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ABSTRACT

We present Purlieus, a MapReduce resource allocationrsysteed

at enhancing the performance of MapReduce jobs in the cloud.
Purlieus provisions virtual MapReduce clusters in a ldgadivare
manner enabling MapReduce virtual machines (VMs) acceiss to
put data and importantly, intermediate data from local osetby
physical machines. We demonstrate how this locality-aness

aaneek. si ngh@s. i bm com

bhuj ai n1@n. i bm com

with MapReduce as large amounts of traffic can be generated in
the shuffle phase when the output of map tasks is transfeored t
reduce tasks. As each reduce task needs to read the outplit of
map tasks [3], a sudden explosion of network traffic can §igni
cantly deteriorate cloud performance. This is especiallg tvhen
data has to traverse greater number of network hops whileggoi
acrosgacksof servers in the data center [4]. Further, the problem

during both map and reduce phases of the job not only improves sometimes is exacerbated by T@Rast[39] with a recent study

runtime performance of individual jobs but also has an aolat
advantage of reducing network traffic generated in the cldaig
center. This is accomplished using a novel coupling of, wiree
independent, data and VM placement steps. We conduct dedktai
evaluation of Purlieus and demonstrate significant savimget-
work traffic and almost 50% reduction in job execution timesd
variety of workloads.

1. INTRODUCTION

In most modern enterprises toddyg data[5] and big data ana-
lytics play a key role in delivering value to the business. Whether
it is using click stream analysis to identify customer bgybehav-
ior [7] or detecting fraud from millions of transactions [@]nalyz-
ing large amounts of data efficiently and quickly makes lesses
more profitable. One of the technologies that made big dada an
Iytics popular and accessible to enterprises of all sizéddpRe-
duce [3] (and its open-source Hadoop [25] implementatid¥ith
the ability to automatically parallelize the application a cluster

of commodity hardware, MapReduce allows enterprises ttyaea
terabytes and petabytes of data more conveniently than Eveay
MapReduce forms the core of technologies powering enssgri
like Google, Yahoo and Facebook.

Further, MapReduce offered as a service in the cloud previde
an attractive usage model for enterprises. A recent Gasineey
shows increasing cloud computing spending with 39% of enter
prises having allotted IT budgets for it [1]. A MapReduceuticer-
vice will allow enterprises to cost-effectively analyzegaamounts
of data without creating large infrastructures of their owbs-
ing virtual machines (VMs) and storage hosted by the clond, e
terprises can simply create virtual MapReduce clustersadyae
their data.

Animportant challenge for the cloud provider is to managé-mu
tiple virtual MapReduce clusters executing concurrerglgiverse
set of jobs on shared physical machines. Concretely, eagiRgta
duce job generates different loads on the shared physitastruc-
ture — (a) computation load: number and size of each VM (CPU,
memory), (b) storage load: amount of input, output and meer
diate data, and (c) network load: traffic generated durimgntiap,
shuffle and reduce phases. The network load is of speciabconc

finding goodput of the network reduced by an order of magmeitud
for a MapReduce workload [14].

To reduce network traffic for MapReduce workloads, we argue
for improved data locality for both Map and Reduce phases of
the job. The goal is to reduce the network distance betwesn st
age and compute nodes for both map and reduce processing — for
map phase, the VM executing the map task shouldlbseto the
node that stores the input data (preferably local to thaehaahd
for reduce phase, the VMs executing reduce tasks shouldose cl
to the map-task VMs which generate the intermediate datd ase
reduce input. Improved data locality in this manner is beefin
two ways — (1) it reduces job execution times as network feans
times are big components of total execution time and (2)liices
cumulative data center network traffic. While map localigywiell
understood and implemented in MapReduce systems, redcede lo
ity has surprisingly received little attention in spite tf significant
potential impact. As an example, Figure 1 shows the impaichof
proved reduce locality for a Sort workload. It shows the Hazlo
task execution timelines for a 10 GB dataset in a 2-rack 2afeno
physical clustéer, where 20 Hadoop VMs were placed without and
with reduce locality (top and bottom figures respectiveA3.seen
from the graph, reduce locality resulted in a significantiyprer
shuffle phase helping reduce total job runtime by 4x.

In this paper, we present Purlieus — an intelligent MapReduc
cloud resource allocation system. Purlieus improves dztality
during both map and reduce phases of the MapReduce job by care
fully coupling data and computation (VM) placement in theuzl.
Purlieus categorizes MapReduce jobs based on how muchhegta t
access during the map and reduce phases and analyzes tlogknetw
flows between sets of machines that store the input/inteated
data and those that process the data. It places data on ttse m
chines that can either be used to process the data themsaié or
close to the machines that can do the processing. This isinast
to conventional MapReduce systems which place data indepén
of map and reduce computational placement — data is placed on
any node in the cluster which has sufficient storage cap{gi5]
and only map tasks are attempted to be scheduled local t@tle n
storing the data block.

!Complete experimental setup is described in Section 5.
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Figure 1: Impact of Reduce-locality. Timeline plotted usirg
Hadoop’s job_history_summary Merge and Wasteseries are
omitted since they were negligible

Additionally Purlieus is different from conventional MapR
duce clouds (e.g., Amazon Elastic MapReduce [15]) that sepa
arate compute cloud for performing MapReduce computatiohea
separate storage cloud for storing the data persistenilgh 8n ar-
chitecture delays job execution and duplicates data inlthelc In
contrast, Purlieus stores the data in a dedicated MapRezlogé
and jobs execute on the same machines that store the datautvith
waiting to load data from a remote storage cloud.

To the best of our knowledge Purlieus is the first effort that a
tempts to improve data locality for MapReduce in a cloud. -Sec
ondly, Purlieus tackles the locality problem in a fundaraéman-
ner by coupling data placement with VM placement to providiab
map and reduce locality. This leads to significant savingscam
reduce job execution times by close to 50% while reducingaup t
70% of cross-rack network traffic in some scenarios.

2. SYSTEM MODEL

In our system model, customers using the MapReduce cloud ser
vice load their input datasets and MapReduce jobs into the se
vice. This step is similar to any typical cloud service whieh
quires setting up of the application stack and data. Themnés
key distinction, however. Typically cloud service proviseuse
two distinct infrastructures for storage and compute (&igazon
S3[17] for storage and Amazon EC2 [16] for compute). Exexyti

a MapReduce job in such infrastructures (e.g. using Amazas-E
tic MapReduce [15]) requires an additionahding step, in which
data is loaded from the storage cloud into the distributeztyi-
tem (e.g. Hadoop’s HDFS) of the MapReduce VMs running in the
compute cloud before even the job begins execution. Such add
tional loading has two drawbacks —(1) depending upon theuatno
of data required to be loaded and connectivity between the- co
pute and storage infrastructures, this step adverselydtameerfor-
mance, and (2) while the job is running (often for long dumas)

the dataset is duplicated in the cloud — along with the stocdaud
original, there is a copy in the compute cloud for MapRedue p
cessing, leading to higher costs for the provider.

