
 

Abstract—This  paper  presents  a  method  for  filtering  line 
noise using an adaptive noise canceling (ANC) technique. This 
method  effectively  eliminates  the  sinusoidal  contamination 
while achieving a narrower bandwidth than typical notch filters 
and  without  relying  on  the  availability  of  a  noise  reference 
signal as ANC methods normally do. A sinusoidal reference is 
instead digitally  generated and the filter efficiently tracks the 
power line frequency, which drifts around a known value. The 
filter's learning rate is also automatically adjusted to achieve 
faster and more accurate convergence and to control the filter's 
bandwidth.  In this  paper the focus of  the discussion and the 
data will  be electrocorticographic (ECoG) neural signals,  but 
the presented technique is applicable to other recordings.

Index Terms—adaptive filter, line noise, frequency tracking, 
variable bandwidth, neural signals, notch filter

I. INTRODUCTION

ontamination caused by line noise at 60 Hz or 50 Hz 
often presents a significant problem in the analysis 

of  signal  recordings.  This  is  especially  true  in 
physiological  recordings where the signal  to  noise  ratio 
(SNR) can be low. Elimination of this contamination has 
been  an  active  area  of  research,  but  many  methods 
commonly implemented still  fail to effectively eliminate 
the interference while minimizing distortion of the signal.

C

In neural signals for example, it is common practice to use 
a single fixed notch filter centered around the average power 
line frequency. The main problem with this approach is that 
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power  line  frequency varies  around  its  average  frequency 
[1], so the notch must be wide enough to account for this 
variation. Increasing the notch width increases the possibility 
of  also  removing  interesting  physiological  data.  Other 
common approaches  include  low pass  filtering  below the 
power  line  frequency or  doing  a  spectral  analysis  of  the 
signal and ignoring those frequencies near the contamination. 
These techniques could also discard useful data.

The main objective of line noise removal is to eliminate 
the  interference  with  minimum  distortion  or  loss  of  the 
signal. This is best achieved by implementing a filter that is 
able to track the power line's slowly drifting frequency as in 
[2] and maintain a minimum filter bandwidth as in [3], [4]. 
In [5], an adaptive noise canceling (ANC) infinite impulse 
response (IIR) notch filter with varying poles and zeros was 
developed to accomplish both tasks, but this required manual 
adjustment  of  parameters  and  a  reference  input  that  was 
correlated with the line noise.

In  some experimental  setups,  available  hardware  might 
make it  difficult  to  simultaneously record  a  reference  for 
power  line  interference.  In  this  case  a  reference  must  be 
artificially generated and it becomes difficult for the ANC 
filter to outperform a standard notch filter in terms of noise 
rejection  and  signal  retention.  In  order  to  maximize  the 
potential  of  using  an  ANC  filter  for  line  noise  removal 
without a recorded reference it is vital to be able to track the 
line noise frequency so that the generated reference can be as 
accurate  as  possible.  It  is  also  useful  to  have an adaptive 
learning rate to optimize the tradeoffs between convergence 
speed, accuracy, and tracking [4].

This paper provides methods for both frequency tracking 
and a variable bandwidth in an ANC filter. The methods add 
minimal complexity to the standard ANC filter configuration 
while proving highly effective in eliminating line noise and 
avoiding signal distortion.

II.BACKGROUND

Adaptive  filters  have  time-varying  weights  that  adjust 
continually during adaptation to minimize the mean-square 
value of some error signal. In most cases the filter's goal is to 
converge  to  a  state  in  which  it  imitates  some  unknown 
system. The ANC filter  is  a  form of adaptive filter  based 
largely on work done by Widrow [6] and has proven to be an 
effective  means of  removing  noise  that  is  correlated  with 
some known reference  signal  [7].  In  an  ANC scheme the 
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reference  is  filtered  in  order  to  minimize  the  difference 
between the filtered reference and the data. A typical ANC 
filter is given in Figure 1. 

Here, s is the signal of interest before contamination and n 
is the additive noise, which is power line interference in this 
case.  d  is  the  actual  recorded  signal,  x  is  the  correlated 
reference signal for n, and e is both the error signal that feeds 
back to the adaptive filter and the output signal that should 
closely match s. The filter coefficients W will adapt so that y 
converges towards n. The sample index is denoted by k. One 
of  the  simplest  and  most  commonly  used  convergence 
methods for adaptive filters is the least-mean-square (LMS) 
algorithm [8].  The LMS filter  update equation is given in 
(1). The bound on μ, which is a step-size parameter, has been 
derived in [9] to ensure stability of the filter, where L is the 
filter length and σx

2 is the signal power of x.

