
iBalloon: Efficient VM Memory Balancing
as a Service

Qi Zhang, Ling Liu, Jiangchun Ren
Georgia Institute of Technology

{qzhang90, lingliu}@cc.gatech.edu, jiangchunren2015@gmail.com

Gong Su, Arun Iyengar
IBM Research - T. J. Watson
{gongsu, aruni}@us.ibm.com

Abstract—Dynamic VM memory management via the balloon
driver is a common strategy to manage the memory resources of
VMs under changing workloads. However, current approaches
rely on kernel instrumentation to estimate the VM working
set size, which usually result in high run-time overhead. Thus
system administrators have to tradeoff between the estimation
accuracy and the system performance. This paper presents
iBalloon, a light-weight, accurate and transparent prediction
based mechanism to enable more customizable and efficient
ballooning policies for rebalancing memory resources among
VMs. Experiment results from well known benchmarks such as
Dacapo and SPECjvm show that iBalloon is able to quickly react
to the VM memory demands, provide up to 54% performance
speedup for memory intensive applications running in the VMs,
while incurring less than 5% CPU overhead on the host machine
as well as the VMs.

I. INTRODUCTION

Cloud providers often face the challenges of both achieving
high resource utilization in their data centers and at the
same time allocating enough resources for individual VMs to
guarantee their performance. Employing the widely adopted
virtualization technology, cloud providers can multiplex a sin-
gle set of hardware resources among multiple VMs, therefore
increasing resource utilization by the means of overcommit-
ting. In order to guarantee the performance of individual VMs,
one simple approach is to allocate resources according to
their peak demand. However, this can result in significant
resource under utilization because VMs’ peak demands for
resources can be much higher than their average demands.
Therefore, the fundamental challenge in achieving both high
resource utilization and performance guarantee at the same
time lies in the fact that the resources demands of VMs can
vary significantly over time.

CPU and memory are the two hardware resources having
the most significant impact on a VM’s performance. Modern
Virtual Machine Monitors (VMMs, also known as Hypervi-
sors) typically already support dynamically allocating a pool
of CPUs among different VMs. Therefore, lots of existing
researches are focused on exploring how to dynamically adjust
memory allocation to meet a VM’s changing demand, as is the
case with this paper. Drawing from the lessons and experiences
of previous work, we believe that there are two common issues
need to be addressed: (1) monitoring the VM resource demand
at a low cost to decide when and where to move memory

among the VMs; (2) moving memory among the VMs with
minimal impact on the performance of the VMs.

To address the first issue, existing researches [17] [14] [20]
have proposed many methods to predict the VM memory
utilization. However, an accurate prediction of VM memory
working set size is still a difficult problem, especially under
changing conditions [6]. Because of the fact that hypervisor
lacks the knowledge of VM memory access pattern, virtual-
ization environment makes this prediction even harder. Some
researches try to break the semantic gaps [8] between VMs
and the host by instrumenting their kernels, which brings non-
negligible performance overhead [20].

The second issue has been partially achieved by the intro-
duction of memory balloon driver [18], which allows mem-
ory to be moved among the co-located VMs and the host
machine. However, balloon driver cannot work by itself. In
other words, system administrators have to be involved to
periodically check the memory utilization of each VM and
make the decision of how to balance the memory around.
There are actually some efforts to make it work automatically
[1], but the system is still in its initial stage and there lacks
extensive experiments to evaluate its performance. Although
some researchers propose ideas to rebalance memory among
VMs by using balloon driver [16] [20], they also require guest
kernel modification and the overhead incurred by memory
access interception in these approaches can be very high.

In this paper, we propose iBalloon, which is a low cost
VM memory balancer with high accuracy and transparency.
No modification is required for VMs or the hypervisor to
deploy iBalloon, which makes it more acceptable in real
cloud environment. iBalloon runs a light-weighted monitoring
daemon in each VM, which gathers the information about
memory utilization of that VM. At the same time, a balancer
daemon is running in the host to collects information reported
by the monitor, and automatically makes the decision about
how to balance the memory around VMs. The balancer finally
talks to the balloon driver in the host machine to actually
move the memory around. We implement the prototype of
iBalloon on a KVM platform and the evaluation results show
that with less than 5% performance overhead. iBalloon is able
to improve VM performance by up to 54%.

The rest of the paper is organized as following: Section II
introduces the design details of iBalloon. Section III discuses
its implementation on the KVM virtualization platform. We

present our experimental methodology and explain the eval-
uation results of iBalloon in section IV. The related work is
discussed in section V and the paper is concluded in section
VI.

II. IBALLOON DESIGN

The goal of iBalloon is to to keep a balanced memory
utilization among VMs running on the same host while avoid-
ing any VM from being deprived of free memory, with low
cost and high accuracy and transparency. As shown in Figure
1, iBalloon consists of a Per-VM Monitor and a Balancer.
Both the Per-VM Monitor and the Balancer are user level
daemons. The Per-VM Monitor, which runs in the user space
of each VM, is responsible for collecting information about the
memory utilization of this VM. The Balancer, which consists
of three parts: VM Classifier, Memory Balancer, and Balloon
Executor, executes in the user space of the host. By using
the Exponentially Weighted Moving Average (EWMA) model,
the Balancer reads the information collected by the Per-VM
Monitor, predicts each VM’s future memory utilization, and
makes decisions about how to rebalance the memory among
the VMs. The Balancer then contacts the balloon driver to
actually move memory among the VMs. Communications
between the Per-VM Monitor and the Balancer are via an in
memory bitmap and shared files, which are located on host
and exported to the VMs by the Network File System (NFS).
Since disk I/O can become a bottleneck when multiple VMs
simultaneously write to the NFS directory, we put this shared
directory in a memory based filesystem - tmpfs.