In contrast, we propose a dedicated MapReduce service iahwh
datais directly stored on the same physical machines thd#lapRe-
duce VMs. This prevents the need for a wasteful data loadiy s
before executing a MapReduce job. Since MapReduce inpaisiat
often predominantly used for MapReduce analysis, stotingtd

a dedicated cloud service provides the greatest oppoyttoitop-
timization. The challenge for this design is the ability tartsi-
tion data stored on physical machines to the MapReduce VMs in
seamless manner — i.e. without requiring an explicit datating
step. This is accomplished in the following manner.

In our proposed service, when customers upload their d&ta in
the service, the data is broken up into chunks correspontting
MapReduce blocks and stored on a distributed filesystemeof th
physicalmachines. The placement of data — deciding which ma-
chines to use for each dataset — is done intelligently basddah-
niques described later. When the job begins executingNiamRe-
duce VMs are initialized) the data on physical machines &rse
lessly made available to VMs using two specific technique$)— (
loopback mountsFor a job, when its data is loaded into the cloud,
the chunks being placed on each machine are stored via a loop-
back mount [2] into a single data file (we refer to it as a vditk),
this provides access similar to any local filesystem, evengh all
data is being stored in a single file on thleysicalfilesystem. and
(2) VM disk-attach The vdisk-file is then attached to the VM as a
block device using server virtualization tools (e.g. KVM'sr sh
att ach- devi ce command). The VM can then mount the vdisk
file like it would any typical filesystem. The mount point ofigh
vdisk-file inside the VM serves as the MapReduce DFS dirgctor
(e.g. Hadoop'slat a. di r configuration variable).

We implemented this architecture on our cluster of Cent@sS 5.
physical machines with KVM as the hypervisor. Figure 2 shtives
sequence of steps used to store data persistently on a ghyse
chine and seamlessly transfer it to one of its VMs withoutiiéqg
additional loading.

1. Create a vdisk file on the hypervisor (for instance, 5 GB)
dd of =vdi sk-fil e bs=1M count =0 seek=5192

2. Format as ext2:

nkfs.ext2 -F vdisk-file

3. Loopback mount the vdisk file:

mount -t ext2 -o |l oop vdisk-file vdisk-npunt
4. Store input data intedi sk- nount in a MapReduce chun
format e.g. as a simplification, by creating a MapReduceeium
the physical machines.

5. Unmount vdisk-mount.vdi sk-fi | e represents persiste
data for each VM.

6. Upon VM initialization, the vdisk file is attached to the Va4 a
block device

virsh attach-device vm vdi sk-file-cfg.xn

7. VM can mount the block device like a new disk

mount -t ext2 /dev/sdb /data-dir

/data-dir contains dataset blocks and used as Hadfsogata.dir
8. Virtual MapReduce cluster is initialized between the VM5
starting the MapReduce cluster - each VM reports the datekb
to the MapReductlameNodéo initialize the filesystem. Then jd
execution can begin.

9. After job execution, VMs can be destroyed. On subsequmng i
tializations, only steps 6 onwards need to be performed.
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Figure 2: Dataflow from physical to virtual machines

These series of steps ensure that data is loaded onto the same
physical machines that host the VMs for MapReduce compurtati
and even while the VMs can be non-persistent (e.g. custoragr m
destroy VMs between different job executions to minimizetgo
the data is persistently stored on the physical machinesorigy
by using the VM disk-attach step, we are able to seamlesaty tr

2Similar commands exist for Xen and VMware
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Figure 3: Load Awareness in Data placement

sition this data into the VM cluster without requiring exgliload-

ing. In contrast, a separate compute and storage cloudstnia
ture would require paying the data loading overhead each tima
VMs are initialized. In our architecture, note that if a MapReduce
VM is required to be placed on a physical machine other than th
one containing that job’s data chunks, the vdisk file can kmetb
over to the appropriate physical machine and then attaaih#uet
VM. This step is similar to traditional MapReducesmote-read
operation. Here, it should be noted that even though someirof o
data and VM placement techniques may be applicable in the con
text of block placement and slot scheduling in Hadoop, thjsp's
focus is mainly on how to improve data locality for MapRedirce

a cloud setting while running unmodified Hadoop. Any modifica
tions to Hadoop inspired from our data and VM placement tech-
niques is beyond the scope of this paper.

3. PURLIUES: PRINCIPLES AND PROBLEM
ANALYSIS

In our proposed system model, the cloud provider faces two ke
questions — (1pata PlacementWhich physical machines should
be used for each dataset? and\(R) PlacementWhere should the
VMs be provisioned to process these data blocks? Poor plmem
of data or VMs may result in poor performance. Purlieus tack-
les this challenge with a unique coupled placement stratelggre
data placement is aware of likely VM placement and attenmpts t
improve locality. In this section, we describe the prinegpbf our
design and provide a formal analysis of the problem.

3.1 Principles

We argue that unlike traditional MapReduce, where datadequ
independently of the type of job processing it or the loadghan
servers, in a multi-tenant virtualized cloud these attelsuneed to
be accounted during data placement.

1. Job Specific Locality-awarenessPlacing data in the MapRe-
duce cloud service should incorporate job characteristispecif-
ically the amount of data accessed in the map and reduce phase
For example, a job that processes a lot of reduce data (eefesras
areduce-input heavjob) is best served by provisioning the VMs
of MapReduce cluster close to each other on the cluster metwo
as each reducer reads the outputs of all mappers. If the VBIs ar
far from each other, each reducer will read map outputs @regdr
network paths increasing job execution time and also irsinga
cross-rack traffic in the data center. On the other hamap-input
heavyjobs that generate little intermediate data do not benefit by

%In Amazon Elastic MapReduce [15], by default VMs are de-
stroyed after job completion, thus requiring data loadiogdach
run of the job. Alternatively, using a —alive option VMs caa b
made persistent across job runs, but users have to pay forftire
the entire duration.

placing its data blocks close to each other on the clustereffin
cient data placement scheme could distribute data blocksuicth
amap-input heavjob across the network to preserve resources for
placing reduce-input heavy jobs on closely connected mashi

Specifically, we use three distinct classes of jobs — (1) Map-
input heavy (e.g. a larggrep workload that generates small in-
termediate data simply indicating if a word occurs in inpataj,

(2) Map-and-Reduce-input heavy (e.gsat workload: interme-
diate data is equal to input data) and (3) Reduce-inputyhgag. a
permutation generatoworkload which generates permutations of
input strings). Purlieus uses different data placemeategies for
different job types with the goal of improving data locafity

2. Load Awareness:Placing data in a MapReduce cloud should
also account for computational load (CPU, memory) on thesphy
ical machines A good technigue should place data only on ma-
chines that are likely to have available capacity to exethagjob,
else remote-reads will be required to pull data from busyhiras

to be processed at less-utilized machines.

