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Abstract—The emerging need for conducting complex analysis
over big RDF datasets calls for scale-out solutions that can
harness a computing cluster to process big RDF datasets. Queries
over RDF data often involve complex self-joins, which would be
very expensive to run if the data are not carefully partitioned
across the cluster and hence distributed joins over massive
amount of data are necessary. Existing RDF data partitioning
methods can nicely localize simple queries but still need to resort
to expensive distributed joins for more complex queries. In this
paper, we propose a new data partitioning approach that takes
use of the rich structural information in RDF datasets and
minimizes the amount of data that have to be joined across
different computing nodes. We conduct an extensive experimental
study using two popular RDF benchmark data and one real RDF
dataset that contain up to billions of RDF triples. The results
indicate that our approach can produce a balanced and low
redundant data partitioning scheme that can avoid or largely
reduce the cost of distributed joins even for very complicated
queries. In terms of query execution time, our approach can
outperform the state-of-the-art methods by orders of magnitude.

I. INTRODUCTION

RDF (Resource Description Framework) [4] data model
represents information in the form of triple statements: (sub-
ject, predicate, object). The high growth rate of big data and
the simplicity and flexibility of RDF model have driven an
increasing number of organizations storing their data in RDF
format. The statistics from Linked Open Data Project show
that more than 31 billion triples had been published till Sep.
2011 [2]. As the amount of RDF data continues to grow
rapidly, it will soon exceed the processing capacity of a single
machine. To achieve desirable performance for massive RDF
data analysis, it is inevitable to employ a cluster of computing
nodes to manage big RDF datasets.

While RDF data can generally be regarded as a long
table with three columns in traditional relational databases,
it can also be modelled as a graph structure with the subjects
and objects of triples modelled as vertices and the predicates
modelled as labelled edges. Due to a large number of common
subjects and objects shared among the triples, many edges are
incident to common vertices and hence an RDF graph often
exhibits a complex structure. Figure 1(a) shows an example
RDF graph, which is formed by using part of the RDF structure
in the LUBM benchmark [11].

Correspondingly, queries over RDF graph specified using
SPARQL [5], a standard RDF query language, can also be
modelled as graph patterns to be matched with the RDF
graph, which would also have complex and diverse structures.
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Example structures of query graphs include star, chain, tree and
cycle etc. Figure 1(b) is an example SPARQL query graph over
the RDF data in Figure 1(a). This query is to find the authors
of Publication1, as well as the Department and University
that the authors work in.

In a scale-out RDF data processing system, RDF data
would be partitioned among the computing nodes and ac-
cordingly, a complex SPARQL query can be decomposed
into subqueries which will be run on different computing
nodes. Distributed joins may have to be performed over the
intermediate outputs from the subqueries to produce the final
query output. Such distributed joins are often expensive and
require frequent interaction, communication and synchroniza-
tion among the computing nodes, which would significantly
diminish the benefit of adopting a scale-out system [15]. There-
fore, a carefully designed RDF data partitioning scheme needs
to consider both the complex structures of RDF graph and
query graph and minimize the necessary number of expensive
distributed joins.

A popular approach to partition RDF data is hash par-
titioning, which is adopted by a majority of the existing
distributed RDF engines [13], [14], [18], [24]. This approach
distributes RDF triples across different partitions by computing
a hash key over either the subject or the object of each triple.
Suppose the hash key is computed on the subject, then we
can ensure that all triples sharing a common subject would
be located on a single computing node. Therefore a complex
query can be decomposed into a number of subqueries with a
star shape, where each subject variable/constant in the query is
the center of a star. For instance, the query in Figure 1(b) can
be decomposed into the star subqueries shown in Figure 1(c).
Take SQ2 as an example. We are sure that all triples with the
same person as the subject are hashed to the same partition
and hence we can execute SQ2 in parallel without the need
for distributed joins. Therefore, each of these subqueries can
be parallelized onto the computing nodes without interactions
between the nodes. We call these subqueries inner-partition
subqueries. However, to obtain the final output, we have
to execute expensive distributed joins over the intermediate
outputs produced from these subqueries, which could be quite
many for a complex query.

Hash partitioning does not capture the rich structural infor-
mation in the RDF graph and hence often miss opportunities to
generate better data partitioning. In [15], the authors proposed
using graph partitioning methods to optimize data partitioning.
This approach initially uses a graph partitioner, e.g. METIS
[3], to place vertices into different partitions. Then, for the
boundary vertices in each partition, it will extend the partition
by replicating the vertices that are within m-hop distances from
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Fig. 1: RDF graph, SPARQL query and query decomposition results with regard to two data partitioning methods: Hash
Partitioning and Graph Partitioning with 1-hop Vertex Extension.

the boundary vertices and place them into the current partition.
With such a partitioning method, we can decompose a query
into inner-partition subqueries that contain paths with lengths
up to 2m. For instance, the Figure 1(b) can be decomposed
into the subqueries illustrated in Figure 1(d) with 1-hop vertex
extension. SQ1 has paths whose lengths are equal to 2, which
is the maximum path length in an inner-partition subquery with
1-hop vertex extension.