Fig. 1. iBalloon system overview

A. Per-VM Monitor

The Per-VM Monitor is a user level daemon running in
each VM. It is responsible for periodically getting memory
utilization statistics from the VM and writing them into a per-
VM log file, which locates in a NFS directory provided by
the host and shared by all the VMs running on this host.
In our design, specifically, the monitor reads two metrics
from the Linux virtual filesystem /proc/meminfo: total memory
and used memory, and writes them into the log file. The
log file can be maintained in either an appended only or an
overwritten manner. The former method keeps adding the new

VM memory utilization statistics collected by the monitor to
the end of the log file. The historical data in the log file
may help the classifier in the host to better predict the VM’s
future memory usage, but the size of the log file will keep
increasing with the execution of the VM, which may not
be acceptable because of limited storage capacity. The latter
approach always replaces the previous data in the log file
with the newly collected information. In this case, the size
of the log file will be small and constant, but the information
provided by the file is limited. Therefore, in order to tradeoff
between these two approaches, we design the per-VM log file
in an overwritten manner, while keeping the aggregated VM
historical memory utilization statistics in the VM Classifer
running in the host. To be more specific, the per-VM log file
only records two statistics: the VMs current total memory and
used memory. The VM Classifer in the host will maintain a
historical information indicator for each VM, and update this
indicator periodically based on the current statistics read from
the per-VM log file.

Three issues needs to be addressed in order to make
iBalloon more scalable and accurate: updating interference,
monitoring frequency, and transient outliers filtering.

Updating interference. The first issue is disk bandwidth
interference incurred by the Per-VM Monitor to co-located
VMs. Since the monitor in each VM periodically writes the
VM memory statistics into its correspondent log file, it is
quite possible that multiple VMs running on the same host
are writing to their own log files simultaneously. Considering
the fact that disk I/O requests from all these VMs have to
go through the same host machine, it will lead to severe disk
contention with the increasing number of VMs running with
iBalloon, which could in turn degrade the performance of
other I/O intensive VMs running on the host. Therefore, in our
design, the NFS directory exported by the host is not created
from disk, but from the memory. Considering the size of each
VM log file is only two integers, the additional amount of
memory taken by this design is negligible even if the number
of VMs is very large.

Monitoring frequency. The second issue is the monitoring
frequency. As the monitor in each VM periodically collects the
VM’s memory utilization statistics and communicates them to
the VM Classifier in the host, the frequency of the monitor’s
execution greatly affects the scalability of the iBalloon, espe-
cially when there are large amount of VMs running on the
same host. Accurate monitoring can be achieved by allowing
a high monitoring frequency, however, it can lead to high
computation and communication overheads. On the contary,
the data collected by a low frequency monitoring may not be
accurate enough. Therefore, we employ an adaptive frequency
control mechanism to build iBalloon scalable and accurate.
Concretely, as described by algorithm 1, every monitor starts
with a monitor interval τ . It checks whether the consecutive
two monitored values vary within a pre-defined range λ. If
yes, which means the memory utilization of this VM is in a
relatively stable state, thus is it not necessary to update the
current value in the log file. At the same time, the monitor

increases the value of current monitor interval by τ . Otherwise,
the monitor updates the log file with the latest value and
divides the value of interval by half. Note that there is an
upper bound as well as a lower bound for the value of interval,
in order to prevent Per-VM Monitor from being starved or
executing too frequently. We empirically set n as 10 in our
evaluation.

Algorithm 1 Per-VM Monitor
1: procedure VM MEM MONITOR
2: while true do
3: interval← τ
4: intervalmax ← nτ
5: intervalmin ← τ
6: γold ← old vm mem util /*value from log file*/
7: γnew ← get vm current mem util
8: if (|γnew − γold| ≥ λ) then
9: delay(β)

10: γdelay ← get vm current mem util
11: if (|γdelay − γold| ≥ λ) then
12: update log file
13: interval←MAX(intervalmin, interval/2)
14: end if
15: interval←MIN(intervalmax, interval + τ)
16: end if
17: sleep interval
18: end while
19: end procedure

Transient outliers filtering. iBalloon should adjust a VM’s
memory when the VM is indeed short of memory, which is
to guarantee the correctness and stability of the VM memory
management. However, short term memory burst and transient
outliers are often observed in a cloud environment. Therefore,
in order to prevent a VM memory from going up and down
dramatically, a delay is introduced in the iBalloon to filter
these transient outliers. Concretely, as shown in algorithm 1,
when the monitor detects that the difference between the old
value and the latest value is obvious enough to issue an update
to the log file, it delays for a β interval, and then checks
the value for a second time. If the value is still satisfy the
requirement of log file update, the monitor updates the log
file. Otherwise, γnew will be treated as a transient outlier.