For example, in Figure 3(a), consider datasétsB, C, D and
E placed on six physical machines{; to Ms. A load unaware
placement may colocate the blocks of datagets’ and D together
as shown in Figure 3(a), even if jobs execute 4HnC, D more
frequently and generate higher load tharand E. Here, when the
job on the dataseb arrives and requests for a virtual cluster of 3
VMs, say each with 40% CPU resources of the physical machine,
even though it would be best to place the VMs on the physical
machines M, M> and M3 as they contain the data blocks of the
datasetD, the system may be forced to place the VMskn, M5
and Mg, resulting in remote reads for the job executing on dataset
D. In contrast, the load-aware data placement shown in Fig(ime
is able to achieve local execution for all the map tasks asaibie to
host the VMs on the physical machines containing the inpnaKs.

In Purlieus, while placing data blocks, it is ensured thateR-
pected load on the servers does not exceed a configurabdéitde
This incorporates the frequency and load generated by jodrsuge
ing on datasets stored on these servers. It is importantteothat
information about expected loads is available to a cloudigey by
monitoring the cloud environment. Typically with MapRedyua
set of jobs are repeatedly executed on a similar input datasg.
periodic execution of indexing on web crawled data. Thisval
the cloud provider to understand the load characteristicsuoh
jobs and use this knowledge to optimize its environment. iAdd
tionally, there are many proposals thmbfile MapReduce jobs via
trial executions on a small subset of data [10, 6, 8, 19]. &lskaw
that understanding MapReduce job characteristics canibk and
reasonably accurate. For the scope of this work, we assuate th

4For completeness a Map-and-Reduce-input light class sarbal
considered, however locality has little impact on its perfance



the expected load on each dataset is known. Also that thel clou
provider has enough data to estimate job arrival rate andniemn
execution time. However, we do not completely rely on theuacc
racy of these estimates, rather use them as an additiondihgui
measure. In Section 5, we will demonstrate that our proptest
niques perform well even when such estimates are partlyeaws.

3. Job-specific Data Replication: Traditionally, data blocks in
MapReduce are replicated within the cluster for resiliendshile
the job is executing, any replica of the block can be used ffor p
cessing. Purlieus handles replication in a different manie-
pending upon the type and frequency of jobs, we place eaticaep
of the entire dataset based on a particular strategy. Fonebea if

number of machines used to stdgg. Thus,

ZX{“ = N;,Vi
k

Within P;, let Yi’fj be the Boolean variable indicating if the specific
block B; ; is present in the physical machidd,, € M. Thus, in
order to ensure that the blocks are evenly distributed ambag

nodes inP;, we have
. k Qi
Vi, k Z y;-,jzﬁi
1<5<Q;

Locality based Cost To capture locality, we define a cost func-

which are reduce-input heavy and one map-input heavy, weepla
two replicas of data blocks in a reduce-input heavy fashiwhthe
third one using map-input heavy strategy. This allows naaiihg
greater data locality, especially during the reduce phsisege oth-
erwise by processing data block replidas from other input data
blocks during the map phase, the reducers may be forced do rea
more data over the network.

3.2 The Data Placement Problem

Next, we formally analyze the data placement problem. W sta
with notation for representing datasets, physical cloddhsiruc-
ture and their relationship.

Datasets and JobsLet D = {D; : 1 < i < |D|} be the set of
datasets that need to be stored in the MapReduce cloud. &or th
sake of presentation simplicity, assume that each datsseisio-
ciated with only one MapReduce job-type and that the refitina
factor is P. Each dataseb; is divided into uniform sized blocks
Bij:1<i<|D,1<j<Q;}whereQ={Q;:1<i<|Q|}
represent the number of blocks fbr;.

We assume that the job arrivals on the datasets follow a viss
process and lek = {\; : 1 < ¢ < |D|} denote the arrival rate
of the jobs on the datasets. After a job starts, it first execuatap
tasks. We denote the mean size of the expected map outputiof ea
block of datasetD; by mapoutput(D;).

Cloud Infrastructure : Let M = {M}, : 1 < k < | M|} denote
the set of physical machines. Each physical machifighas some
compute resources with capaciBrap(M;)® and some storage re-
sources (disk) with capacity denoted Byap(My). In the data
center, the physical machines are connected to each othetdsy
cal area network. Lefist(M;, M,,) denote thalistancebetween
the physical machine3/; and M,,, — we use number of network
hops as theist measure.

Relationship Notation: Let P; € M be the set of servers used to
store the datasd®; and X* be a Boolean variable indicating if the
physical machiné\/, is used to store the datasbi. Therefore,
My, € P;if XF=1. LetNV = {N; : 1 < i < |N]|} denote the

5If the dataset is associated with multiple jobs of differgsti
types, as mentioned earlier different replicas are usedippart
each type. A detailed problem formulation involving datpliea-

tion can be found in [13]

5Though we present a scalar capacity value, compute resource
may have multiple dimensions like CPU and memory. To handle
this, our model can be extended to include a vector of ressurc
or compute dimensions can be captured in a scalar valuethreeg.
volume metric presented in [12].

tion. Consider a jobA on the datasetD;. Let V(A) be the set
of virtual machines used by joH and letProde(v) represent the
physical machine hosting the VM, € V(A). The total cost of
a MapReduce application is the sum of map and reduce costs tha
represent the overhead involved in the data transfersgltiienmap
and reduce phases.