One can increase the value of m to minimize the necessary
number of subqueries. For example, setting m to 2 in this
example can reduce the number of subquery to 1. However a
greater m would incur massive duplicate data. For example,
the dotted lines in Figure 1(a) shows the partition boundaries
set by applying graph partitioning to divide the vertices into 3
partitions. We can see if we extend each partition using 2-hop
vertex extension, then each partition would nearly duplicate
the complete graph. In this case, even though we have only
one inner-partition subquery, all the three computing nodes
have to perform duplicate computations over almost identical
data and hence diminish the benefit of employing a scale-out
system. Furthermore, if there exist a few high-degree vertices,
a greater m would also incur high data skewness and hence
render a few computing nodes becoming the bottleneck in
parallel processing. A more recent work [19] is aimed at
solving the problem of data skewness by replacing the step of
graph partitioning with a hashing approach. However, the data
duplication problem still remains due to the vertex extension.

In this paper, we argue that a data partitioner should not
only consider the structure of the RDF graph, but also take
into account the structure of the query graph, and propose
a radically different partitioning framework to address the
challenges. We introduce the notion of end-to-end path in
RDF graph and use such path as the finest partition element.
In this way, a complex query containing longer paths does
not need to be decomposed into unnecessarily more number
of subqueries. To reduce data redundancy and further lower
the number of inner-partition subqueries that a complex query
has to be decomposed to, we propose the technique of vertex
merging, which attempts to collocate paths that have share
vertices. With this new partitioning framework, the problem
of optimizing data partitioning is transformed into choosing
an optimal set of vertices to merge so that the query efficiency
is maximized. In particular, we make the following major
contributions in this paper:

• We propose a new RDF data partitioning framework,
which adopts the end-to-end path as the basic partition element

and employs vertex merging to combine paths into partitions.
We formally formulate the balanced path partitioning problem
under this new framework and proof the problem is NP-Hard
and APX-Hard.

• In view of the hardness of the problem, we introduce a
new version of the problem with a relaxed balance constraint.
Then we propose an approximate algorithm that provides a
performance guarantee.

• To enhance the efficiency, we also present two bottom-up
path merging algorithms to partition the paths. The resulting
data partitioning can localize many queries with complex
structures, such as star, chain, cycle and tree, while maintaining
low data duplication and data skewness.

• We propose a partition-aware query decomposition
method to decompose a complex SPARQL query to minimize
the possible cross-node communication. Our data partitioning
method allows a complex query to be decomposed into fewer
number of subqueries and hence be evaluated more efficiently.

• To perform a fair comparison with the state-of-the-art
approaches [15], [19], we implement an experimental system
by adopting a similar architecture as proposed in [15], [19],
where each single node RDF store is powered by RDF-3X [22]
and cross-node communication is implemented on a Hadoop
platform. We conduct an extensive experimental study on
LUBM [11] and SP2Bench [25] benchmarks as well as a large
real-world RDF dataset UniProt [6]. The results show that our
method outperforms the previous approaches by up to two
orders of magnitude, especially for complex queries.

II. RELATED WORK

Hadoop based RDF data systems, such as [16], [23], [24]
directly store RDF data as HDFS files, and distribute these files
by using the file partitioning and placement policies in the
vanilla Hadoop. However, previous studies [9], [17] showed
that, without carefully designed data partitioning algorithms
and data localization strategies, massive I/O cost and commu-
nication overhead would be incurred in these kind of systems.

A popular data partitioning algorithm for RDF data is hash
partitioning [13], [14], [18]. This approach distributes RDF
triples across different partitions by computing a hash key over
the subject or the object of each triple. Hence, hash partitioning
can work well for star queries, but for chain or more complex
queries, its performance is inefficient. Huang et al. [15] use
a graph partitioner, e.g. METIS [3], to place vertices into



partitions and extend each partition by replicating the vertices
that are within m-hop distances from its boundary vertices.
But this approach suffers from a skewed data distribution
and a potentially large amount of data duplication. Wang et
al. [26] propose a more efficient graph partitioner that is
able to partition billion-node graphs. A more recent work
[19] is aimed at solving the problem of data skewness by
replacing the step of graph partitioning with hash partitioning.
This method still cannot solve the data duplication problem.
The partitioning algorithm in [27] uses rooted sub-graphs as
the partition elements and a k-means clustering algorithm to
allocate the rooted sub-graphs to the computing nodes. Instead
of making an in-depth analysis of the RDF data partitioning
problem, this work is mainly focused on designing an efficient
distributed RDF engine.