(1)

For line noise removal, x will be a sinusoid of the form in 
(2), where T is the sampling interval. In this special case, the 
ANC filter actually implements a 2nd order IIR notch filter 
centered at fx, the frequency of the reference sinusoid. In [10] 
it was shown that the transfer function for an ANC filter in 
the case of a pure sinusoidal reference is given by (3). This is 
equivalent  to  a  notch  filter  centered  at  fx with bandwidth 
approximated by (4).

(2)

(3)

(4)

When given a sinusoidal reference, it is then known that 
the ANC technique with the LMS algorithm converges to a 
notch  filter  centered  at  the  reference's  frequency  with  a 
bandwidth that depends on μ. If the reference is an accurate 
model for the noise, then the ANC filter will also be able to 
easily  track  drifts  in  the  frequency  of  the  sinusoidal 
interference.  This  provides  a  far  superior  solution for  line 
noise removal than a fixed notch filter. The challenge then 
becomes maintaining this performance in the absence of an 
accurate reference.

III. METHODS

A. Signal Generation
An electrocorticographic (ECoG) signal simulator built in 

to Craniux, a software package for brain computer interface 
research, was used to generate eight channels of signals at 
600 Hz [11]. These signals were free of line noise and were 
generated as pink noise with a 1/f power falloff to simulate 
an ECoG baseline signal [12] . Frequency band modulation 
was  avoided,  as  risking  different  levels  of  modulation 
between experiments could give inaccurate analysis results. 
Higher  modulation near  the  line noise  would increase  the 
relative importance of retaining the signal versus removing 
the noise. For analyzing the results of line noise removal, the 
general shape of the signal's spectrum is most important and 
this is maintained across experiments.

Simulated line noise n was added to s using (5), where i is 
the harmonic number and  fn is  the fundamental  line noise 
frequency. Ai was calculated to create a specified signal to 
noise ratio (SNR) between s and the 1st line noise harmonic, 
as  shown  in  (6).  Ps is  the  average  power  of  s,  which 
converges to a constant value. So as would be expected, the 
amplitude of the line noise did not vary significantly.

(5)

(6)

The  line  noise  fundamental  frequency,  fn,  was  centered 
around 60  Hz and varied  according to  the  Gauss-Markov 
process  in (7)  [4].  η(Δk) is a  random sample from a zero-
mean  Gaussian  distribution  with  variance  ση

2.  For  further 
analysis, fn was also controlled deterministically at times.

(7)

B. Line Noise Removal
Since it has been shown that an ANC filter is capable of 

line noise removal if given an accurate reference signal for 
the  sinusoidal  interference,  the  difficulty  lies  in 
implementing  an  ANC scheme that  does  not  rely  on  the 
reference signal. This was accomplished by taking advantage 
of the inherent structure of the ANC filter and making a few 
small changes to the LMS algorithm presented in Section II.

First, the normalized u given below in (8) will be used in 
place of μ. This is sometimes referred to as normalized LMS 
(NLMS). Any further reference to the learning rate will be 
referring to u. In addition to making the learning rate bounds 
easier  to  remember,  the  filter  bandwidth  given  in  (4)  is 
further  simplified  by  substituting  in  u.  This  results  in  a 
bandwidth given by (9), since for a sinusoid σ2 is known to 
be C2/2. The dependence on L and C has been removed.

(8)

W k +1=W k+2μe k X k , 0<μ< 1
Lσ x

2

BW= LμC 2

2πT
Hz

x k=C cos(2π f x k T+ϕ)
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M
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Figure 1: System design for an adaptive noise canceling (ANC) filter. d is 
the  recorded  signal  that  consists  of  the  true  signal  s plus  noise  n.  A 
reference correlated with  n is given by x, and the filter coefficients  W are 
adapted  by minimizing  the  output  e so that  y most  closely resembles  n 
before being subtracted.

μ= u
Lσ x

2 , 0<u<1

f n(Δk +1)= f n(Δk )+η(Δk )



(9)

Next, a useful property of the ANC filter structure will be 
utilized  to  track  the  frequency of  the  sinusoidal  noise.  In 
Section II it was seen that in the ANC filter of Figure 1, the 
path from d to e when x is sinusoidal is a notch filter centered 
at fx with a width that will here be given by (9). A corollary 
to this property is that the path from  d to  y is a bandpass 
filter  matching  the  notch  filter  in  center  frequency  and 
bandwidth [10].

