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Abstract—Virtualized infrastructures have seen strong accep-
tance in data center systems and applications, but have not yet
seen adoptance for latency-sensitive codes which require I/O to
arrive predictability, or response times to be generated within
certain timeliness guarantees. Examples of such applications
include certain classes of parallel HPC codes, server systems
performing phonecall or multimedia delivery, or financial services
in electronic trading platforms, like ICE and CME.

In this paper, we argue that the use of high-performance,
VMM-bypass capable devices can help create the virtualized
infrastructures needed for the latency-sensitive applications listed
above. However, to enable consolidation, problems to be solved go
beyond efficient I/O virtualization, and include dealing with the
shared use of I/O and compute resource, in ways that minimize
or eliminate interference. Toward this end, we describe ResEx –
a resource management approach for virtualized RDMA-based
platforms which incorporates concepts from supply-demand the-
ory and congestion pricing to dynamically control the allocation
of CPU and I/O resources of guest VMs. ResEx and its mech-
anisms and abstractions allow multiple ‘pricing policies’ to be
deployed on these types of virtualized platforms, including such
which reduce interference and enhance isolation by identifying
and taxing VMs responsible for resource congestion. While the
main ideas behind ResEx are more general, the design presented
in this paper is specific for InfiniBand RDMA-based virtualized
platforms due to the use of asynchronous monitoring needed to
determine the VMs’ I/O usage, and the methods to establish the
trading rate for the underlying CPU and I/O resources. The latter
is particularly necessary since the hypervisor’s only mechanism
to control I/O usage is by making appropriate adjustments in
the VM’s CPU resources.

The experimental evaluation of our solution uses InfiniBand
platforms virtualized with the open source Xen hypervisor, and an
RDMA-based latency-sensitive benchmark, BenchEx, based on a
model of a financial trading platform. The results demonstrate
the utility of the ResEx approach in making RDMA-based
virtualized platforms more manageable and better suited for
hosting even latency-sensitive workloads. ResEx can reduce the
latency interference by as much as 30% in some cases as shown.

I. INTRODUCTION

Virtualized infrastructures have seen strong acceptance in
data center systems and applications, but have not yet seen
adoptance for HPC codes which require I/O to arrive within
predictably and consistently short durations (i.e., no ‘noise’),
in exchanges like ICE, CME, and NYSE which need trades

to complete in a certain amount of time (deadlines), also in
server systems performing phone call switching or multimedia
delivery, which require soft deadlines to be met. At the same
time, however, there is a need for virtualization in such
environments, as demonstrated by recent work in which soft
deadline capabilities are added to the Xen hypervisor in order
to support VOIP call switching server applications [11]. In
fact, there are even greater opportunities for virtualization for
exchanges, since their average machine utilization can be less
than 10% under normal load conditions, due to conservative
provisioning in order to meet peak demands and high availabil-
ity requirements. There are also opportunities with HPC codes,
for which data centers routinely report issues with under-
utilization despite intensive user of batch job schedulers, and
these opportunities will grow as leadership machines move to
the exascale, due to the difficulties many programs will have
to efficiently and concurrently use resources at that scale.

In this paper, we develop mechanisms to better enable
hosting and collocation of latency-sensitive applications, such
as those listed above, on virtualized platforms. We are specif-
ically targeting high-performance RDMA-enabled intercon-
nects, for two reasons. First, these devices have features such
as higher bandwidths (≥10Gbps), as with InfiniBand [8] and
10GigE [13] network fabrics, support for remote DMA, pro-
tocol offload, and kernel bypass, and, as a result, they provide
the low-latency high-bandwidth requirements needed by the
aforementioned types of applications. Second, the same set of
features also enables efficient near-native I/O virtualization of
these devices [18], which makes them more suitable candidates
for virtualized platforms for latency-sensitive applications.

However, to enable consolidation for latency-critical ap-
plications, problems to be solved go beyond efficient I/O
virtualization, to also include dealing with the shared use of
I/O, memory, and compute resources, in ways that minimize
or eliminate interference. Newer generation InfiniBand cards
allow controls such as setting a limit on bandwidth for different
traffic flows and giving priority to certain traffic flows over
others, thereby controlling latency for that flow. Also, what
is required is for the hypervisor scheduler to be enhanced
to make sure that it can take into consideration the latency
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Fig. 1. Distribution of latencies of a normal server versus an interfered server
with additional load.
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Fig. 2. Change in server latency for multiple servers with interfering load.

requirements of the VMs, the loads they pose on the shared
network infrastructure, and the levels of interference and noise
they cause due to their I/O access patterns. This is particularly
challenging in virtualization solutions for RDMA devices
such as InfiniBand HCAs, since due to the VMM/OS-bypass
capabilities provided by these devices, the hypervisor loses
control in monitoring and managing device-VM interactions.
Therefore, it becomes harder for the hypervisor to maintain
data rate or latency service levels to its guest VMs.