Cost(A, D;) = Mcost(A, D;) + Rcost(A, D;)

Here, Rcost incorporates thehuffle timef the job. IfSnode(B; ;)
€ P; is the physical machine storing the data blogk,;, and its
map task gets scheduled on the physical machihepde(B;,;)
that hosts some VMy € V(A), we consider

Mecost(A, D;) =

size(Bi, ;) x dist(Snode(B;,;), Cnode(B;,;))
1<7<Q;

This cost definition captures the amount of data and therdista
it travels over the network. Similarly, the reduce cost carcbm-
puted as the overhead involved in transferring the map d¢sitfou
the servers where the reducers are executed.Li(gt) be the set

of reduce tasks for jobl. As each reduce taskfask;,l € L(A)
needs to see the output of all the map tasks, the map outpeds ne
to be transferred to the corresponding reduce tasks. Tireréfie
reduce cost is given by:

Rcost(A, D;) =

>

1<5<Q;,1<ISL(A)

dist(Cnode(B;,;), Cnode(rtask;)

X Mout (A, B;,j, rtask;)

wherem,.:(A, B;,;, rtask;) is the amount of output data gener-
ated by the map task on the data blogk, ; that gets transferred
to reduce taskytask; that is run onCnode(rtask;). To improve
locality, the goal is to minimizé\/cost and Rcost, subject to not
violating the storage capacity constraint on physical nrech

vk )Yl < Scap(Ms)
0]

Minimizing Map Cost: To minimize map cost, the computations
should get placed on the same physical machines storing dipe m
input blocks @ist is zero). Thedata placementechnique, in turn,
should try to maximize the probability of such co-locationhis

is achieved by upper-bounding the expected resource lodtieon
servers for hosting the VMs at any given time. By placing data
blocks such that every server has a low expected utilizatiere

is higher probability that the server will be available tesha VM
when a request for a job on the datasets arrives. Concretely,
model each physical machink{;, as aM /M /1 single server queue.
Let a datasetD; have a service time distribution with megm;,



wherey; is the mean time to process the blocks by each VM and placement, mappers of these jobs should be placed clos@ub in
pi = 2— Therefore the expected number of jobs on the datBset  data blocks so that they can read data locally, while reduzzen be
runniné on the physical machind}, is given by scheduled farther since amount of map-output data is small.

whk= P x* . .

Yopi— " 4.1.1 Placing Map-input heavy data
As map-input heavy jobs do not require reducers to be exdcute
close to each other, the VMs of the MapReduce cluster can be
EF = wa x CRes(D;) placed anywhere in the data center. Thus, physical machines

9 place the data are chosen only based on the storage utilizatid

the expected loadE, on the machines. As discussed in the cost
model, E* denotes the expected load on machibg,.

Now, the expected load on physical machivig is given by

whereC'Res(D;) denotes the computational resource required by
each VM of the job onD;, given by the type of VM chosen by
the user (e.g. Amazon EC2snall VM instance that uses 1.7 GB oL z W x CRes(D;)
memory and 1 vCPU). We upper-bound the expected load on any ;

physical machine based on the load parameter, . ) )
To store map-input heavy data chunks, Purlieus choosesingsch

Vk,E¥ < ax Pcap(My) that have the least expected load. This ensures that wheRéAap
duce VMs are placed, there is likely to be capacity availaie

Here, a low value ofx would indicate a conservative data place- . . .
machines storing the input data.

ment where the expected load on the physical machines iahess
therefore there is a high probability for a job on a data chonla
physical machine to get executed locally. 4.1.2 VM placement for Map-input heavy jobs

The VM placement algorithm attempts to place VMs on the physi
Minimizing Reduce Cost With the above method for minimizing  cal machines that contain the input data chunks for the mapeph
map cost, now the key optimization is to improve reduce ibgcal  This results in lowe/ Cost — the dominant component for map-
At the time of data placement, the node used to host the VM that input heavy jobs. Since data placement had placed blocksasn m
processes the dat@node(B;,;) is not fixed. Hence&Rcost can not chines that have lower expected computational load, isisligely,
be obtained precisely during data placement. Instead, wpote though possible that at the time of job execution, some nmachi
an estimated reduce cost during data placement — we assaine th containing the data chunks does not have the available itppac
at the time of job execution, the VMs get placed on the physica For such a case, the VM may be placed close to the node thasstor
machines storing the data block, which based on the previwus the actual data chunk. Specifically, the VM placement atforiit-

cost optimization should be likely. Assuming every VMg V (A) eratively searches for a physical machine having enougiuress
runs equal number of reducers (i.e each VM ry A%“ reducers) in increasing order of network distance from the physicathiae
and every map output being uniformly distributed among te r  Storing the input data chunk. Among the physical machines at
ducers, now the optimization is given network distance, the one having the least load iserhos

min Z Reostest(4, D:) 4.2 Map-and-Reduce-input heavy jobs

Map-and-reduce-input heavy jobs process large amountspoi i
Rcostest (A, D;) = data and also generate large intermediate data. Optimizisigfor
such jobs requires reducing tHeést function during both their map

Z dist(Snode(B;.;), Pnode(v))x %ﬁ‘t(m and reduce phases.
1<j<Q;,veV(A) [V(A)]
where Pnode(v) is the physical machine hosting the VM,and 4.2.1 Placing Map-and-Reduce-input heavy data

mapoutput(D;) is the mean size of the expected map output of T0 achieve high map-locality, data should be placed on paysi
each block of datasefy;. While being an estimate, this definiton ~Machines that can host VMs locally. Additionally, this dptace-

serves as a useful guideline for placement decisions, wagabur ment should support reduce-locality —for which the VMs dtidie
evaluations show provides significant benefits. hosted on machines close to each other (preferably witleimatbk)

so that reduce traffic does not significantly load the datéecaret-

Itis easy to see that an optimal solution for this problemis N Work. Ideally, a subgraph structure that is densely corgtectim-
Hard — both data and VM placement involve bin-packing, wigch  ilar to aclique, where every node is connected to every other node

known to be NP-Hard [30]. Therefore, we use a heuristicsase in 1-hop would be a good candidate for placing the VMs. How-
approach, which is described next. ever, it may not always be possible to find cliques of a givee si

as the physical network may not havelggue or even if it does,

. some of the machines may not have enough resources to hold the
4. PURLI.EUS' PLACEMENT TECHNIQUES data or their expected computational load may be high to kot a
Ne).<t, we describe Purlieus's da’Fa and VM placement tecm@’ low VM placement later. An alternate approach would be to find
various classes of MapReduce jobs. The goal of these plaxtsise subgraph structures similar to cliques. A number of cliqele-
to minimize the totalC'ost by reducing thelist function for map