B. VM Classifier

VM Classifier is one of the iBalloon components that
running in the host user space. It is responsible to divide
the VMs running on the host into three categories based
on the their predicted memory utilization. The Exponentially
Weighted Moving Average (EWMA) model is used in the VM
Classifier for the prediction. Concretely, for a specific VM,
the VM Classifier uses OFMi to denote the VM’s observed
free memory, which is provided by the per-VM log file, in
terms of percentage at time point i. At the same time, the
VM Classifier maintains another variable PFMi as the VM’s
historical information indicator. PFMi represents the EWMA
of the VM memory free memory from time point 0 to i. Then,
according to EWMA, the predicted free memory in terms of
percentage at time point i is based on the value of OFMi

and PFMi−1. The predicted free memory for each VM is
calculated as following:

PFM1 = OFM1

PFMi = αOFMi + (1−α)PFMi−1, i > 1

in which the value of α decides whether the prediction depends
more on the current observed value OFMi or the historical
information PFMi−1. We set the value of α as 0.125 in our
evaluation.

After calculating the predicted free memory for each VM,
the VM Classifier further divides the VMs into groups based
on the prediction results. Three VM groups are defined as
following:

VM =


Critical if PFMi ∈ [0%, r1)

Warn if PFMi ∈ [r1, r2)

Normal if PFMi ∈ [r2, 100%]

(1)

in which, r1 and r2 are two values between 0% and 100%
and r1 ≤ r2. We empirically set r1 = 15% and r2 = 30% in
our evaluation. The VM groups created by the VM Classifer
will be fed as the input to the Memory Balancer, which
then, makes decisions about how to move memory around
VMs accordingly. Another parameter passed from the VM
Classifier to the Memory Balancer is a VM memory array
vm mem old[], which indicates the current memory utilization
of each VM.

One thing needs to be mentioned is when to trigger the
VM classification. In our design, the VM Classifier maintains
a bitmap, which is shared among the VM Classifer and the
Monitor. Each bit in the bitmap is correspondent to a specific
VM. Whenever the Monitor updates the log file, it checks
whether the state of the VM (i.e. Normal, Warn, Critical) is
changed. If true, the Monitor will set its corresponding bit
in the bitmap. On the VM Classifier side, it initializes the
bitmap as all zero, and periodically checks the bitmap. The
VM classification is triggered whenever the bitmap is non-
zero, and the VM Classifier clears the bitmap to all zero again
after the classification.

C. Memory Balancer

Based on the input provided by the VM Classifier, the
Memory Balancer needs to decide how to move memory
around VMs so that the memory utilization of each VM can
be balanced. Algorithm 2 described how the Memory Balancer
work. It firstly checks whether there exist any Critical VMs.
On one hand, if Critical VMs exist, which indicates that these
VMs urgently need more memory, then the Memory Balancer
calculates δ, which represents the total amount of memory
needed to bring these Critical VMs to a Cushion level, in
which VM’s free memory utilization reaches 20%. Then, the
Memory Balancer follows a step by step manner to decide
which VMs should sacrifice their memory and how much.
The first step is the calculate δ1, which is the total amount of
memory that can be taken from Normal VMs before making
any of their free memory utilization drop to the Warn state. If
δ1 is already enough to satisfy all the Critical VMs, memory
only needs to be proportionally moved from Normal VMs
to Critical VMs. Otherwise, both Normal and Warn VMs
need to scarifies their memory to help the Critical VMs, and

the Memory Balancer enters step two. After taking δ1 from
Normal VMs, all the Normal VMs will become Warn VMs.
In step two, therefore, the Memory Balancer calculates δ2,
which is the total amount of memory that can be taken from all
the current Warn VMs before making any of them in Critical
state. In this case, the Memory Balancer should guarantee that
it will not turn any non-Critical VM into Critical VM after
moving the memory. Therefore, if the total available memory
from non-Critical VMs is not able to satisfy the demand of
all Critical VMs, the Memory Balancer will issue a ”short of
physical memory” warning to the system administrator. On the
other hand, if there exist both Normal and Warn VMs, but no
Critical VMs, the Memory Balancer will move memory from
Normal VMs to Warn VMs to balance the memory utilization
between them. Otherwise, the Memory Balancer will stay idle
if there exists only Normal or Warn VMs.