To address these issues, we develop a hypervisor-level
solution which dynamically adjusts the compute and I/O
resources made available to each VM, so as to provide better
isolation – i.e., control noise – and improve performance for
latency-critical applications, while still allowing consolidation
and improved aggregate resource usage, without requiring
worst-case-based reservations. Our approach, termed Resource
Exchange or ResEx, leverages (i) IBMon – a tool developed in
our prior work [19] that enables dynamic monitoring of the I/O
usage for virtualized InfiniBand devices, and (ii) congestion
pricing models and supply-demand microeconomic concepts
to provide more flexible and fine-grained resource allocations.

Specific contributions of our research include (1) the design
and implementation of the Resource Exchange approach, and
(2) its resource trading ‘currency’ abstraction – Resos, and
(3) mechanisms for dynamic monitoring of VMs’ resource
usage and the interference, or the ‘congestion’ they cause, so
as to be able to (4) support range of resource pricing policies
derived from microeconomic theory on supply-demand and
congestion pricing. (5) Using BenchEx – a latency-sensitive
benchmark modeled after a financial trading exchange, (6)
we implement and experimentally evaluate two such policies,
and demonstrate the feasibility of the ResEx approach to
make RDMA-based virtualized platforms more manageable
and better suited for hosting even latency-sensitive workloads.

The remainder of the paper is organized as follows. Sec-
tion II uses experimental data to show the effect of collocation
on latency-sensitive applications. In Section III we give a brief
description of the different software and technologies we use,
and the economics pricing theory we rely on. Section IV
describes the latency-sensitive benchmark that we have de-

veloped and use throughout the paper. In Sections V and VI
we describe in detail the design goals and implementation for
ResEx. Section VII provides experimental results demonstrat-
ing the benefits of ResEx. Finally, we give a brief overview
of related work in VIII and conclude at the end.

II. MOTIVATION

While high-end fabrics, such as the InfiniBand fabric con-
sidered in our research, exhibit high bandwidth and low
latency, their shared usage for latency-sensitive workloads has
been limited. When running a latency-sensitive workloads on
shared network infrastructure it is expected to observe some
level of perturbation in the achieve latency. Under some con-
ditions, the variability may be within acceptable levels, and/or
may be exhibited only by some of the collocated applications,
and not by the most latency-sensitive ones. In other cases,
however, this variation can exceed desired limits, especially
when the degree of interference with other applications is high.

Our goal in this section is to demonstrate that, in spite of
the superior performance properties of high-end fabrics like
InfiniBand, their shared usage by latency-sensitive applications
may result in prohibitive levels of variability. For this, we
explain the changes experienced by a low latency workload
when it is being run with (Interfered) and without (Normal)
another interfering workload. We use different configurations
(i.e., different data sizes) of the BenchEx latency-sensitive
benchmark developed by our group (explained in Section IV)
as both a low latency workload and second as an interfer-
ence generator, each run in a separate VM. Both benchmark
instances, i.e., both VMs, are assigned to separate CPUs,
therefore there is no response-time variability due to CPU
scheduling.

Figure 1 shows the frequency distribution of the low latency
workload when it is run with and without the interference load.
In the Normal case the latencies are highly stable at around
209 µs. But when it is run alongside the interfering load the
latencies are distributed across the interval. This shows that not
only the average increases but the variation/jitter as well even
for RDMA-based interconnects. Note that for certain requests



the service time is smaller than Normal server possibly due to
no interference occuring for those requests.

Figure 2 shows the change in server latency as server and
client count is increased, as well as when there is interfering
load added to the system. There are three parts to the server
latency - Compute Time (CTime), I/O Wait Time (WTime),
Polling Time (PTime). Each of them is shown with the
variation in error bars. Here, the number of servers refers to
separate instances of the low-latency workload configuration
of the benchmark. For each group of servers, we report average
latency when these are the only collocated applications on the
node, vs. when also run with a VM running an interference
generator. Again, all VMs are allocated to their own CPUs.
Since CTime is independent of I/O interference it remains
fairly constant. From the figure we observe that both WTime
and PTime start increasing with load since now a RDMA
operation from the server takes more time to process due
to the interfering load at the device level. We also observe,
however, that when collocating only the VMs running the
original application, the interference effects, and any latency
degradation, are much less noticeable, demonstrating that it
is feasible to allow latency-sensitive workloads to share the
virtualized platform.