Another research direction of RDF data partitioning is
dynamic run-time data partitioning, which adapts the data
partitioning scheme according to the run-time changes of
system workload [28]. Our data partitioning algorithm can be
used as the initial partitioning method in [28]. Moreover, the
idea of using our coarse-grained partition element, end-to-end
path, can be applied to the dynamic partitioning algorithms to
further improve their performance.

Trinity.RDF [30] and TriAD [12] are probably the most
recently proposed distributed RDF engines for web-scale
RDF data. Trinity.RDF uses main memory to store the RDF
data and hence can achieve very low data access latency.
Instead of using joins, the authors proposed an efficient
operator, namely graph exploration, to perform SPARQL
queries based on the MPI protocol. TriAD uses a full set
of (subject, predicate, object) permutations as the local data
index and provides a global indexing by the summary graph
technique. To perform joins, it leverages multi-threaded and
distributed executions based on an asynchronous MPI protocol.
While Trinity.RDF and TriAD mainly focus on designing the
scale-out systems, our data partitioning algorithm can be em-
ployed in these systems to further improve their performance
by reducing the communication cost.

III. PRELIMINARIES

A. RDF Graph and SPARQL Query

RDF data, a set of triples (subject, predicate, object), can
be represented as a graph according to the following definition.

Definition 1 (RDF Graph): An RDF graph is a directed
labeled graph, denoted as G = (V,E, LE). V is a set of
vertices, corresponding to all the subjects and the objects of
the RDF triples. E ⊆ V × V is a set of directed edges from
the subjects to the objects. LE is a set of edge labels, referring
to the predicates associated with the edges. A vertex with zero
indegree is called a source vertex and a vertex with zero
outdegree is called a sink vertex. �

A SPARQL [5] query Q can be modelled as a set of
triple patterns. Each triple pattern tp is a triple that contains
variables in the subject, predicate or object. Then Q can be
denoted as Q = {tp1, tp2, ..., tpm}, where tpi (1 6 i 6 m)
is a triple pattern. In fact, triple patterns are connected by
shared subject or object and a join occurs on the shared subject
or object between two connected triple patterns. Thus, the

star chain tree cycle complexdirected cycle

Fig. 2: Query Types

exemplary types of joins in SPARQL are subject-subject join
(S-S join), subject-object join (S-O join) and object-object join
(O-O join). In this paper, we do not consider predicate join,
which is not very common as shown in a previous study [10].

Based on the joins that a SPARQL query contains, we can
classify queries into different categories: star query that only
contains S-S joins, chain and directed cycle query that only
contains S-O joins, tree queries that contains S-S join and S-
O join and some more complex queries. Figure 2 gives some
illustrating examples of different queries.

For distributed SPARQL query processing, there could
be two kinds of query workload: inner-partition query and
cross-partition query. If a query can be processed in parallel
on each computing node without any cross-node data commu-
nication, then it is called an inner-partition query. Otherwise,
the query has to be processed by joining distributed data from
multiple partitions and it is called a cross-partition query.

B. End-to-End Path

Previous researches on RDF data partitioning usually use
RDF triples or vertices as partition elements. As analyzed
above, with these types of partition elements, complicated
queries have to be decomposed into many inner-partition
subqueries and hence incur many expensive distributed joins.

To reduce the number of inner-partition subqueries that a
complex query has to be decomposed to, and hence to save the
cost of distributed joins, we adopt end-to-end paths in an RDF
graph as the partition elements, which is defined as follows:

Definition 2 (End-to-End Path): Let G be an RDF
graph. A path v0e1v1e2v2...emvm is called an end-to-end path
if it satisfies all the following conditions: (i) v0 is a source
vertex or one of the vertices in a directed cycle that does not
contain any vertex with incoming edges from vertices outside
of the cycle, (ii) vm is a sink vertex or there exists a vertex
vi in this path and vm = vi (i.e. there exists a directed cycle).
We call v0 as the start vertex and vm as the end vertex. �

Example 1: Figure 3(a) shows the collection of all end-
to-end paths in an RDF graph. The start vertices include the
three source vertices v1, v2 and v3 as well as vertex v6, one of
the vertices in the directed cycle v6→v7→v10→v6. Here we
use IDs instead of URI and Literal for simplicity. �

Hereafter, unless otherwise specified, we refer to end-to-
end paths as paths.

Theorem 1: Given an RDF graph G, if it is decomposed
into a set of paths according to Definition 2, then every vertex
v and every edge (u,w) in G exist in at least one path. �

The proof is omitted here (see [1] for details).

IV. PROBLEM FORMULATION

In this section, we present the model of our new partition-
ing framework and a formal problem statement.
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Fig. 3: Paths and Query Decomposition

A. Path Partitioning Model

The k-way path partitioning plan is defined as follows:

Definition 3 (k-way Path Partitioning Plan): Given an
RDF graph G=(V,E), a k-way path partitioning plan P over
G is to divide all the end-to-end paths of G into k nonempty
and disjoint partitions {P1, ..., Pk}, where Pi contains an
exclusive subset of end-to-end paths. �

A path partitioning plan has the following property.