This property means that if the true frequency of the line 
noise  (fn)  drifts  a  sinusoid  correlated  to  n,  although 
attenuated, will be present in  y. If no periodic components 
are present in  s  at a frequency near  fn, it is easy to track  fn 

with  a  technique  as  computationally  simple  as  measuring 
time between zero crossings. Due to possible numeric error 
and noise introduced by the broadband signal components 
present near fn, a smoothing filter such as the one in (10) was 
applied  to  the  measured  zero  crossings.  In  (10),  α is  a 
forgetting factor  set at  0.99,  m is the index of the current 
zero crossing, and f̂ y is the estimated frequency.

(10)

Additionally,  it was shown by (9) that the bandwidth of 
the notch filter, and thus the corresponding bandpass filter, is 
controlled  by  the  learning  rate  u.  This  value  can  be 
automatically adjusted by Δ f̂ n , which allows the filter to 
increase  its  bandwidth  when  a  change  in  fn occurs.  The 
increase in bandwidth helps maintain the elimination of the 
frequency-shifted line noise in e, and at the same time helps 
to decrease the attenuation of the line noise in y, causing the 
measurement of the zero crossings to be less affected by the 
broadband signal.  As f̂ n approaches  fn,  u decreases  and 
the  filter  narrows  around  fn.  This  decrease  reduces  the 
amount of the broadband signal eliminated in  e and passed 
through to  y, both improving the output and increasing the 
accuracy of f̂ n , which allows  u to decrease further. The 
process repeats in an iterative fashion and f̂ n converges 
towards  fn. To prevent instability, bounds were placed on  u 
so that the filter's bandwidth remained between 0.2 and 2 Hz.

The end result is a notch filter that tracks fn with a narrow 
bandwidth through a process that first increases bandwidth to 
locate a new value of fn, then iteratively zooms back in to a 
narrow  region  around  fn.  This  process  adds  minimal 
computational cost to a standard ANC filter.

IV. RESULTS AND DISCUSSION

Data was collected in the method described in Section III  
and  the  frequency  tracking,  variable  bandwidth  filtering 
technique  presented  in  this  paper  was  validated  through 
comparison to more traditional line noise removal methods. 
The 2nd and 3rd line noise harmonics were also added to the 

data, and in the results presented here a corresponding filter 
for these harmonics was used for each technique. All results 
take the average across the eight channels of data.

For filtering techniques that have a fixed center frequency, 
their effectiveness only depends on the distance of the noise 
frequency from that center,  not  on how often and by how 
much the line noise frequency changes. Using the stochastic 
model given by (7) for these methods could give inconsistent 
results  based  on  how far  the  line  noise's  mean frequency 
drifts from 60 Hz. So for comparison to traditional 2 Hz and 
4 Hz notch filters, both standard methods for removing line 
noise in neural data, the frequency of the additive line noise 
was increased from 60 Hz by 0.1 Hz every 30 seconds to 
measure the resulting SNR at specific frequencies.

The SNR was measured between the true signal and the 
signal after having line noise added and filtered back out. In  
doing this measurement, both remaining line noise and signal 
distortion factor in to the SNR. As shown by  Figure 2, the 
performance  of  the  standard  notch  filters  degraded  as  the 
frequency increased  while the frequency tracking,  variable 
bandwidth  technique  maintained  a  steady  SNR  that  was 
higher even at 60 Hz, the ideal condition for the notch filters. 
Note  that  the  SNR here  also  takes  into  account  the  time 
period  during  which  the  variable  frequency  filter  is 
estimating and adjusting to the new frequency, and the small 
variance in the SNR is due to relatively short sample sizes.

Next,  the  effect  of  the  filter's  variable  bandwidth  was 
analyzed.  The variable bandwidth is bounded by 0.2 and 2 
Hz, so for comparison the filter was set up to first have a 
fixed  bandwidth  of  2  Hz,  and  then  of  0.2  Hz.  The 
performance  of  these  settings  for  different  changes  in 
frequency  is  shown  in  Figure  3.  With  a  fixed  0.2  Hz 
bandwidth  the  filter  converged  to  the  lowest  MSE,  but 
convergence time significantly increased as the magnitude of 
the  changes  in  frequency  increased.  With  a  fixed  2  Hz 
bandwidth,  the  filter  converged  the  quickest  but  not  as 
accurately. With the variable bandwidth, the filter was able 
to converge quickly to a low MSE. 