Algorithm 2 Memory Balancer
1: VMs[]← vm mem old[]
2: vm mem new[]← NULL
3: vm mem delta[]← NULL
4: ∆i,∆j ,∆k, η ← 0
5: δ ← 0 /*total memory needed by Critical VMs*/
6: δ1 ← 0 /*maximum available memory from Normal VMs before any of them

dropping into Warn state*/
7: δ2 ← 0 /*besides δ1, maximum available memory from non−Critical VMs

before any of them drop below Cushion state*/
8: procedure MEM BALANCE
9: if there exists any Critical VM in VMs[] then

10: for each Critical VM VMi do
11: ∆i ← mem needed by VMi

12: δ ← δ + ∆i

13: end for
14: for each Normal VM VMj do
15: ∆j ← mem available in VMj

16: δ1 ← δ1 + ∆j
17: end for
18: if δ1 ≥ δ then
19: vm mem new = update(VMs[])
20: return
21: else
22: set NormalVMs to WarnVMs
23: η = δ − δ1
24: end if
25: for each Warn VM VMk do
26: ∆k ← mem available in VMk

27: δ2 ← δ2 + ∆k

28: end for
29: if δ2 ≥ η then
30: vm mem new = update(VMs[])
31: return
32: else
33: issue warning
34: end if
35: else if there exists both Normal and Warn VMs in VMs[] then
36: average mem utilization
37: end if
38: vm mem delta[] = differ(vm mem new[], vm mem old[])
39: end procedure

After all the calculations above, the Memory Balancer
comes up with a new VM array vm mem new[], which
indicates the memory of each VM after the balancing. By
comparing the vm mem new[] with vm mem old[], the Mem-
ory Balancer creates another array vm mem delta[], which
represents the memory movement that should be carried out
by the Balloon Executor.

D. Balloon Executor

As a user level process running in the host, the Balloon
Executor receives the vm mem delta[] array from the Mem-
ory Balancer and invokes the balloon driver in the host to
actually move memory around VMs. A positive number in
vm mem delta[] means the memory should be added to the
correspondent VM, while a negative number means this VM
needs to sacrifice its memory. Since the balloon driver itself
does not support moving memory directly from one VM to
another, the Balloon Executor should first take the memory
from one VM to the host by inflating the balloon, and then
move the memory from the host to the other VM by deflating.

In Balloon Executor, a straightforward method to invoke the
balloon driver in the host kernel is using the system() function
to issue a shell command such as ”virsh qemu-monitor-
command vm id –hmp –cmd ’balloon target mem size”.
However, the overhead of system() is high since it needs to
fork a child thread in order to execute the shell command.
Taking this into consideration, we created our own system
call vm balloon(u64 vm id, u64 target mem) in the host to
invoke the balloon driver with lower overhead.

III. IBALLOON IMPLEMENTATION

We have implemented an iBalloon prototype in KVM vir-
tualization platform. The two main components of iBalloon,
the Per-VM Monitor and the Balancer, are implemented in C
as user space daemons. They communicate with each other
through a memory based filesystem tmpfs.

In order to correctly reflect the memory pressure of each
VM, the collector should distinguish the memory is actually
used by the system from the cached/buffered memory. The
Linux operating system usually uses the free memory as cache
and buffers to reduce data access latency for applications and
improve the disk I/O performance. Therefore, memory used
as buffers and caches should not be counted as memory that
is actually used. In other words, the large amount of memory
used as buffers and caches does not mean that the system
memory is under a high pressure.

Besides, the Linux operating system will start swapping
pages out when there is still free memory available. From
our observation, for example, there are usually 120MB free
memory when a VM with 1GB memory starts swapping. The
reason is that Linux kernel has set a watermark for each
memory zone to guarantee that the free memory of each
zone will not fall below the watermark. This OS-reserved free
memory is used to deal with emergency memory allocation
that can not fail. Therefore, the Per-VM Monitor should
consider such memory as used memory in order to accurately
reflect the memory pressure in the VM.

IV. EVALUATION

In this section, we present the evaluation of iBalloon pro-
totype with several widely accepted benchmarks. We begin
by introducing our experimental setup. Then, we measure the
performance overhead of iBalloon, demonstrate how mixed

workloads can be benefited from iBalloon, and show the
accuracy of iBalloon in terms of its VM memory prediction.

A. Experiments Setup

We conducted all experiments on an Intel Xeon based
server provisioned from a SoftLayer cloud [4] with two 6-core
Intel Xeon-Westmere X5675 processors, 8GB DDR3 physical
memory, 1.5 TB iSCSI hard disk, and 1Gbit Ethernet interface.
The host machine runs Ubuntu 14.04 with kernel version 4.1,
and uses KVM 1.2.0 with QEMU 2.0.0 as the virtualization
platform. The guest VMs also run Ubuntu 14.04 with kernel
version 4.1. We evaluate iBalloon using the following bench-
marks and applications:
• Dacapo. [2] It is a benchmark suit consists of a set of

open source, real world Java applications with non-trivial
memory loads. For example, some of the applications
are h2, which executes a JDBCbench-like in-memory
benchmark for executing a number of transactions against
a model of banking application; eclipse, which executes
some of the (non-gui) jdt performance tests for Eclipse
IDE, and xalan, which transforms XML documents into
HTML, etc.

• SPECJVM2008. [5] It focuses on the performance of the
Java runtime environment (JRE) executing a single ap-
plication The results reflect the performance of hardware
processor and memory subsystem. It has low dependence
on file I/O and includes no network I/O across machines.
SPECJVM2008 includes real life applications such as
javac compiler as well as area-focused benchmarks, such
as xml, crypto

• Himeno. [3] It is developed to evaluate performance
of incompressible fluid analysis code. This benchmark
takes measurements to proceed major loops in solving
the Poisson’s equation using Jacobi iteration method.
The performance of Himeno is especially affected by the
performance of memory subsystem.