Theorem 2: Given a path partitioning plan P , all queries
that only contain S-O joins (i.e. chain and directed cycle
queries) are inner-partition queries. �

Proof: Suppose we have an RDF graph G and a query
Q only contains S-O joins. Each subgraph µ(Q) of G that
matches Q is either a general path or a directed cycle in G.
Thus, there must exist at least one end-to-end path ep such
that ep contains µ(Q). In other words, µ(Q) is a subgraph of
end-to-end path ep.

In our path partitioning model, each path is assigned to
exactly one partition and each partition contains a number of
paths that may or may not have common vertices. Given a
path partitioning plan, we can perform query decomposition
by making use of the concept of merged vertex defined as
follows:

Definition 4 (Merged Vertex): A vertex v is called
merged if all paths that contain v are in the same partition.
�

We will see how this concept can be used for query
decomposition in the next subsection.

B. Query Decomposition Model

A query will be decomposed into a set of inner-partition
subqueries. And the final query output can be calculated by
joining the results of these subqueries. To reduce the cost of
performing such expensive distributed joins, we need to reduce
the number of subqueries as much as possible.

Note that a SPARQL query can be represented as a
graph, which also consists of a set of paths. Therefore a
query Q, can be first decomposed into a set of subqueries
Q={SQ1, ..., SQm}, each of which is a chain or a directed
query only contains S-O joins. As stated in Theorem 2, each
SQi is an inner-partition query for any given path partitioning
plan. If two subqueries are connected by shared vertices, it

means there is a join between these two subqueries, denoted by
SQi ⊲⊳Vi,j

SQj , where Vi,j is the set of their shared vertices.

To further reduce the number of subqueries, we attempt to
exploit the opportunity to combine some subqueries. Specif-
ically, if the join between two subqueries can be performed
in parallel without cross-node communication, then we can
combine them into a new inner-partition subquery. Whether it
can be done depends on the location of their shared vertices,
which is stated in the following theorem.

Theorem 3: Given two inner-partition subqueries SQi

and SQj that share a set of vertices Vi,j , the join between
SQi and SQj can be evaluated locally, if there exists one
vertex v ∈ Vi,j such that all matching vertices of v in the
RDF graph are merged. �

Example 2: Given the RDF graph in Figure 3(a) and the
query Q in Figure 3(b), Q can be first decomposed into four
subqueries: from SQ1 to SQ4. Let us look at SQ1 and SQ2.
They have two shared vertices: a constant v1 and a variable
v?x. Each of them has only one matching vertex in the RDF
data shown in Figure 3(a), which is vertex v1 and vertex v4
respectively. Here, as long as one of them is merged in the
partitioning plan, we can combine these two subqueries into a
new inner-partition subquery. �

C. Metrics for Path Partitioning

To define the path partitioning problem, we have to define
the metrics to measure the optimality of different path parti-
tioning plans. In particular, we consider the following three
metrics.

Balance. A well balanced data partitioning plays an impor-
tant role in efficient query processing. A substantial skewed
data partitioning would cause imbalanced query workload
distribution. In addition, the overloaded partition may exceed
the memory capacity of a single machine. Both would lead
to a performance bottleneck in the cluster. Here, we use the
number of the paths in the partition Pi to measure its load,
denoted by |L(Pi)|.

Data Duplication. Note that paths are not independent and
in fact, some paths may share common edges and vertices. If
two paths share some edges and vertices and they are assigned
to two different partitions, then there will be duplicated triples
in the two partitions. The duplicated data will not only incur
extra storage overhead, but also impose duplicated processing
load and possibly produce duplicated outputs. Hence the num-
ber of duplicated triples has significant impact on processing
cost and communication overhead. Formally, we use Dup(P)
to denote the duplicate ratio of a path partitioning plan P ,
which is defined as:

Dup(P) =
1

|E|

∑

e∈E
(|P(e)| − 1) (1)

where |P(e)| denotes the total number of copies of e in the
path partitioning plan P .

Query-Efficiency. As stated earlier, minimizing the num-
ber of inner-partition subqueries that a query has to be decom-
posed to, will reduce the cost of performing distributed joins,
thus enhance the query efficiency. According to Theorem 3,
the more vertices that we can merge, the more subqueries that



we can combine. Formally, the set of vertices are merged is
denoted by V+. Then, the query efficiency depends on the
number of vertices in V+, denoted by

QE(P) = |V+| (2)

D. Problem Statement

In order to find a path partitioning plan for efficient
SPARQL query processing, we aim to make more queries as
inner-partition queries while keeping low data duplication and
balanced load distribution. In the following theorem, we relate
the duplicate ratio to the number of merged vertices.

Theorem 4: Dup(P) satisfies the following property:

Dup(P) 6
(|V |−|V+|)

2

|E|
(k−1).