III. BACKGROUND

ResEx relies on certain properties of the underlying fabric
– InfiniBand – and hypervisor – Xen, in our case. These, as
well as the ideas from economics and congestion pricing used
in ResEx, are described next.

InfiniBand Memory Management. The communication model
used in IB is based on the concept of queue pairs (Send
and Receive Queues). A request to send/receive data is for-
matted into a Work Request (WR) which is posted to the
queues. There are also Completion Queues (CQs) which store
Completion Queue Entries (CQEs) containing information for
completed requests. Whenever a descriptor is posted to the
queue pair (QP), certain bits called ‘Doorbells’ are set in User
Access Region (UARs) buffers. The UARs are 4KB I/O pages
mapped into the process’ address space. When a request is
issued, the doorbell is “rung” in the process’ UAR. The HCA
will then pick up these requests and process them.

The HCA maintains a table called the Translation and
Protection Table (TPT). This table contains the mappings from
physical to virtual addresses of the buffers and queues de-
scribed above. For InfiniBand, the buffers need to be registered
with the HCA, and these registry entries are stored in the TPT.
Also, these buffers must be kept pinned in memory during data
transfer so that the HCA can DMA the data directly in and
out of host memory. Each entry in the TPT is indexed with a
key that is generated during the registration process.

Virtualized InfiniBand Driver Model. In Xen, device virtualiza-
tion typically follows the ‘split device driver’ model [7]. For
InfiniBand, the split-driver model is used slightly differently.
The control path operations from the guest VM, like memory
registration and queue pair creation, must all go through the

backend driver in dom0. Fast path operations like polling the
CQ and QP accesses are optimized using a VMM-bypass [12]
technique. The data path is highly optimized since the HCA
can write DMA data directly to the target buffer. As a result,
IB platforms can be virtualized with negligible impact on the
attainable latency and bandwidth.
Virtual Memory Introspection. With the Xen VMM, pages of
one VM can be read by another VM simply by mapping
the page into the target VM memory. This concept was first
introduced in [4]. In Xen this is done through the XenControl
library. Using the function xc map foreign range, the target
memory is mapped into the current application’s virtual mem-
ory. We use this mechanism to map the physical pages which
correspond to the IB buffers into the monitoring utility.
Xen Library Interfaces and Scheduler. We use the XenStat
library to interact with the Xen hypervisor. This library allows
us to get and set the CPU consumed by the VM. ResEx
uses the information from IBMon (described below) to make
an assessment of the amount of CPU to be provided to the
VM depending on the amount of congestion detected. The
amount of CPU to be provided is called a ‘CPU cap’. During
scheduling, the Xen hypervisor allows the VM to run only
for a percentage of its time slice (10ms), depending on the
value of the ‘CPU cap’. Also, in general we assign a whole
VCPU to a VM so as to minimize the effects of shared CPU
resources as described in [20].
InfiniBand Monitoring - IBMon. We have developed a tool
called IBMon [19] which uses the memory introspection
technique described above to map VM IB memory (with some
assistance from the dom0 device driver) to the IBMon applica-
tion running inside dom0. IBMon then periodically monitors
this memory region to extrapolate the different characteristics
of the IB application running inside the VM. This is similar to
any out-of-band monitoring for networks. The characteristics
that IBMon detects are number of completed requests by HCA
for an application, size of the buffer used by the application,
QP number used by the application. Since this memory is
updated by the HCA continuously we can also track the rate of
change of the entries to know how many entries were written
in a specific time interval.
Economics and Congestion Pricing. Many of ideas that we
incorporate into ResEx have been motivated by principles of
microeconomics like supply and demand [6]. By supply we
mean the set of physical resources that are available to each
VM to use in a given time period or ‘epoch’. The demand is the
amount of resources that each VM consumes in that ‘epoch’.
Microeconomics theory states that when the demand for a
commodity goes up the price for that commodity increases
and the converse is true as well. We use this idea as the
main motivator for reducing congestion on shared resources
by VMs.

This idea is more expressly presented in another concept of
economics derived from supply and demand called ‘congestion
pricing’ [22]. By increasing the price of a resource we aim to
reduce the demand for it thereby reducing the ‘congestion’ for



that resource. Congestion arises since the demand or ‘resource
usage’ exceeds the supply or ‘resource availability’. Changing
the price for this resource corresponds to charging the heavy
users for causing the congestion. We describe this in more
detail in Section V-C.