• QuickSort. This is a quick sort program we developed
ourselves in C. We feed it with large data sets to make
them memory intensive.

B. Performance Overhead

This set of experiments evaluate the performance overhead
iBalloon incurs on VMs. In order to separate the performance
overhead of iBalloon and that brought by the balloon driver,
we disable the Balloon Executor in the Balancer, thus iBalloon
in this set of experiments will run as usually but not actually
move memory around. As we mentioned earlier, the Per-VM
Monitor needs to periodically collect the memory utilization
statistics from the VM’s /proc virtual file system and update
its log file which locates in a memory based file system.
Therefore, the performance overhead of the Per-VM Monitor
could be incurred from two aspects: data collecting and log
file updating. Intuitively, the higher frequently the Per-VM
Monitor runs, the more CPU overhead it will incur. Although
an adaptive frequency control mechanism is employed in the
Per-VM Monitor, we use a fixed frequency in this set of

experiments by setting a constant value σ1 as the monitor’s ex-
ecution interval. Note the actual performance overhead should
be no larger that what we have measured. Since according to
algorithm 1, the Per-VM Monitor’s execution interval will not
be short than τ .

Similarly, the Balancer running in the host could also
introduce performance overhead. Because every time it runs,
the Balancer has to first fetch the data from multiple VM
log files, then classify the VM based on a prediction based
algorithm, and finally invoke the balloon device to move
memory around. The performance overhead of the Balancer
is related with two factors: the number of VMs running on
the host, and how frequently the Balancer runs. Although
the execution of Balancer depends on whether the updated
information from Per-VM Monitors indicates that the state the
of VM has been changed, we still set a fixed execution interval
σ2 for the Balancer in this set of experiments, to see the upper
bound of the performance overhead.

1 0 u s1 0 0 u s 1 m s1 0 m s1 0 0 m s 1 s 1 0 s 1 0 0 s0
1 0
2 0
3 0
4 0
5 0
6 0

VM
 CP

U u
tiliz

ati
on

(%
)

E x e c u t i o n i n t e r v a l
(a) Per-VM Monitor overhead

4 8 1 2 1 6 2 00

1

2

3

4

Ho
st

CP
U u

tiliz
ati

on
(%

)

N u m b e r o f V M s

 E x e . i n t e r v a l = 1 0 m s
 E x e . i n t e r v a l = 1 0 0 m s
 E x e . i n t e r v a l = 1 s

(b) Balancer overhead

Fig. 2. Overhead of iBalloon

Figure 2(a) shows the VM’s utilized CPU when the Per-
VM Monitor is running with different frequencies. As we
mentioned earlier, we vary the monitor’s execution interval
between different runs, but the interval is fixed for each single
test. It shows that the VM’s busy CPU stays as low as 1% when
the Per-VM Monitor executes as frequent as every 1 second.
The percentage of busy CPU begins to increase slight to 2%
and 5% when the execution interval decreases to 100ms and
10ms. When the interval is shorter than 10ms, the percentage
of busy CPU climbs up quickly, for example, 52% CPU is
busy when the Per-VM Monitor execution interval decreases
to 10us. From this set of experiments, we can tell that the
performance overhead of Per-VM Monitor is negligible when
it executes no less than every 1 second.

Figure 2(b) displays the overhead brought by the Balancer
in terms of host CPU utilization. We vary the number of VMs
from 4 to 20 and the execution interval of the Balancer from
10ms to 1s. The overhead of Balancer only slightly grows
with the increase of its execution frequency and number of
VMs. For example, when the execution interval is 10ms, the
overhead increases from 2% to 4% when the number of VMs
varies from 4 to 20. The overhead stays the same (1%), when
the execution interval increases to 1 second. As we mentioned,
since the overhead displayed in table 2(b) are supposed to be
higher than that in the real case, these results indicate that
the overhead of the Balancer is also negligible. Based on the

experimental results above, we set τ as 5 seconds in section
refmixworkloads.

C. Mixed Workloads

In this subsection, we demonstrate the effectiveness of iBal-
loon in an environment with mixed workloads by deploying it
in a host with 4VMs running simultaneously. As illustrated in
Figure 3, VM1 runs Dacapo, VM2 runs Dacapo-plus, VM3
runscrypto.rsa and Himeno, VM4 runs QuickSort. Dacapo
includes both CPU intensive and memory intensive workloads,
and they are executed sequentially in our experiments. The
workloads in Dacapo-plus are the same as those in Dacapo,
but are executed in a different order to create a mix of CPU
and memory demand. crypto.rsa is a CPU intensive workload,
while both Himeno and QuickSort are memory intensive.
We evaluated and compare the performance of 3 cases: (1)
Baseline, in which the VM memory is allocated statically; (2)
Ramdisk Swap, in which a ramdisk is mounted to each VM
as its swap area; (3) iBalloon, in which iBalloon is used to
dynamically balance the VM memory. The VM swap area is
hard disk is case the iBalloon case.