�

The proof is omitted (see [1] for details).

According to Theorem 4, we find that, the duplicate ratio
can be confined within a bound positively correlated to |V+|,
the number of merged vertices. In other words, maximizing
|V+| would also reduce the duplicate ratio, which is consistent
with our intuition. Therefore, we relax the constraint on
data duplication and focus on maximizing |V+|. The (k,1)-
balanced path partitioning problem, denoted by (k, 1)-BPP
problem, is formally stated as follows:

Definition 5 ((k,1)-BPP Problem): Given an RDF
graph G, find a k-way path partitioning plan P with the
following objective functions:

Maximize |V+| s.t. |L(Pi)| 6 ⌈
n

k
⌉, 1 6 i 6 k

where Pi ∈ P , and n is the number of paths in G. �

Theorem 5: The (k, 1)-BPP problem is (1) NP-Hard, (2)
APX-Hard. �

Proof: Proof sketch. The hardness of (k, 1)-BPP problem
is verified by a reduction from the balanced hypergraph
partition problem, which is NP-Hard [20]. The APX-hardness
of (k, 1)-BPP problem is proofed by a reduction from the 3-
Partition problem [20]. One can see [1] for the details.

According to Theorem 5, the (k, 1)-BPP problem has
no polynomial time approximation algorithm with a constant
approximation factor unless P=NP .

V. APPROXIMATE ALGORITHM

The (k, 1)-BPP problem is hard to approximate. Hence,
we introduce a problem with a relaxed balance constraint,
namely (k, 2)-balanced path partitioning problem, or (k, 2)-
BPP for short, which is to find a k-way path partitioning plan to
maximize |V+| under the constraint that each partition contains
at most ⌈ 2n

k
⌉ paths, where n is the number of paths.

We present a approximate algorithm for (k, 2)-BPP prob-
lem with an assumption that the length of path (i.e. the number
of distinct edges in this path) is bounded by a constant l. We
will show that the algorithm gives a k-way path partitioning
plan such that no partition contains more than ⌈ 2n

k
⌉ paths,
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and the number of merged vertices is at least (1−e−
1

kl )|V ∗
+|,

where V ∗
+ denotes the set of merged vertices of the optimum

(k, 1)-balanced path partitioning.

Our algorithm for solving (k, 2)-BPP problem proceeds in
two phases. In the first phase, we try to merge the vertices as
much as possible. To merge a vertex v, we should combine
all the paths passing v into a path group. In the meantime,
we should keep the sizes of all the path groups less than or
equal to ⌈n

k
⌉. Then, since the size of each path group is not

more than ⌈n
k
⌉, we can pack these path groups into k partitions

evenly, such that no partition contains more than ⌈ 2n
k
⌉ paths.

The approximate algorithm is presented in Algorithm 1.
First of all, we introduce some notations used in the algorithm.
lep denotes the length of a path ep. E (v) is the set of all paths
passing v. The profit for merging a vertex is counted as 1,
because mering a vertex increments |V+| by 1. The weight of
merging a vertex is denoted as w(v) =

∑

ep∈E (v)
1
lep

. A higher

weight means merging this vertex might end up with a larger
path group. Then profit-weight ratio of merging v is counted
as 1

w(v) , which is used to rank the vertices in the algorithm.

The algorithm starts by generating all the paths within an
RDF graph. Here, the critical step is to generate the set of start
vertices used to generate the paths we need. First, all the source
vertices are included in the set. Since there could exist some
vertices that are not reachable from any source vertex, (e.g.
a directed cycle v6→v7→v10→v6 in Figure 3(a)), we choose
the vertex with the minimal ID in such a directed cycle as a
start vertex (e.g. v6). After generating the set of start vertices,
we use a depth-first search algorithm starting from each start
vertex to generate all the paths. For brevity, the details of this
step is omitted in the pseudo-code .

Since no vertex has been merged yet, in the initial set of
path groups is in the form of Res={{ep1}, {ep2}, ..., {epn}}
(line 3), i.e. each group contains one path. Then for each
subsets of V that contain two vertices, we attempt to merge its
two vertices. If the merging dose not make the size of any path
group exceeds size constraint (line 5, maxpg(V+) denotes the
size of the largest path group after merging all the vertices in
V+), then we complete the merging solution by using a greedy
heuristic. This is achieved by choosing vertices to be merged
one by one from the remaining vertices in descending order
of their profit-weight ratios (i.e. 1

w(v) ), while maintaining the



Algorithm 1: Approximate Algorithm

Input: a set of path EP = {ep1, ..., epn} and vertex set V
Output: k-way path partitioning plan P

1 foreach v ∈ V do

2 E (v)← all paths contain v; w(v)←
∑

ep∈E (v)
1

lep
;