IV. BENCHEX - RDMA LATENCY-SENSITIVE
BENCHMARK

In order to evaluate the behavior of latency-sensitive work-
loads on virtualized RDMA-enabled fabrics, we develop an
RDMA-based latency evaluation benchmark, which allows
us to easily parameterize and experiment with this class of
applications. The benchmark, termed BenchEx, is modeled
after a commercial trading engine used by one of our in-
dustry collaborators (ICE – Intercontinental Exchange) [21].
The benchmark uses a server-client model similar to trading
systems where multiple clients post transactions and request
feeds from a trading server hosted by the Exchange, and it
includes traces which model the I/O and processing workloads
present in an exchange like ICE [21] today. Furthermore,
the benchmark further allows us to easily configure it and
change its I/O behavior – e.g., rates, sizes, etc. – or per-
request processing times, thereby simulating applications with
different performance and resource usage profiles.

In BenchEx, our clients send multiple transaction requests
to the server using RDMA, each of which is time stamped
by the client. The server maintains these requests in a queue
and processes them in a first come first serve basis. The FCFS
criterion is important to exchanges since each transaction may
change the outcome of the next one and we implement the
same criteria for our benchmark.

In addition to trace data, since we do not have the pro-
prietary data and processing codes used in real exchanges,
our server uses a financial processing algorithm library [1]
for request processing to perform operations such as Black
Scholes Options Pricing. The clients wait for the server results,
timestamp the reply, and calculate the latency of the request
by taking a difference between the two timestamps.

BenchEx also provides an online monitoring interface to
an external agent, running inside each VM, through which it
can continuously report the observed server-side latencies. The
agent may then forward this information to the main ResEx
module running in Dom0, as described in Section VI.

V. DESIGN PRINCIPLES OF RESEX

In order to provide a better understanding of our implemen-
tation of ResEx, we next describe the methodologies leveraged
in its design. First, we describe how we can track InfiniBand
I/O usage of VMs and therefore the I/O interference between
VMs. Second, we introduce a currency called Resos to charge
VMs based on their usage of IB and CPU resources. We
describe how we allocate and price the Resos for a resource.
Finally, we outline the various goals of our resource pricing
schemes and discuss alternatives on charging VMs.

A. Tracking I/O Usage and Interference for VMM-Bypass
InfiniBand Devices

Since the VMs can directly talk to the devices it is almost
impossible for the hypervisor to estimate I/O usage for such
devices. We use our IBMon tool [20] to track the amount of
IB resources that a VM is consuming. By using IBMon we
can estimate the amount of data that a VM sent in a given
interval of time. This amount of data corresponds to a number
of packets that the HCA has to send on behalf of the VM. Each
packet size is equal and is referred to as a MTU (Maximum
Transmission Unit). By knowing the size of the MTU we can
infer the number of packets that a VM sent. Therefore, we
track the ‘number of MTUs sent’ (MTUSent) by a VM as a
metric for I/O usage.

Each application within a VM uses a buffer size which
may be different for each application. We call the ratio of an
application’s buffer size to another application’s as the ‘buffer
ratio’ (BR). We also use this metric for estimating the amount
of I/O performed by one VM compared to another.

We define ‘interference’ as the positive change in any I/O
latency or a negative change in device usage perceived by the
VM or the application within the VM. First, a direct way to
track interference is to get feedback from the application in
terms of the latency it perceives from its requests. Second,
an indirect way, would be to infer from the IB memory
how many requests were completed by the HCA on the
VM’s behalf in a given time interval and then decide the
percentage of bandwidth used by a VM. By knowing the
percentage of bandwidth consumed we can estimate its impact
on other VMs. Once we can estimate the impact of one VM on
another’s latency we aim to control it using CPU scheduling
or capping the interfering VM’s CPU. We discuss those ideas
next.

B. Relationship between IB I/O Latency, Buffer Ratio and
CPU Cap

In order to determine how to best control I/O latency
interference across VMs, we perform several experiments to
establish the dependencies between various parameters of the
VM’s I/O and CPU usage.

Figure 3 shows the change in I/O latency for a VM when
another interfering VM is running. We run our BenchEx
application within each VM. Each instance has a different
application buffer size. We report latencies for the server side
of the benchmark. The number in brackets corresponds to
buffer size of the interfering VM. The number before the
brackets is the ‘buffer ratio’ of the ‘interfering VM’ with
respect to the ‘reporting VM’. The buffer size of the reporting
VM is set to 64KB. We compare latencies achieved by the
reporting VM when the CPU cap of the interfering VM is set
according to the buffer ratio. For example, the CPU cap for
a 256KB VM is set to 100/4 = 25%. Since the latencies
experienced by the reporting VM do not change between
all the instances we can say that the CPU Cap has a direct
relationship with the buffer ratio and I/O latencies experienced
by a VM.
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In Figure 4 we set the buffer size of the interfering VM to
2MB and compare the latencies of the reporting VM when the
CPU cap for the interfering VM is set accordingly. We see that
by changing the CPU cap steadily the latencies experienced by
the reporting VM decrease and when the CPU cap is equivalent
to the buffer ratio-based value the latency experienced is equal
to the base latency.