Dacapo(mixed	
 workloads)	
 Idle	

Dacapo-­‐plus(mixed	
 workloads)	

Idle	

SPECjvm.crypto(CPU	
 intensive)	

Himeno	

(memory	
 intensive)	

Idle	
 QuickSort	

(memory	
 intensive)	

VM1	

VM2	

VM3	

VM4	

Timeline	

Fig. 3. Mixed workload experiments setup

D a c a p o D a c a p o - p l u s H i m e n o Q u i c k s o r t C r y p t o . r s a
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4

No
rm

aliz
ed

run
tim

e

 B a s e l i n e
 R a m d i s k s w a p
 i B a l l o o n

Fig. 4. Normalized performance of benchmarks

Figure 4 compares the total execution time of Dacapo,
Dacapo-plus, Himeno, and Quicksort. It shows that first, with
iBalloon, the total execution time of Dacapo and Dacapo-
plus benchmarks are reduced by 52% and 50% respectively.
while that of Himeno and Quicksort have been reduced by 40%
and 54%, which demonstrates the effectiveness of iBalloon in
terms of improving the performance of applications running
inside VMs. Second, although using ramdisk as VM swap area
can improve the application performance to some extent, it is

TABLE I
EXECUTION TIME OF REPRESENTATIVE WORKLOADS IN DACAPO

AND DACAPO-PLUS (MS)

Baseline Ramdisk swap iBalloon

VM1

eclipse 214,224 169,774 72,922
h2 44,408 30,135 20,781
jython 17,292 14,577 10,892
fop 3,307 3,131 3,399

VM2

eclipse 168,505 124,871 93,785
h2 36,390 26,919 13,990
jython 12,842 12,140 11,898
fop 3,168 3,132 3,341

still not as effective as using iBalloon. Taking the Dacapo
benchmark for an example, its execution time in the Ramdisk
swap cases is about 20% shorter than that in the Baseline, but
still about 60% longer when compared with the iBalloon case.
This is because even using ramdisk as the swap area is more
efficient than using hard disk, each swap-in/swap-out operation
from VM still needs to go through the block I/O layer of
both the VM and the host, which will lead to much higher
performance overhead compared with directly increasing the
VM’s memory capacity. Third, the different from Dacapo and
Dacapo-plus, the performance of Himeno and Quicksort in the
Ramdisk swap case is better than that in the iBalloon case.
The reason is that the memory requirement of Himeno and
Quicksort has exceeded the total amount of physical memory
on the host, VM3 and VM4 have to swap their memory out
even with iBalloon. Therefore swapping to the ramdisk will
help more than using iBalloon and swapping to the hard disk.

Table I zooms into the execution of Dacapo and Dacapo-
plus, and shows the execution time of some representative
workloads. We find that first, eclipse and h2 have the most
obvious performance improvement among all the workloads in
Dacapo or Dacapo-plus. For example, in VM1, the execution
time of eclipse has been reduced from 214224ms to 72922ms,
while that of h2 has dropped from 44408ms to 24814ms, and
similar trend can also be observed from VM2. The reason is
that eclipse and h2 are the most memory intensive workloads
in the suit, which result in about 580MB and 650MB memory
swapping without iBalloon. At the same time, the execution
time of some other less memory intensive workloads is slightly
reduced. For instance, the execution time of jython reduces by
39% from 17292ms to 10892ms. An interesting observation is
that the execution time of jython has been slightly increased
in VM2 when iBalloon is used. This is because before eclipse
starts to execute in VM2, memory has been moved to other
VMs by the iBalloon to satisfy their needs. So it takes time for
iBalloon to move memory back to VM2 when eclipse needs
it.

Besides memory intensive benchmarks, a CPU intensive
benchmark is also running simultaneously in VM3. Figure 4
shows the normalized throughput of crypto.rsa, which is the
CPU intensive benchmark running in VM3 while Dacapo is
running in VM1 and Dacapo’ is running in VM2. It shows
that the variation among the execution time of crypto.rsa in

0 1 0 0 2 0 0 3 0 0 4 0 00

4 0 0

8 0 0

1 2 0 0

Sw
ap

pe
d m

em
ory

 (M
B)

T i m e (s e c)

 B a s e l i n e
 i B a l l o o n

(a) VM1

0 1 0 0 2 0 0 3 0 0 4 0 00

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Sw
ap

pe
d m

em
ory

 (M
B)

T i m e (s e c)

 B a s e l i n e
 i B a l l o o n

(b) VM2

0 8 0 0 1 6 0 0 2 4 0 0 3 2 0 00

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

Sw
ap

pe
d m

em
ory

 (M
B)

T i m e (s e c)

 B a s e l i n e
 i B a l l o o n

(c) VM3

0 8 0 0 1 6 0 0 2 4 0 0 3 2 0 00

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

Sw
ap

pe
d m

em
ory

 (M
B)

T i m e (s e c)

 B a s e l i n e
 i B a l l o o n

(d) VM4

Fig. 5. Swapped memory in VMs

0 1 0 0 2 0 0 3 0 0 4 0 00
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0

Me
mo

ry
siz

e(M
B)

T i m e (s e c)

 A l l o c a t e d m e m o r y
 U s e d m e m o r y

(a) VM1

0 1 0 0 2 0 0 3 0 0 4 0 00
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0

Me
mo

ry
siz

e(M
B)

T i m e (s e c)

 A l l o c a t e d m e m o r y
 U s e d m e m o r y

(b) VM2

0 2 5 0 5 0 0 7 5 0 1 0 0 00
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0

Me
mo

ry
siz

e(M
B)

T i m e (s e c)

 A l l o c a t e d m e m o r y
 U s e d m e m o r y

(c) VM3

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 00
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0

Me
mo

ry
siz

e(M
B)

T i m e (s e c)

 A l l o c a t e d m e m o r y
 U s e d m e m o r y

(d) VM4

Fig. 6. Allocated memory vs. used memory in VMs working with iBalloon

all cases is within 4%. This demonstrates that iBalloon is able
to improve the performance of memory intensive applications,
while having a very low impact on that of CPU intensive ones.