3 Res← {{ep1}, {ep2}, ..., {epn}};
4 Res′ ← ∅; V ′

+ ← ∅;
5 foreach V+⊂V such that |V+|=2 and maxpg(V+)6⌈

n
k
⌉ do

6 Greedy(V+, V \V+, Res);
7 V ′

+ ← argmax(|V+|, |V
′
+|); Res′ ← Res(V ′

+);
8 foreach PGi ∈ Res′ do
9 Pj ← AssignPGToPartition(PGi)

Function: Greedy(V+, V
′, Res)

10 while V ′ 6= ∅ do

11 Choose v with the largest 1
w(v)

;

12 if maxpg(V+ ∪ {v}) 6 ⌈
n

k
⌉ then // Merge(v)

13 Res← Res.Union (v); V+ ← V+ ∪ {v};
14 V ′ ← V ′\{v}

constraint on the size of each path group (line 10-14). To merge
v, we should combine all the path groups that contains paths
passing v. This operations is implemented by using the Union
function of the disjoint set data structure [8] (line 13). Finally,
we choose the merging solution with the largest cardinality
(line 7).

After obtaining the best merging solution, we need to
assign the path groups into balanced partitions. It is known that
the k-way balanced partition problem is NP-Complete [20].
The function AssignPGToPartition gives a greedy strat-
egy for selecting the partition that the path group is assigned
to (line 8-9). To get a balanced distribution, it sorts all path
groups by their numbers of paths in descending order. Then it
proceeds to assign path groups one by one in sorted order to
the partitions and at each step, the partition with the smallest
size is chosen.

Complexity Analysis. The algorithm first generates the
paths which scans all the edges, thus the complexity is
O(|V |·|E|). For each subset of V that contains two vertices,
it scans all remaining vertices in V \V+, whose complexity is
O(|V |3). The complexity of the union operator of the disjoint
set data structure is nearly O(1) [8]. Thus, the total complexity
is O(|V |3). The final placement is mainly the cost of sorting,

whose complexity is O(|Res′| log|Res′|). �

Example 3: Figure 4 shows an example that runs
the Algorithm 1 on the RDF graph in Figure 3(a).
First, E (v1)={ep1, ep2}, E (v2)={ep3, ep4}, E (v3)={ep5},
E (v4)={ep1, ..., ep4}, E (v5)=E (v8)=E (v9)={ep1, ..., ep6},
E (v6)=E (v7)={ep6, ep7} and E (v10)={ep7}. Initially, we
have Res={{ep1}, ..., {ep7}}, and suppose that V+={v1, v2}.
Then we merge v1 and v2 in Step 1. Take merging v1
as an example, it is to union all elements in Res that
contain the paths in E (v1). After merging v1 and v2, we
have that Res={{ep1, ep2}, {ep3, ep4}, {ep5}, {ep6}, {ep7}}.
Then, v6 and v7 have the largest value of 1

w(v) , thus

we merge v6 and v7 and add them into V+. We have
Res={{ep1, ep2}, {ep3, ep4}, {ep5}, {ep6, ep7}} as shown
in Step 2. In the Step 3, we merge v4, and get
Res={{ep1, ep2, ep3, ep4}, {ep5}, {ep6, ep7}}. After that we
can not merge any other vertices. Suppose this merging

solution is the best one. Thus, we assign these three path
groups into two partitions evenly, P1={ep1, ep2, ep3, ep4} and
P2={ep5, ep6, ep7}. In this example, we do not consider v3
and v10. This is because E (v3) and E (v10) only have one
element, which means merging v3 and v10 do not make any
changes on Res. We can directly add them into V+. �

Theorem 6: Algorithm 1 achieves an approximation fac-

tor of (1 − e−
1

kl ), i.e., |V ′
+| > (1 − e−

1

kl )|V ∗
+|, where V ′

+
denotes the set of merged vertices of the plan generated by
Algorithm 1 and V ∗

+ denotes the set of merged vertices of the
optimum (k, 1)-balanced path partitioning plan. �

The proof is complicated and hence omitted here (one can
see [1] for details).

VI. BOTTOM-UP PATH MERGING ALGORITHM

In view of the high complexity of the approximate algo-
rithm, we propose two bottom-up path merging approaches in
this section, which can dramatically reduce the complexity and
work well in practice.

A. Merging Start Vertices

A previous empirical study [10] analyzed queries generated
by both human and machine agents over two datasets, and
concluded that the most common types of joins are S-S joins
(60%) and S-O joins (35%). We also find the same conclusion
from the benchmark queries in LUBM [11] and SP2Bench [25]
and queries over UniProt data in the literature [7], [21], [29].
S-S and S-O joins would mainly form the common types of
queries, namely star, chain, cycle and tree queries.

According to this observation, we perform our bottom-up
path merging algorithms in two major steps: (1) we merge all
start vertices, which means all start vertices are in V+; (2) we
design a new weighting method for ordering the remaining
vertices, then merge them according to this order.