Therefore, by knowing the buffer sizes of the VMs and
I/O latency experienced by the VM we can identify an
interfering VM and assign a particular CPU cap in order to
remove congestion. We use this as an indicator for our ResEx
algorithm as described in Section VI in order to provide a
consistent CPU allocation for the VMs. We base the consistent
CPU allocation by unifying the resources used by a VM under
a single entity which we describe next.

C. I/O Economics and Pricing

We introduce the concept of ‘Resource Units’ or Resos us-
ing which VMs ‘buy’ resources to use during their execution.
Here, as ‘buy’ we refer to the ResEx ability to deduct Resos
from the VM, based on its resource usage. Each Reso enables
the VM to buy a certain amount of CPU and IB MTUs;
sending more data will result in deduction of more Resos.
The total number of Resos in a system is determined by the
entire set of available physical resources in the system – the
‘supply’. This set, in our case, comprises of the InfiniBand
bandwidth link and CPU Cycles. We first determine the
aggregate available resources, i.e., the corresponding aggregate
Resos, and then distribute this equally among all collocated
VMs. The Resos can also be distributed unequally, e.g., based
on priority of the VMs. VMs can be charged for their resource
usage differently, depending on the level of interference they
cause, and based on the goals of the pricing algorithm (see the
following section). Summarizingly, Resos is a mechanism to
abstract different types of resources and their availability for
each VM.

Resos are deducted at every interval for a VM based on its
I/O and CPU usage, as described in Section V-A. A collection

of intervals is called an ‘epoch’ and after every epoch we
replenish the number of Resos of a VM to the original
allocated value. Any Resos left over from the earlier epoch
are discarded. Deduction of Resos depends on the objectives
of a pricing system. These objectives and pricing schemes are
discussed in the section below.

D. Goals of Pricing

In general any pricing scheme should be able to regulate
the supply and demand of the commodity. Therefore, when
the price for a commodity is increased the demand for that
commodity should fall. We use the same notion of pricing in
ResEx when charging VMs for resource usage. In our current
work we consider 2 goals for our pricing strategies, outlined
below.

1) Maximize Resource Utilization: The pricing scheme
should be able to allow VMs to purchase resources whenever
they can and have enough Resos’ to do so. Here the scheme
will have fixed prices for a unit resource and is identical
for all VMs. This allows each VM to use its resources to
the maximum, and at a rate depending on the application(s)
running within the VM. Once the VM does run out of Resos,
its resource usage should be kept either to a minimum or
completely blocked until the next epoch when its Resos may
be regenerated. In this scheme, resource prices are set at the
start of each epoch uniformly for all VMs, based only on the
aggregate availability of and demand for resources.

2) Lower Latency Variation: Another goal of a pricing
scheme is to allow each VM to pay for resources differently.
The pricing differentiation starts when a VM starts using more
of one resource causing other VMs to suffer in their perfor-
mance – i.e., causes interference. The interference causes an
increase in latency of the applications, which in turn may miss
their SLA for delivery/receipt of data. Thus, interfering VMs
will need to be charged more in order to reduce their demand
for the resource and reduce congestion.

These and other pricing strategies require support for, dy-
namic monitoring of resource availability and usage (CPU and



I/O resources in our case), as well as for determining the
‘interference’ or ‘congestion’ caused by one VM, so that it
can be charged for its resources in a differentiated manner,
based on some priority notion or other policies.

VI. RESOURCEEXCHANGE IMPLEMENTATION

In this section we describe in detail the implementation of
ResourceExchange or ResEx approach to lower I/O congestion
for VMs using InfiniBand devices. First, we define how the
Resos are distributed between all the VMs and the initial
charging policy. Next, we describe 2 pricing policies that we
developed based on the set of goals outlined at end of the
previous section.

A. Charging VM Resource Usage in Resos

Since we are dealing with a multi-resource setup, Resos
simplifies the way to charge VMs on resource usage. We
first break down the CPU and I/O resources into indivisible
quantities which can then be charged ‘by the Reso’. ResEx
performs allocation of Resos at every epoch, which in our case
is 1 second. Resos for the resources consumed are deducted
at every interval of 1 millisecond.