. . . - ations have been proposed, one of whick-dub[29]. A k-club
gV;:\:n 'nplilé l‘::;iﬁ)% is large) and/or reduce (when intermediate ¢ 5 graph(; is defined as a maximal subgraph@fof diameter
TMout .

k. While findingk-clubis NP-Complete for a general graph, data
. . center networks are typically hierarchical (efgt-treetopologies)
4.1 Map-input heavy jobs and this allows finding &-clubin polynomial time. In a data center
Map-input heavy jobs read large amounts of input data for map tree topology, the leaf nodes represent the physical mastand
generate only small map-outputs that is input to the redudéor the non-leaf nodes represent the network switches. To fiadlab
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Figure 4: Data and VM placement. Bottom squares shows data btks placed on each machine. Squares next to a machine (elg.

near M3 for map-phase in figure 4(a) ) indicates reading of the blockdr map processing.F' measure denotes available computational

capacity — for simplicity, number of VMs that can be placed onthat machine. In reduce phase (figure 4(b)) , circled®?; indicates map
outputs and squareR;(j) indicates reading of intermediate data for reducer; from map task output, i.

containingn leaf nodes, the algorithm simply finds the sub-tree of
heightg containingn or more leaf nodes.

For map-and-reduce-input heavy jobs, data blocks get glisce
a set of closely connected physical machines that fokchub of
least possiblé (least possible height of the subtree) given the avail-
able storage resources in them. If several subtrees exigtsive
same height, then the one having the maximum available resou
is chosen. As an illustration, in Figure 4(a), the input daltecks,
I, I, andI; are stored in a closely connected set of nofiés,
M4 and M5 that form ak-club of least possiblé: in the cluster.

4.3.1 Placing Reduce-input heavy data

As map-input to these jobs is light, the map-locality of tread

is not as important. Therefore, the map-input data can beegla
anywhere within the cluster as it can be easily transfercethé
corresponding VMs during map execution. The data placement
gorithm chooses the physical machine with maximum free- stor
age. The example in Figure 4(a) shows the placement of input
data blocks for datasét consisting ofZ,, L. andLs on M3, Ms

and M~ which are chosen only based on storage availability, even
though they are not closely connected.

4.2.2 VM placement for Map and Reduce-inputheavy4.3.2 VM placement for Reduce-input heavy jobs

jobs

As data placement had done an optimized placement by placing

data blocks in a set of closely connected nodes, VM placeaient
gorithm only needs to ensure that VMs get placed on either the
physical machines storing the input data or the close-bg.onkis
reduces the distance on the network that the reduce trafidse
to go over, speeding up job execution while simultaneoustic-

ing cumulative data center network traffic. In the examplevat

in Figure 4, VMs for job on dataset get placed on the physi-
cal machines storing input data. As a result, map tasks use lo
reads (Figure 4(a)) and reduce tasks also read within the sack,
thereby maximizing reduce locality (Figure 4(b)). In cassl@
M;5 did not have available resources to host the VM, then the next
candidates to host the VM would b¥1¢, M7 and M;s, all of
which can access the input data bldglkby traversing one network
switch and are close to the other reducers executind/ia and
M. Ifany of My6, M7 andM;s did not have available resources
to host a new VM, then the algorithm would iteratively prodee

the next rack /7, Ms, My, Mo, M11 and M;2) and look for a
physical machine to host the VM. Thus the algorithm tries soxm
imize locality even if the physical machines containingungata
blocks are unavailable to host the VMs.

4.3 Reduce-input heavy Applications

Jobs that are reduce-input heavy read small sized mapsirgmd
generate large map-outputs that serve as the input to theeed
phase. For these type of jobs, reduce locality is more inaport
than map-locality.

Network traffic for transferring intermediate data amongpRa-
duce VMs is intense in reduce-input heavy jobs and henceehe s
of VMs for the job should be placed close to each other. Foxan e
ample job using the dataset, containingL1, L2, andLs in Figure
4(a), the VMs can be hosted on any set of closely connectest phy
ical machines, for instancé/1o, M1; and M1>. These machines
are within a single rack and form 2club (diameter of 2 with a
single network switch). Although the map phase requiresotem
reads from the nodes storing the input daté;, Ms and M7, it
does not impact job performance much as the major chunk af dat
transfer happens only during the reduce phase. In the rgzhase,

as VMs are placed in a set of densely connected nodes, tHayoca
of the reads is maximized, leading to faster job execution.

4.4 Complexity of Techniques

There are two key operations used in our algorithms — (1) riigndi
ak-club of a given size with available resources and (2) finding a
node close to another node in the physical cluster. As natéaté,
with typical data center hierarchical topologies, bothlwge op-
erations are very efficient to compute. As a result our teqines
scale well with increasing sizes of datasets or the cloua caxter.

5. EXPERIMENTAL EVALUATION

We divide the experimental evaluation of Purlieus into twiirst,

we provide detailed micro-benchmarking on effectiveneseur
data and VM placement techniques for each MapReduce job clas
on a real cluster testbed of 20 physical machines. Then, asept

an extensive macro analysis with mix of job types and evalseal-



ability of our approach on a large cloud scale data centerlbgy
through a simulator which is validated based with experitaem
the real cluster. We first start with our experimental setup.

5.1 Experimental setup

Metrics: We evaluate our techniques on two key metrics with the
goal of measuring the impact of data locality on the MapReduc
cloud service — (1)ob execution timetechniques that allow jobs
to read data locally result in faster execution; thus thisrimenea-
sures the per-job benefit of data locality, and (pss-rack traf-
fic: techniques that read a lot of data across racks result irepoo
throughput [4]; this metric captures such characterigifdhe net-
work traffic.

Data Placement Techniques We compare two data placement
schemes — our proposddcality and load-aware data placement
(LLADP) accounts for MapReduce specific job characteristics and
estimated loads on servers while placing data as describ8da-
tion 4. In contrast, theandom data placemelfRDP) scheme does
not differentiate between job categories and places datk$lin a
set of randomly chosen physical machines that have avaitbt-
age capacity. It also has no knowledge of the server loadddan
gous to conventional MapReduce data placement). Note diat b
the locality-aware and random data placement schemes clte ra
aware [11]; no two replicas of a given data block are placethen
same cluster rack for reliability purposes.