The benefits of the first step are two-fold. First, as stated by
the following theorem, merging all the start vertices can make
all star, chain, cycle and tree queries as inner-partition queries,
which are the most common queries as described above.

Theorem 7: If all start vertices are merged, the queries
that only contain S-S and/or S-O joins (such as star, chain,
directed cycle and tree queries) are inner-partition queries. �

Proof: Given an RDF graph G, for each vertex v in G,
there must be a start vertex vs that can reach v. Thus all the
vertices reachable from v can also be reached from vs. If vs is
merged, then all paths starting from vs are in one partition and
hence all vertices reachable from v are also in one partition.
For a query Q only contains S-S and/or S-O joins, there exists
a vertex v that can reach all other verices. Thus, it is an inner-
partition query.

Second, the number of paths in a large RDF dataset would
be huge. If we generate and store all the paths as done in the
approximate algorithm, the space complexity would be very
high, which is Θ(lep ·n), where lep denotes the average length
of the paths and n is the number of the paths. Merging all
the start vertices can significantly reduce the space complexity
of the algorithm to Θ(|Vs|), where Vs denotes the set of the
start vertices. This is because we can use each start vertex to



represent all the paths starting from it, and thus save the cost
of generating and storing them.

Example 4: In Figure 3(a), after merging all start vertices,
start vertex v1 is used to represent ep1 and ep2. �

B. Vertex Weighting

After merging all the start vertices, we attempt to order
the remaining vertices for merging by using their profit-weight
ratios as done in the approximate algorithm. Here, the profit
for merging a vertex v is also counted as 1, however the weight
of merging v cannot be easily calculated if we do not generate
all the paths. Thus we adopt a heuristic that merging a vertex
v shared by a larger number of paths might end up with a
larger path group. Then, the weight of merging a vertex is
denoted by w′(v) = Np(v), where Np(v) is the number of
paths that contain v. The value of Np(v) can be estimated by
the following method without generating all the paths.

First, we give a theorem to show how to exactly compute
the number of the paths that contain a vertex v as follows:

Theorem 8: Given an RDF graph G = (V,E), Np(v) can
be computed by the following equation:

Np(v) = Ip(v)×Op(v) (3)

where Ip(v) denotes the number of distinct paths from the start
vertices to v that do not contain any cycle and Op(v) is the
number of distinct paths from v to the end vertices. If v is a
start vertex, then Ip(v)=1. Similarly, Op(v)=1 if v is an end
vertex. �

Example 5: In Figure 3(a), Ip(v4)=2 and Op(v4)=2,
since the number of paths from start vertices to v4 is two
(i.e., v1→v4 and v2→v4) and the number of paths from v4
to end vertices is also two (i.e., v4→v9→v8→v5→v9 and
v4→v5→v9→v8→v5). Thus, we have Np(v4)=4. �

According to this theorem, we can divide the estimation
into two parts: estimating Ip(v) and estimating Op(v). We
define a recursive equation for estimating Ip(v) and Op(v) as
follows:

Ip(v)=
∑

u∈I(v)
Ip(u) and Op(v)=

∑

u∈O(v)
Op(u) (4)

where I(v) denotes the in-neighbors of v and O(v) denotes
the out-neighbors of v.

We only discuss the estimation of Ip(v) below and we can
estimate Op(v) in a similar way. A solution to compute Ip(v)
can be implemented by iterations as follows:

Ip(v)k = (1− α) + α ·

∑

u∈I(v) Ip(u)k−1
√

∑

u∈I(v)(Ip(u)k−1)2
(5)

where Ip(v)0 = 1, α denotes a decay factor, and
√

∑

u∈I(v)(Ip(u)k−1)2 is used to normalize.

Let A denotes the adjacency matrix of RDF graph G
and Ip denotes the estimated values of all the vertices. The
equivalent matrix equation form is:

Ip = (1− α) · 1+ α ·
A · Ip

||A · Ip||2
(6)

This computation can be easily implemented in a parallel
processing framework, such as MapReduce framework, where
each vertex iteratively gets the update information from its
neighbors (see [1] for details).

Theorem 9: Equation (6) is convergent. �

This can be proved by power iteration theory.

C. Class-based Vertex Weighting

In this section, we propose an alternative heuristic to
compute the weight of each vertex, which is suitable for RDF
graphs that contain rdf:type labels and can provide an even
more efficient query decomposition approach.

According to the RDF W3C Recommendation, predicate
rdf:type can be used to state that a resource, i.e. a vertex in
the RDF graph model, is an instance of a class (we consider the
resources without a predicate rdf:type are of the same class). To
provide a more efficient query decomposition, we can leverage
the class hierarchical information implied in an RDF dataset.