1) CPU Charging: ResEx converts the CPU cycles based
on the frequency to a set of Resos for each CPU depending on
the epoch/interval time. It then associates a VM with a CPU.
We currently allocate an entire PCPU to each VM, thus the
VM can use the entire CPU and the set of Resos associated
with it. It charges every percentage of CPU the VM consumes
in the interval. This percentage corresponds only to the CPU
cycle count for the interval. Initially, the rate of charge is
1 Reso per CPU percent. Therefore, the VM is initially
allocated PercentPerInterval ∗ NumberOfIntervals =
100 ∗ 1000 = 100, 000 Resos for CPU consumption. Here
the CPU percent is the indivisible quantity used for charging.

2) I/O Charging: ResEx allocates Resos based on the
capacity of the InfiniBand. The physical capacity of our
IB Link is 8Gbps (due to the 8b/10b IB encoding) i.e. 1
Gigabyte per second. From Section V-A we use MTUs as the
smallest chargeable quanta. We assume a default MTU size of
1024bytes(1KB) used by applications to send data. Therefore,
the IB Link is capable of sending LinkBW/MTUSize =
1 ∗ 1024 ∗ 1024 ∗ 1024/1024 = 1048576 MTUs in one second
or in one epoch. Initially, we charge 1 Reso per MTU sent.
Here the entire Resos are shared between the VMs since the
link is shared between them. ResEx can adjust this sharing to
be equal between the VMs or unequal based on priority or
weight of the VM.

We have now broken down each physical resource into
their chargeable units. Each of these units can be charged
using a single currency called Reso. Next, we describe how
ResEx implements different charging policies based on the
goals described in Section V-D

B. FreeMarket & Maximize Resource Utilization

In this scheme, every VM is charged based on the amount
of I/O and CPU resources consumed. The rate of charging

remains same for all VMs. For every interval and monitored
VM, ResEx detects the number of MTUs sent by the VM
(using IBMon) and the CPU cycles consumed (using the
XenStat library). This is converted to a number of Resos to
be deducted from the VM’s allocation. Now, this value is
deducted from the VM’s Reso allocation. Thus, using this
scheme every VM can use their maximum set of resources
allocated in the epoch and this scheme achieves the maximum
resource utilization pricing goal. We call this pricing scheme
FreeMarket to denote that the VMs can freely purchase their
resources.

However, when the VM’s remaining Resos is below a
certain limit (10% in our case), and more than 10% of the
epoch is remaining, we start decreasing the CPU for that VM
gradually. The CPU is decremented by 10% from its earlier
allocated value. We do this to ensure that we do not have
to abruptly stop the CPU for the VM when it runs out of
Resos. This simply ensures a gradual decrease in performance
experienced by the VM rather than a sudden stoppage. There
are multiple ways in order to reduce the CPU when the VM
runs out of Resos but those are beyond the scope of this paper.

Algorithm 1 shows the pseudo-code for the pricing scheme.
The charging calls use the same rate of 1 Reso per unit
resource for converting the resources used to Resos. The CPU
cap returned depends on the number of Resos left of the VM
allocation and is changed as described above.

Algorithm 1 FreeMarket Algorithm

1: INITIALIZERESOS(FreeMarket)
2: while true do
3: for all MonitoredVMs do
4: IBMTUs← GETMTUS(ThisVMId) . Use

IBMon
5: CPUPct← GETCPUPERCENT(ThisVMId)
6: IBResos← CONVERTTOIBRESOS(IBMTUs)
7: CPUResos ← CONVERTTOCPURE-

SOS(CPUPct)
8: CPUCap ← GETCPUCAP(ThisVMId, IBResos,

CPUResos)
9: DECREMENTRESOS(ThisVMid, IBResos,

CPUResos)
10: SETVMCAP(ThisVMId, CPUCap)
11: end for
12: end while

C. I/O Shares & Lower Latency Variation

For meeting the second goal of pricing resources we now in-
corporate any latency feedback from the application within the
VM in charging Resos. We base this charge on the ‘Congestion
Pricing’ model where the VM(s) causing the congestion are
charged more. Algorithm 2 describes the pseudo-code of the
pricing scheme, where we now adjust the charging rate for
the interfering VM when we detect that a VM is experiencing
increased latencies. The line [6] in Algorithm 2 computes the



I/O interference percentage for the current VM. It looks at the
latencies reported by the VM and computes the average and
standard deviation of the values. The percentage increase in
either of these is then returned to the scheme. If the percentage
increase is greater than a certain value (i.e., SLA guarantee)
then the interfering VM is found and its charging rate is
increased based on the following formula:

Increase In Rate(r′) = IOShare ∗ IntfPercent

where IOShare is define as:

IOShare =
MTUsSentByInterferingVM

TotalMTUsSentByVMs

Next, we compute the CPU cap to be computed for the
current VM, decrement the Resos used and set the VM cap.
When the interfering VM is being monitored then it will be
charged with the new rate as computed in the reported VM
in the last iteration of the loop. The CPU cap now for this
interfering VM will be set as