VM Placement Techniques We compare five techniques:

e Locality-unaware VM Placement(LUAVRJUAVP places VMs
on the physical machines without taking into consideration
the locations of the input data blocks for the job. The LU-
AVP scheme does try to pick a set of least loaded physical
machines for placing the VMs.

e Map-locality aware VM placement (MLVPYILVP consid-
ers locality of only the input-data blocks for the map phase
and considers the current load and resource utilizatiogldev
of the machines while placing the VMs (load-aware).

e Reduce-locality aware VM placement (RLYRLVP does
not consider map locality, but it tries to improve reduceallec
ity by packing VMs in a set of closely connected machines.
Itis also load aware.

e Map and Reduce-locality aware VM placement (MRLVP)
MRLVP is aware of both map and reduce locality and is also
load aware.

e Hybrid locality-aware VM placement (HLVPQur proposed
HLVP technique adaptively picks the placement strateggdbas
on type of the input job. It uses MLVP for map-input heavy,
RLVP for reduce-input heavy jobs and MRLVP for map and
reduce-input heavy jobs.

Key Comparison: The important comparison is between the com-
bination of LLADP + HLVP (Purlieus proposal) with RDP + MLVP
— analogous to traditional MapReduce. The other technifeks
us understand the benefit of individual map or reduce lgcalst
well as benefits gained from data vs. VM placement.

Cluster Setup Our cluster consists of 20 CentOS 5.5 physical ma-
chines (KVM as the hypervisor) with 16 core 2.53GHz Intel-pro
cessors. The machines are organized in two racks, each oaek ¢
taining 10 physical machines. The network is 1 Gbps and tdesio
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Figure 5: Map and Reduce-input heavy workload

within a rack are connected through a single switch. Eachigas

a cluster of 20 VMs with each VM configured with 4 GB mem-
ory and 4 2GHz vCPUs. A description of the various job types
and the dataset sizes is shown in Table 1. Each workload uses
320 map tasks. The&rep workload uses only one reducer since
it requires little reduce computation while ti8ort and Permuta-
tion Generatorworkloads use 80 reducers. The Hadoop parame-
ter, mapred.tasktracker.map.tasks.maximimat controls the max-
imum number of map tasks run simultaneously by a task trasker
set as 5. Similarly, thenapred.tasktracker.reduce.tasks.maximum
parameter is set as 5. Similar to typical data center topesoghe
inter-rack link between the two switches becomes the most co
tentious resource as all the VMs hosted on a rack transfer dat
across this link to the VMs hosted on the other rack. For exam-
ple, with 10 physical machines on each rack, and each pHysica
machine hosting a nominal 8 VMs, 80 VMs (and thus, Hadoop
nodes) on each rack will contend for the inter-rack link baiatth

of 1 Gbps. To simulate this contention in a more controlled-en
ronment that lets us accurately measure per-job improvesne®

set the bandwidth of the inter-rack link to 100 Mbps whilening

one job at a time. The other alternative would be to run midtip
jobs at the same time on the cluster, however, that would imeade
micro analysis on a per-job type basis tougher to evaluate.

Workload Type Job Input Output
data data

Map-input heavy Grep: word]| 20 GB 2.43MB
Search

Reduce-input heavy Permutation | 2 GB 20 GB
Generator

Map and Reduce-input Sort 10 GB 10 GB

heavy

Table 1: Workload types

5.2 Micro-benchmarking Results
We first present evaluation of our proposed techniques foowa
MapReduce job types.

5.2.1 Map and Reduce-input heavy workload

In Figure 5, we study the performance for jobs that are botlp Ma
and Reduce-input heavy using tBertworkload on a dataset gen-
erated using Hadoop’s RandomWriter. The job execution time
Figure 5(a) for map-and-reduce VM placement with localibd a
load-aware data placement (LLADP + MRLVP) shows the least
value among all schemes with more than 76% reduction cordpare
to RDP + MLVP. For data placement, MRLVP with RDP performs
poorly indicating thatwithout a locality-aware data placement, it
is hard to achieve high locality during VM placemeamtd therefore
leads to higher job execution time. This justifies our codpata
placement and VM scheduling technique.

Also, RLVP does not perform well as it tries to consider ordy r
duce locality. The LUAVP scheme places the VMs randomly with
out considering locality and therefore does not perform eigher.



Locality & load-aware data placement ‘=xxzza
1200 o

Locality & load-aware data placement &2z
andom data placement s Random data placement

1000

800

600

400

Job Execution time (sec)

200

Normalized cross-rack traffic

P MRLVP LUAVP
VM placement

P MRLVP LUAVP MLVP

VM placement

MLVP

(a) Job Execution Time (b) Cross-rack traffic

Figure 6: Map-input heavy workload

An interesting trend here is that MLVP performs well with LD®R

as the locality-awareness in data placement tried to plecddta in

a set of closely connected physical machines and hence, thiken
map-locality aware VM placement tries to place the VMs cluse
the input data, the reduce-locality is implicitly accouhfer. These
benefits can be explained by the trend in cross-rack traffimgal-

ized with respect to RDP + LUAVP) in Figure 5(b), showing 68%
lesser cross rack reads when using LLADP + MRLVP compared to
RDP + MLVP.
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5.2.2 Map-input heavy workload

Next we evaluate data and VM placement for map-input heawy jo
using theGrepworkload. Figure 6 compares our metrics with var-
ious schemes. In Figure 6(a), first notice that the job exewcut
time for the locality-unaware VM placement (LUAVP) and redu
locality aware VM placement (RLVP) schemes is much highanth
that of map-locality aware (MLVP) and map-and-reduce libgal
aware (MRLVP) VM placements for both the random (RDP) and
locality and load-aware data placement (LLADP) schemes. As
map-input heavy jobs generate only small map-outputs amd ha
little reduce traffic, thetechniques that optimize for map local-
ity — MLVP and MRLVP perform much better than the reduce-
locality only technique (RLVP) (up to 88% reduction in joleex-

tion time) The job execution time difference can be explained by
cross-rack network traffic (Figure 6(b)), normalized widspect to
RDP + LUAVP, shows that map-locality awareness has a big im-
pact. Lower cross-rack network traffic suggests that tha dzdds
are more local to the rack, avoiding more than 95% of crosk-ra
traffic.