Figure 5 further illustrates the amount of swapped memory
in the 4 VMs at different time point during the experiment.
In each sub-figure, the mount of swapped memory in cases
with and without iBalloon are compared. It shows that the
iBalloon significantly reduces the amount of memory pages
that need to be swapped out. Take VM2 for example, the
memory swapping demand lasts about 285 seconds with peak
value above 1500MB in baseline. While in the iBalloon case,
VM2’s memory swapping stops at about 175 seconds, and the
maximum required swapping space is between 500-600MB.
For VM3 and VM4, their memory intensive workloads did
not start until 400th second. iBalloon moves other VMs’
free memory to VM3 first to satisfy its memory intensive
benchmark Himeno. After Himeno finishes at around 700th
second, iBalloon then moves the free memory to VM4 to help
the execution of QuickSort.

Figure 6 compares the allocated memory with the amount
of memory that is actually used in each VM when working
with iBalloon. We find that iBalloon is able to appropriately
adjust the memory size of each VM based on its workload
demands, which prevents the VMs from waisting their memory
resources. An interesting observation is that the allocated
memory jumps up before the used memory in VM3 at 287th
second. This is because right after Dacapo and Dacapo-plus
finish execution, most of the memory has been moved from
VM3 and VM4 to VM1 and VM2. At this point of time,
iBalloon takes place to rebalance the memory among the 4
VMs before Himeno and QuickSort starts to run in VM3 and
VM4.

V. RELATED WORK

VM working set size estimation. Dynamic VM memory
allocation and VM memory deduplication are the two ma-
jor mechanisms that are proposed to increase the memory
utilization in virtualized environment. Accurate VM memory
working set size estimation is essential to the performance of
dynamic memory management mechanisms.

Pin et al. [21] proposed using page miss ratio as a guidance
of VM memory allocation. However, the tracking of page miss
ratio is implemented through using a specific hardware, which
is not easy to accomplish, or modifying the OS-kernel, which
can results in unacceptable performance overhead.

Zhao et al. [20] proposed using LRU histogram to estimate
the VM memory working set size. In their method, memory
accesses from each VMs are intercepted by the hypervisor
to build and update the LRU histograms. They introduced
the concept of hot pages and cold pages to alleviate the
performance cost incurred by memory access interception. But
according to the evaluation result in their paper, there is still
considerable performance overhead. Besides the performance
overhead, accurate VM working set size prediction is difficult
under chaining conditions [10] [13] [9]. Therefore, we design
iBalloon which estimates the VM working set size via light-
weighted daemons, and more importantly, makes efforts to
guarantee the VM performance even if the estimation is not
accurate by using shared memory swapping.

Balloon Driver vs. Memory Hotplug. In order to handle
the dynamic VM memory demands and increase the memory
utilization in virtualized environment, balloon driver[18] was
proposed in 2002 and has been widely adopted in main-
stream virtualization platforms such as KVM[11], Xen[7],
VMware[15], and etc. Similarly, memory hotplug[12][16] is

another technique aiming at reducing wasted memory by en-
abling memory to be dynamically added to and removed from
VMs. Some researchers [19] explored using shared memory
to increase the physical memory utilization while maintaining
good VM performance. Also, there are several other works
focusing on comparing balloon driver with memory hotplug
from in terms of their performance and functionality.

Liu, et al.[12] conducted a comparative study between
balloon driver and memory hotplug. They mentioned that the
implementation of balloon driver is far more straightforward
than memory hotplug. Since balloon driver is able to directly
use the native MMU of the guest. However, balloon driver
cannot enlarge the memory size of a VM beyond its cap,
which is a preset parameter associated with each VM. Memory
hogplug can go beyond the cap. Another finding from their
work is memory hotplug should have a better scalability
than balloon driver. Since balloon driver relies on the buddy
system of guest MMU, which results in memory fragmentation
problems. But memory hogplug can avoid this problem by
adding or removing memory by a whole section.