New CPU Cap =
100 ∗ PreviousRate
PreviousRate+ r′

Algorithm 2 I/O Shares Algorithm

1: INITIALIZERESOS(IOShares)
2: while true do
3: for all MonitoredVMs do
4: IBMTUs← GETMTUS(ThisVMId) . Use

IBMon
5: CPUPct← GETCPUPERCENT(ThisVMId)
6: IOIntfPct← GETIOINTF(ThisVMId)
7: IntfVMId← GETIOINTFVMID(ThisVMId)
8: IOShare ← GETIOSHARE(ThisVMId, Int-

fVMId)
9: ChargeRate ← CHANGEIBRATE(IntfVMId,

IOIntfPct)
10: IBResos ← CONVERTTOIBRESOS(IntfVMId,

IBMTUs, ChargeRate)
11: CPUResos ← CONVERTTOCPURE-

SOS(IntfVMId, CPUPct, ChargeRate)
12: CPUCap ← GETCPUCAP(ThisVMId, IBResos,

CPUResos)
13: DECREMENTRESOS(ThisVMid, IBResos,

CPUResos)
14: SETVMCAP(ThisVMId, CPUCap)
15: end for
16: end while

VII. EXPERIMENTAL EVALUATION

The testbed consists of two Dell PowerEdge 1950 servers.
One of the servers has dual-socket quad-core Xeon 1.86 Ghz
processors, while the other one has dual-socket dual-core
Xeon 2.66 Ghz processors. Both servers have 4GB of RAM.
Mellanox MT25208 HCA (memfull cards) cards are used
in all machines, connected via a Xsigo VP780 10Gbps I/O

Director Switch. We are using a Xen 3.3 unstable distribution
on all servers. Also, all servers are running the same para-
virtualized Linux kernel running in dom0. We are using para-
virtualized InfiniBand driver modules which work under the
Linux 2.6.18.8 dom0 and domU kernels. The guest OS’ are
configured with 512 MB of RAM and have the OFED-1.2
distribution installed. This distribution has been modified to
run inside the guest VM. We are also running the OFED-1.2
distribution in the dom0s. Each guest domain is assigned a
VCPU each in order to minimize the effects of shared CPUs.

We use certain terminologies in the experiments below
which we explain first. We refer to an application running
within a VM by its configured buffer size. For example, 64KB
VM means that the BenchEx application uses 64KB as its
buffer size. Interfering VM is a VM that has a buffer size
greater than 64KB. The base case refers to a configuration
where only one instance of the benchmark is run without
an interfering load. In most of the experiments we use 2
VMs each on 2 separate physical machines unless otherwise
mentioned. One of the VMs is the reporting VM and the other
is the interfering VM. The latencies are always mentioned for
the reporting VM.

To demonstrate the utility and effectiveness of ResEx we
use different combinations and configurations of the BenchEx
Latency benchmark. The results are classified by the goals and
types of the pricing system developed.

A. Maximization of Resource Utilization

Here we compare the application performance of the
FreeMarket algorithm with the base case and the case with
interfering load. Figure 5 shows the change in the application
latency when the FreeMarket algorithm is used. We can see
that the latency of the 64KB VM (reporting VM) is lower
when FreeMarket allocation is performed than the interfering
case. This is due to the fact that the CPU cap is lowered for
the 2MB VM periodically whenever its Reso count decreases
below a minimum. This achieves some more control over the
requests issued by the 2MB VM and thus reduces latencies
for the 64KB VM.

Figure 6 shows the deduction in Reso when the FreeMarket
algorithm is used. The algorithm keeps deducting Resos until a
minimum level (10%) is reached after which it starts reducing
the CPU Cap. The effect of this is seen by the 2MB VM. It
also ‘maximizes resource usage’ by always allowing a VM
access to the resource if it has enough Resos.

B. Lower Latency Variation

In Figure 7 we compare the application performance when
the IOShares algorithm is used. We see that the algorithm is
able to achieve near base case latencies for the application
by taking into consideration the interference percentage of
the 64KB VM and thus ‘charging’ the 2MB VM more for
resources used. The CPU Cap is changed dynamically to
a lower value for the 2MB VM by detecting the amount
of congestion occurring. Here each VM reports its latencies
to ResEx and on an average uses 10µs for reporting. This
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value for reporting is included with the latency to highlight
the asynchronous nature of IB communication which may be
useful in hiding latencies.