5.2.3 Reduce-input heavy workload

Figure 7 shows the performance for reduce-input heavy wwarkl
using a permutation generator job that generates and berfirst
10 permutations of each record of a dataset generated bydgado
RandomWriter. We find in Figure 7(a) that RLVP and MRLVP
have lower execution time for both the random (RDP) and lpeal
aware data placement (LLADP), having up to 32% faster exacut
time when compared to RDP + MLVP. Reduce-locality awareness
in VM placement ensures that the reducers are packed cleseto
other and reduce traffic does not traverse a long distancé®n t
network. Here, the underlying data placement scheme mékes |
impact as these jobs do not have large input data, so viglatep
locality does not cost much.
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Figure 8: Simulator Validation

The LUAVP and MLVP schemes perform poorly since they do
not capture reduce locality which is key for this reducesitgive
workload. A similar trend is seen for the ratio of cross-raekds
in Figure 7(b), where the (LLADP + MRVLP) technique has 10x+
higher number of reads within racks as compared to RDP + MLVP.

Summary: This micro-analysis demonstrates that data and VM
placement techniques when applied judiciously to MapRefhizs

can have a significant impact on the job execution time as agell
total datacenter traffic. To realize these benefits, thetrigthnique
needs to be applied for each MapReduce job type. Our Purlieus
technique (LLADP + HLVP) identifies and uses the right sggte
for each type of workload.

5.3 Macro Analysis: Mix of workloads, Scal-
ability and Efficiency

Following the per-job-type analysis, next we consider a wifix
workloads and evaluate the scalability of the techniquehb vé-
spect to the size of data center network and number of VMs in
virtual MapReduce clusters using a mix of workload types.

For a thorough analysis at scales of 100s and 1000s of machine
and with varying job, workload and physical cloud charastas,
we implemented a MapReduce simulator, called PurSim, airtol
the existing NS-2 based MRPerf simulator [28]. Howeverjkanl
MRPerf, PurSim does not perform a packet-level simulatibtihe
underlying network. Per-packet approach simulates evienyles
packet over the network which makes it difficult to scale feere
reasonably large workloads and cluster sizes. For instanper-
packet simulator for a cluster size of 1000 hosts sendirfficrat
1Gbps would generatix 10'° packets for a 60 second simulation
and simulating a million packets per second would take 7 smu
simulate just that one case [23]. Instead we usetavork flonlevel
simulation. Our discrete event simulator simulates the Risghuce
execution semantics similar to the Hadoop implementatithe
inter-node traffic is simulated in terms of network flows beén
the source-destination pairs similar to the approachegtadan
[23, 24]. The simulation framework uses a data center of 1000
compute nodes with 1 Gbps network configured in the typica tr
topology for the default setting.  The performance metriesaev
averaged over the jobs executed during a 2 hour simulatinoghe
By default, we use a mixed workload of jobs consisting of équa
proportions of all MapReduce job types in Table 1. We use aB0 G
dataset for both th&rep and Sortworkloads and a 2 GB dataset
for Permutationworkload. For the default setting, a total of 150
datasets were used, 50 for each of the job types and 3 replaras
created by default. The arrival rate of the jobs on the désase
uniformly distributed from 200 to 2000 seconds.

5.3.1 Simulator Validation
Before presenting our simulation experiments, we providala
idation of the simulator based on the experiments on our28al



node cluster. To bootstrap the simulator, we used measuatsme
obtained from the cluster experiments to configure simulptoe

a certain number of VMs (100 VMs in this case). The initial in-
crease in number of VMs increases the computational pisatle

rameters, e.g. map and reduce compute times. We used the samand improves execution time. But as the number of VMs exceed a

settings from our cluster setup including the cluster nekwopol-
ogy and workload characteristics in Table 1. As the key campa
son is between the (RDP + MLVP) and Purlieus (LLADP + HLVP)
schemes, we compare these two techniques for various jes.typ

In figure 8(a), we compare the job execution time of the two
schemes for the three workloads. We find that for most cakes, t
execution time produced by the simulator is within 10% of ¢ixe
ecution time obtained in our cluster experiments. The erask
transfer in Figure 8(b) shows that the simulator estimateds:
rack transfer matches closely with that of our cluster expents,
having less than 5% error in the cross-rack transfer estichay
the simulator. While not validated against large scaletehgsthese
low error rates when compared to our 20-node cluster expig
provide good confidence in the quality of the simulator.

5.3.2 Mixed workload

For our first macro analysis, we study the performance witbra-c
posite workload that consists of an equal mix of all MapReduc
job categories with the default setting of 150 datasets absl jis-
ing 20 VMs per job. Recall that Purlieus’s HLVP decides on the
placement policy based on the type of MapReduce job. For exam
ple, it uses RLVP for reduce-input heavy jobs and MRLVP fdago
that are both map and reduce heavy. The execution time in Fig-
ure 9(a) shows that HLVP works best for a mixed workload com-
pared to all other VM placement policies. As discussed eqrd
reduce-locality aware VM placement would lose map locdiity
map-input heavy jobs and a map-locality VM placement mighél
reduce-locality while trying to achieve map-locality. \W#ihe map
and reduce locality-aware VM placement could be a consgevat
policy for all types of jobs, it may not be needed in all cases ia
fact may use valuable dense-collection of machines fortjoatsdo
not need it. This explains the difference between HLVP and MR
LVP. — HLVP uses the right kind of resources for each job type.
Overall, HLVP with LLADP shows 2x faster execution time when
compared to RDP + MLVP schemasd a 9.1% improvement with
most conservative policy of LLADP + MRVLP. Figure 9(b) shows
the same trend with the normalized cross-rack traffic — LLADP
HLVP shows a lower cross-rack traffic (only 30.1%) compared t
the RDP + MLVP. Overall, it is vivid thatvith random data place-
ment, it is hard to achieve a higher ratio of rack-local reanis
matter what VM placement algorithm is used, thus validating
claim made in the Purlieus design
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Figure 9: Mixed workload

5.3.3 Impact of number of VMs

We study the impact of varying the number of VMs used for aigive
job in Figure 10 using the default PurSim setting. In figuréa)0
the number of VMs is varied from 10 to 200 and the average job
execution time is compared. The job execution time decsagth
increasing number of VMs but that decrease almost stopsnigeyo

certain value, the reduce tasks gets distributed acrossetveork
since not all of them can be placed on a set of closely condecte
machines (racks get exhausted). This reduction in datéitpead
increased network transmission time counters the imprpadl-
lelism. This also shrinks the advantage of Purlieus appraser
RDP + MLVP. For instance, there is a performance gain of 203x i
execution time while using 20 VMs and it drops down to a gain of
1.7x when 100 VMs are used. This is expected since when a large
virtual cluster is provisioned, it is tough to provide bottapmand
reduce locality. This impact can be further analyzed by aligzing

the CDFs of number of network hops in both schemes with varyin
number of VMs in Figures 10(b) and 10(c). When number of VMs
increase, there are more reads over longer network pathsevés,

we always find higher percentage of closer reads with (LLADP +
HLVP) compared to (RDP + MLVP).