To  obtain  quantitative  results  for  the  filter's  variable 

BW= u
πT

Hz

f̂ n(m )=α∗ f̂ y+(1−α) f̂ n(m−1)

Figure  2:  Performance  of  standard  notch  filters  versus  the  variable 
frequency, variable bandwidth technique. The x-axis shows the distance of 
the line noise frequency from 60 Hz and the y-axis shows the SNR between 
the true signal and the filtered signal.



bandwidth,  the  stochastic  model  for  line  noise  frequency 
given in (7) was employed with Δk = 2 seconds and ση = 0, 
0.01, and 0.1. For  ση = 0 the frequency remains at 60 Hz. 
The outcomes of these experiments are given in Table 1.

Table  1 presents  results  that  are  consistent  with  both 
Figure 2 and  Figure 3.  The first  column of  Table 1 again 
indicates  that  the  variable  bandwidth  frequency  tracking 
method outperforms traditional notch filters even under ideal 
circumstances  for  the  notch  filter.  This  is  because  the 
frequency estimate is able to converge closely to 60 Hz to 
eliminate  the  interference  and  then  the  bandwidth  is 
narrowed  to  minimize  distortion  of  the  signal.  Of  the 
frequency tracking methods, the variable bandwidth method 
produces  the  highest  average  SNR  across  the  3  tested 
conditions,  although  at  lower  variances  it  is  slightly 
outperformed by the 0.2 Hz bandwidth filter, which is able to 
maintain  a  tighter  convergence  since  its  bandwidth  is 
unaffected  by  noise.  At  ση =  0.1,  though,  the  0.2  Hz 
bandwidth filter's performance drops significantly. The 2 Hz 
bandwidth filter performs well at all variances, but is unable 
to take advantage of the lower variances to converge more 
tightly around the line noise. The variable bandwidth method 
is able to increase performance at the lower variances and 
still maintain a good SNR at the highest variance.

V. CONCLUSIONS

The main objective of line noise removal is to eliminate 
the interference with minimum distortion to the signal. This 
is best achieved by implementing a filter that is able to track 
the  power  line's  slowly drifting  frequency and  maintain  a 
minimum filter bandwidth. A filter designed to accomplish 
this task in a computationally efficient manner without the 

use of  a  line noise  reference  signal  was presented  in  this 
paper. Results show it is superior to traditional notch filters 
and able to perform effectively under varying conditions in 
the  line  noise.  With  the  presented  method,  difficulties  in 
tracking line noise frequency could arise if the SNR is too 
high, at which point noise removal is not as critical anyways, 
or if there is a periodic signal component near the line noise.

Further  analysis  of  the  presented  filter  should  still  be 
performed, including results from additional models for line 
noise  frequency,  a  spectral  analysis  of  the  filter's 
performance, and the filter's behavior under different SNRs. 
Results could further be validated by a more in depth look at 
the accuracy of the frequency tracking method compared to 
more traditional and computationally costly methods such as 
spectral peak detection, which initial results have shown the 
presented method to outperform.
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Figure  3:  Frequency tracking  capabilities  with  and  without  the  variable 
bandwidth. The top three graphs represent the MSE between the true signal 
and filtered signal  after  the MSE was passed through  a moving average 
filter of length ten to make the trend of convergence more visibly clear.  
(Top) variable bandwidth between 0.2 and 2 Hz, (Top Middle) bandwidth  
set at  2 Hz, and (Bottom Middle) bandwidth  set at  0.2 Hz. The bottom  
graph represents the magnitude of changes in the line noise frequency that  
occurred at the corresponding time points in the top three graphs.

TABLE 1: SNR (dB) FOR FILTERING METHODS WITH DIFFERENT STANDARD 
DEVIATIONS IN THE LINE NOISE FREQUENCY MODEL

ση = 0 ση = 0.01 ση = 0.1
VAR. fc, 0.2 ≤ BW ≤ 2 24.4 23.2 18.4

VAR. fc, BW = 2 18.6 18.6 17.7
VAR. fc, BW = 0.2 27.5 24.5 10.9

2 HZ NOTCH 18.6 - -
4 HZ NOTCH 15.3 - -