C. No Interference Handling

We also run two more cases where the interference between
the 2 VMs is either negligible or the same as the reporting VM
itself. Figure 8 shows the impact of those cases when either
of the Reso management algorithms are used. In the figure,
FM refers to the FreeMarket algorithm and IOS refers to the
IOShares algorithm. The two cases chosen here are, one, when
along with the Reporting 64KB VM there is another 64KB VM
running BenchEx and two, the 2MB VM is issuing requests at
10 requests per epoch (a much slower rate than the interfering
VM used in prior experiments).

Figure 8 compares the average latency experienced by the
Reporting 64KB VM in these cases with the Base 64KB
latency. We see that the values are almost equal to the Base
values. This highlights two aspects of ResEx. One, ResEx can
not only detect interference for a VM but also back off when
there isn’t any interference (in case of 64KB-2MB-nointf).
Two, ResEx adapts to the I/O performed by the VMs to not
penalize VMs if they are doing the same amount of I/O (in
case of 64KB-64KB).

D. Response to Buffer Size

Applications may be configured to use different buffer sizes
and therefore ResEx should be able to adapt the different
resource management strategies based on that value. Figure 9
shows the latency of the 64KB VM when run against interfer-
ence VM configured with different buffer sizes. We see that
IOShares outperforms FreeMarket by maintaining the average
latency very close to the base value.

FreeMarket does not limit the latency since it does not
have access to that information. By allowing VMs to ‘spend’
their Resos as they wish FreeMarket does not eliminate
congestion but makes sure the existing resources are used
completely. This shows the ‘work-conserving’ capability of the
FreeMarket algorithm. IOShares on the other hand, maintains
the running average latency of the VMs and charges VMs

 100

 150

 200

 250

 300

 350

 400

 0  20000  40000  60000  80000  100000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

A
ve

ra
ge

 L
at

en
cy

 (
µs

)

C
P

U
 C

ap

Iteration #

SLA Performance of IOShares

Base Latency 64KB VM
Intf Latency 64KB VM

IOShare Latency 64KB VM
IOShares CPU Cap 2MB VM

Fig. 7. Comparison of application latency when using IOShares algorithm.

 0

 50

 100

 150

 200

 250

Base-64KB

FM-64KB-64KB

FM-64KB-2MB-NoIntf

IOS-64KB-64KB

IOS-64KB-2MB-NoIntf

A
ve

ra
ge

 L
at

en
cy

 (
µs

)

Configuration

Comparison of Latencies acheived by Freemarket, IOShares

Total I/O Latency

Fig. 8. Performance of FreeMarket and IOShares methods on non-
interference cases.

causing congestion more. This leads to VMs resources being
reduced slowly and as a result the congestion drops. Thus,
IOShares is more conservative and aggressive than FreeMarket
as a resource management scheme.
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VIII. RELATED WORK

In this section we briefly discuss existing research which is
related to this paper.

Resource Management. There have been other recent ef-
forts focused on resource management within virtualized envi-
ronments for resources like power [15], storage [5], combined
resource approaches [17] and InfiniBand resources [9] as well.
Key difference with our work is that we are explicitly looking
at the ability to support latency-sensitive applications in such
environments.

Economics and Congestion Pricing. Finally, we are not
the first ones to use congestion pricing for resource manage-
ment. There has been earlier work in computer networks for
congestion avoidance [10], energy management [14] that also
used this model to reduce congestion. Also, it is used in QoS
management [16] for providing better CPU scheduling for
tasks. Currencies have also been used for providing energy
management as shown in [23], [24]. In addition, market-based
economic strategies are also used for resource allocation in
large datacenters. This is very prevalent in cloud computing
infrastructures since these models make it easier to allocate
the physical infrastructure [2], [3].

IX. CONCLUSIONS

In this paper, we describe ResEx – a resource management
approach which improves the ability of virtualized RDMA-
based platforms to be shared by collocated latency-sensitive
applications. ResEx uses the Resos resource unit abstraction
and mechanisms based on supply-demand economic concepts
and congestion pricing to dynamically manage VMs usage
of I/O and CPU resources. By using a common “currency”
ResEx allows us to establish conversion rates between the
two types of resources, which is particularly necessary on
RDMA-based platforms which support VMM-bypass, where
the hypervisor’s only mechanism for dynamically managing
the VMs’ I/O usage is through appropriate changes in their
CPU allocations.

ResEx is implemented for InfiniBand platforms virtualized
with the Xen hypervisor, and evaluated using an RDMA-based
latency-sensitive benchmark BenchEx, modeled after a finan-
cial electronic exchange, and for two different resource pricing
policies. The results demonstrate that virtualized RDMA-based
platforms can be suitable for shared use by latency-sensitive
applications. Furthermore, however, the mechanisms and ab-
stractions introduced by ResEx are important for achieving
better performance and management of SLA guarantees and
for controlling unwanted latency variability.
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