Overall, there are two key take-aways. First, Purlieus agmh
outperforms other approaches for varying sizes of virtuapiRe-
duce clusters per job. Secondly, we notice that for a givén jo
and cloud topology, there is a sweet-spot in the size of ttieali
MapReduce cluster which gives the most bang for the.bAi¢&ol
that helps customers identify this would be very valuable.

5.3.4 Varying Network Size

In this experiment, we measure the job execution time anssero
rack traffic for various sizes of the cloud topology using 5M&/
for each job. The other parameters are based on PurSim'sltiefa
setting. The job execution time in figure 11(a) is fairly ctamg for
various network sizes with LLADP + HLVP. However, with RDP
+ MLVP, the data blocks gets distributed all over the netwamkl
with bigger clusters, the VMs are spread across the netwodk a
hence the reduce phase obtains poor locality leading tceloexg
ecution times. The normalized cross-rack traffic in Figutéb} is
also indicative of the same trend. Thi&yrlieus techniques work
well with varying size of the cloud datacenter topology ettibn-
ventional technique perform worse for larger network tauits
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Figure 11: Varying Network Size

5.3.5 Impact of Load-aware Data Placement

Our next experiment evaluates the effectiveness of loaalewess

in data placement. The experiments use the workload in tfaeiie
PurSim setting using 20 VMs for each job. A good load-aware
technique should make good decisions even with reasonably a
rate estimates. We study the locality and load aware datzepla
ment (LLADP) with only locality-aware data placement (LAPP
and random data placement (RDP). Figure 12 compares the LADP
scheme with RDP and LLADP scheme for several load estimation
error valuesge. The estimation errok directly corresponds to the
percentage error in the estimation of the job arrival ratesh®
datasets. In figure 12(a), we find that without any load estoma
error, LLADP (e = 0%) performs better than the load-unaware
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(LADP) and random placement (RDP) schemes. Also, we find
that even with an estimation error of 20 % or 40%, the LLADP
scheme performs better than the random and load-unawaf@R).A
schemes. A similar trend is seen in 12(b) for the cross-reafki¢
normalized with respect to (RDP + HLVP). It suggests thagn an
approximate estimate of the arrival rate of the jobs on thiadets
helps balance the expected load among physical machinesand
creases data locality

6. RELATED WORK

To the best of our knowledge, Purlieus, with its coupled datd
VM placement, is unique in exploiting both map and reduce lo-
cality for MapReduce in a cloud. We briefly review some of the
related work in this area. There have been several effoatsith
vestigate efficient resource sharing while consideringnéss con-
straints [36]. For example, Yahoo's capacity schedules wk#er-

ent job queues, so each job queue gets a fair share of therclust
resources. Facebook’s fairness scheduler aims at imprakinre-
sponse times of small jobs in a shared Hadoop cluster. Sémdtio

al [35] presented a resource allocation system using regind
user-assigned priorities to offer different service leviel jobs over
time. Zaharia et al. [26] developed a scheduling algorittadhed
LATE that attempts to improve the response time of short jobs
by executing duplicates of some tasks in a heterogenousrsyst
Herodotou et al. proposgtarfishthat improves MapReduce perfor-
mance by automatically tuning Hadoop configuration paranset
[33]. The techniques in Purlieus are complementary to thbsee
mentioned optimizations. Recent wolldantri, tries to minimize
outliers by making network-aware task placement, taskarésg
and protecting the output of valuable tasks [4]. It also td&s
that cross-rack traffic during the reduce phase is a cruacbf for
MapReduce performance. However, without a locality-aveia
placement scheme iMantri, there are only limited opportunities
for optimizations during task placement. Purlieus solesfun-
damental problem of optimizing data placement so as to olzai
highly local execution of the jobs during scheduling, mirgimg

the cross-rack traffic during both map and reduce phaseseés s
in evaluations, Purlieus benefits from its locality-awaatedas well

as computation placement.

A large body of work has explored the placement of applicetio

in a virtualized data center to minimize energy consumpf88j,
perform load balancing [37] or perform server consolidatjd4].
These approaches primarily focus on thie-packingaspect and
place applications (VMs) independent of the underlyinggéace-
ment. Purlieus differs from these in terms of its considerabf
both input and intermediate data locality for MapReduceceRdy,
motivated by MapReduce, there has been work on resouraeaallo
tion for data intensive application, especially in the cdaontext
[31, 18]. Gunarathne et al.[18] present a new MapReducément
for scientific applications built using Microsoft Azure cid infras-
tructure services. Tashi [31] identifies the importanceoaftion
awareness but does not propose a complete solution. Tafja [40
presents an architecture for optimized resource allooatging a
genetic algorithm. Quincy [27] is a resource allocationtegsfor
scheduling concurrent jobs on clusters, but it considetg ioput
data locality and does not optimize for locality of any imbedi-
ate data generated during job execution which is a key faotor
scaling MapReduce in large data centers. Purlieus diffeies
from these through its locality optimizations achieved ifoth in-
put and intermediate data. Also, as discussed in Sectiornith; w
out an efficient underlying data placement, even a sophistic
locality-aware compute placement may not be able to acliigle
data locality.

7. CONCLUSIONS

This paper presents Purlieus, a resource allocation systaviapRe-
duce in a cloud. We present a system architecture for the MapR
duce cloud service and describe how existing data and Vintaa
chine placement techniques lead to longer job executioagiamnd
large amounts of network traffic in the data center. We idgtata
locality as the key principle which if exploited can alleviate these
problems and develop a unique coupled data and VM placement
technique that achieves high data locality. Uniquely, ieud's pro-
posed placement techniques optimize for data localityndulnoth

map and reduce phases of the job by considering VM placement,
MapReduce job characteristics and load on the physicatdiou
frastructure at the time of data placement. Our detailetuatian
shows significant performance gains with some scenariosiso
close to 50% reduction in execution time and upto 70% reduncti

in the cross-rack network traffic.

We plan to extend our work in two directions. First, for place
ment techniques we would like to capture relationships betw
datasets, e.g. if two datasets are accessed together (dapRke
job doing gjoin of two datasets), their data placement can be more
intelligent while placing their blocks in relation to eacther. Sec-
ond, we plan to develop online techniques to handle dynaode s
narios like changing job characteristics on a dataset. &\oire
principles developed in this work will continue to applychusce-
narios may use other virtualization technologies like filsta and
VM migration.
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