Schopp, et al. [16] concisely explained how balloon driver
and memory hotplug work and compared their advantages
and disadvantages respectively. For example, memory hotplug
allows adding memory that was not present at boot time to
scale Linux up in response to changing resources, and their
is no cap for memory hotplug to add memory. But memory
hotplug has limitations on not being able to remove memory
containing certain kinds of allocations. Balloon driver is able
to directly use the native memory management in VM, but it
could fragments the pseudophysical memory map of the guest
VM.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed iBalloon, a lighted-weighted, high accu-
rate and transparent VM memory balancing service. iBalloon
consists of two major components: the Per-VM Monitor and
a global Balancer. iBalloon predicts the VM memory uti-
lization based on Exponentionally Weighted Moving Average
(EWMA) model and dynamically adjust the VM memory
accordingly. We evaluate the performance of iBalloon by
using various widely accepted benchmarks and applications
in a complex environment where multiple VMs running si-
multaneously. The results show that, with only up to 5%
performance overhead, iBalloon is able to accurately adjust
VM memory based on its real-time requirement, and greatly
improve performance of applications running in the VMs by
up to 54%. There are a number of extension for iBalloon we
are considering in the future. For example, the performance
of balloon driver can to be further improved. Based on
our investigation, current balloon driver moves memory in a
page by page manner, which may not be optimal. Batching
operation could be applied to achieve better performance.

VII. ACKNOWLEDGMENTS

The first two authors performed this work under the partial
support by the National Science Foundation under Grants IIS-

0905493, CNS-1115375, NSF 1547102, SaTC 1564097, and
Intel ISTC on Cloud Computing. The third author is a visiting
scholar while collaborating on this project, funded by China
with the School of Computer, NUDT, China.

REFERENCES

[1] Auto Ballooning. http://www.linux-kvm.org/page/Projects/auto-
ballooning.

[2] Dacapo. http://www.dacapobench.org.
[3] Himeno. http://accc.riken.jp/2444.htm.
[4] Softlayer. http://www.softlayer.com.
[5] SPECjvm2008. http://www.spec.org/jvm2008.
[6] AMIT, N., TSAFRIR, D., AND SCHUSTER, A. Vswapper: A memory

swapper for virtualized environments. In Proceedings of the 19th
international conference on Architectural support for programming
languages and operating systems (2014), ACM, pp. 349–366.

[7] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T.,
HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and
the art of virtualization. ACM SIGOPS Operating Systems Review 37,
5 (2003), 164–177.

[8] CHEN, P. M., AND NOBLE, B. D. When virtual is better than real
[operating system relocation to virtual machines]. In Hot Topics in
Operating Systems, 2001. Proceedings of the Eighth Workshop on
(2001), IEEE, pp. 133–138.

[9] HINES, M. R., GORDON, A., SILVA, M., DA SILVA, D., RYU, K. D.,
AND BEN-YEHUDA, M. Applications know best: Performance-driven
memory overcommit with ginkgo. In Cloud Computing Technology
and Science (CloudCom), 2011 IEEE Third International Conference
on (2011), IEEE, pp. 130–137.

[10] JONES, S. T., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. Geiger: monitoring the buffer cache in a virtual machine
environment. In ACM SIGOPS Operating Systems Review (2006),
vol. 40, ACM, pp. 14–24.

[11] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND LIGUORI, A.
kvm: the linux virtual machine monitor. In Proceedings of the Linux
Symposium (2007), vol. 1, pp. 225–230.

[12] LIU, H., JIN, H., LIAO, X., DENG, W., HE, B., AND XU, C.-Z. Hotplug
or ballooning: A comparative study on dynamic memory management
techniques for virtual machines.

[13] LU, P., AND SHEN, K. Virtual machine memory access tracing with
hypervisor exclusive cache. In Usenix Annual Technical Conference
(2007), pp. 29–43.

[14] MOLTÓ, G., CABALLER, M., ROMERO, E., AND DE ALFONSO, C.
Elastic memory management of virtualized infrastructures for applica-
tions with dynamic memory requirements. Procedia Computer Science
18 (2013), 159–168.

[15] ROSENBLUM, M. Vmware’s virtual platform. In Proceedings of hot
chips (1999), vol. 1999, pp. 185–196.

[16] SCHOPP, J. H., FRASER, K., AND SILBERMANN, M. J. Resizing
memory with balloons and hotplug. In Proceedings of the Linux
Symposium (2006), vol. 2, p. 313319.

[17] TASOULAS, E., HAUGERUND, H., AND BEGNUM, K. Bayllocator: a
proactive system to predict server utilization and dynamically allocate
memory resources using bayesian networks and ballooning. In Proceed-
ings of the 26th international conference on Large Installation System
Administration: strategies, tools, and techniques (2012), USENIX As-
sociation, pp. 111–122.

[18] WALDSPURGER, C. A. Memory resource management in vmware esx
server. ACM SIGOPS Operating Systems Review 36, SI (2002), 181–
194.

[19] ZHANG, Q., AND LIU, L. Shared memory optimization in virtualized
cloud. In Cloud Computing (CLOUD), 2015 IEEE 8th International
Conference on (2015), IEEE, pp. 261–268.

[20] ZHAO, W., WANG, Z., AND LUO, Y. Dynamic memory balancing for
virtual machines. ACM SIGOPS Operating Systems Review 43, 3 (2009),
37–47.

[21] ZHOU, P., PANDEY, V., SUNDARESAN, J., RAGHURAMAN, A., ZHOU,
Y., AND KUMAR, S. Dynamic tracking of page miss ratio curve for
memory management. In ACM SIGOPS Operating Systems Review
(2004), vol. 38, ACM, pp. 177–188.

