Network . InSIGCOMM,
2009.

[23] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
A. Vahdat. Hedera: Dynamic Flow Scheduling for Data
Center Networks. InNSDI, 2010.

[24] F. Baccelli and D. Hong Flow Level Simulation of Large IP
Networks InINFOCOM, 2003.

[25] Hadoop. http://hadoop.apache.org.
[26] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I.

Stoica. Improving MapReduce Performance in
Heterogeneous Environments. InOSDI, 2008.

[27] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,

and A. Goldberg. Quincy: fair scheduling for distributed
computing clusters. InSOSP, 2009.

[28] G. Wang, A. Butt, P. Pandey, K. Gupta. A Simulation
Approach to Evaluating Design Decisions in MapReduce
Setups.MASCOTS, 2009.

[29] R. J. Mokken. Cliques, clubs and clans. InQuality and
Quantity, 1973.

[30] M. R. Garey, D. S. Johnson.Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman.
ISBN 0-7167-1045-5.

[31] M. A. Kozuch, M. P. Ryan, R. Gass et al. Tashi:
Location-aware Cluster Management. InACDC, 2009.

[32] K. Kambatla, A. Pathak, and H. Pucha. Towards optimizing
hadoop provisioning in the cloud. InHotCloud, 2009.

[33] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B.
Cetin, S. Babu Starfish: A Selftuning System for Big Data
Analytics. InCIDR, 2011.

[34] G. Khanna, K. Beaty, G. Kar, and A. Kochut. Application
performance management in virtualized server environments.
In NOMS, 2006.

[35] T. Sandholm and K. Lai. Mapreduce optimization using
dynamic regulated prioritization. InACM
SIGMETRICS/Performance, 2009.

[36] Scheduling in hadoop.
http://www.cloudera.com/blog/tag/scheduling/.

[37] A. Singh, M. Korupolu, and D. Mohapatra. Server-storage
virtualization: Integration and load balancing in data centers.
In IEEE/ACM Supercomputing, 2008.

[38] A. Verma, P. Ahuja, and A. Neogi. pMapper: Power and
Migration Cost Aware Placement of Applications in
Virtualized Systems. InACM Middleware, 2008.

[39] A. Phanishayee, H. Shah, E. Krevat, D. Andersen, G.
Ganger, G. Gibson, B. Mueller, V. Vasudevan. Safe and
Effective Fine-grained TCP Retransmissions for Datacenter
Communication. InSIGCOMM2009.

[40] G. Lee, N. Tolia, P. Ranganathan, R. Katz.
Topology-Aware Resource Allocation for Data-intensive
workloads. InAPSys, 2010.