To understand how this can be done, let us first consider
under what conditions we can combine two inner-partition
subqueries, say SQi and SQj , into a new inner-partition
subquery. Suppose SQi and SQj share a common vertex v.
They can be combined to an inner-partition subquery if all the
vertices in the RDF graph that can match v have been merged.
To determine if this condition is met, we need to consider two
cases: (i) v is a constant and (ii) v is a variable. In case (i), v
only has one matching vertex in the unpartitioned RDF graph,
so we can build an index to quickly determine whether this
vertex has been merged.

Unfortunately, for case (ii), v could have an unknown num-
ber of matching vertices in the unpartitioned RDF graph and
there is no efficient way to determine if all these vertices have
been merged without actually evaluating the query. Fortunately,
we observe that many queries often use rdf:type to indicate
which class a variable v belongs to. For example, almost all
the queries specified in the popular RDF benchmarks, such as
LUBM and SP2Bench, and those used in previous studies [7],
[11], [19], [21], [25], [29], exhibit such property. So if we
know that all the vertices in the RDF graph belonging to the
same class as v have been merged, then we can ensure that SQi

and SQj can be combined into a new inner-partition subquery.
Taking use of such side-information can effectively help reduce
the number of subqueries.

Therefore, we use the following weighting method so that
the algorithm will merge vertices with the same class at the
same time and then we can use such information to generate
the better query decomposition.

Definition 6 (Class-based Vertex Weighting): Given an
RDF graph G = (V,E), let C = {T (v)|v ∈ V } be a set
of classes of the vertices, where T (v) represent the class of
v. We use the average weight score of all the vertices in class
Ci (Ci ∈ C) as the weight of Ci, denoted as wclass(Ci). �

Then, we assign a weight value to each vertex using the
following strategy. All the vertices in each class are assigned
the same weight value wclass(v) (v ∈ V \Vs), denoted by:

wclass(v) = wclass(T (v)), T (v) ∈ C (7)



Algorithm 2: Generating Start Vertices List

Input: G = (V,E)
Output: a list of start vertices S(v) for each vertex v

1 Vs ← GeneratingStartVertex(V,E);
2 foreach v ∈ V do
3 Activate(v);
4 if v ∈ Vs then S(v).Add(v);
5 else S(v)← ∅ ;
6 repeat
7 foreach active v ∈ V do
8 foreach u ∈ out-neighbor(v) do
9 S(u).Add(S(v));

10 if S(u) is updated then
11 Activate(u); Signal;
12 else Deactivate(u);
13 until no update signal;

D. The Complete Algorithm

In this section, we present the bottom-up path merging
algorithm and its implementation details.

Our algorithm can be divided into two phases. In the first
phase, Algorithm 2 is run to search a list of start vertices S(v)
for each vertex v, where S(v) contains all the start vertices
that can reach v. Specifically, the algorithm initially sets the
S(v)=v if v is a start vertex, otherwise S(v) is set as empty.
Then the algorithm iteratively propagate the S(v) of each
vertex to its out-neighbors, until there is no update of S(v)
occurred.

Example 6: In Figure 4, all the lists of start vertices of
each vertex are S(v4) = {v1, v2}, S(v5) = S(v8) = S(v9) =
{v1, v2, v3, v6} and S(v7) = S(v10) = {v6}. �

After the previous phase, we run Algorithm 3 to perform
path merging. Initially each path group contains one start
vertex, which means all paths starting from that start vertex
are merged (line 1). Then the algorithm merges the remaining
vertices in descending ordering of 1

wclass(v)
or 1

w′(v) (line 3-

7). After the merging iterations stop, each resulting path group
will be generated by extending each start vertex vs in this path
group with all the paths starting from vs (line 8-9). Finally,
the function AssignPGToPartition selects the partition
that the path group is assigned to (line 10-11).

Example 7: Using the same example in Figure 3(a),
the first step is to merge all start vertices, then we have
Res={{v1}, {v2}, {v3}, {v6}}. Suppose that 1

wclass(v4)
is the

largest and S(v4)={v1, v2}. Then, at step 2, v4 is merged, thus
Res={{v1, v2}, {v3}, {v6}}. We also merge v7 and v10, after
that Res={{v1, v2}, {v3}, {v6}}. Finally, the path groups are
assigned onto two partitions, P1={v1, v2} and P2={v3, v6}.
�

Complexity Analysis. Algorithm 2 scans all the edges,
and hence the total complexity is O(|E|). In Algorithm 3, the
while loop is to merge all the vertices in V \Vs. Thus, the
complexity of path merging is O(|V |). In addition, the total
complexity of path extension is O(|E|). The final placement of
path groups to the final partitions is mainly the cost of sorting,

whose complexity is O(|Res| log|Res|). �

Algorithm 3: Bottom-Up Path Merging Algorithm

Input: {S(v)|v ∈ V }, all start vertices Vs

Output: a k-way partitioning result {P1, ..., Pk}
1 Res← {{vs1}, {vs2}, ..., {vsm}}, where vsj∈Vs ;
2 V ′ ← V \Vs ;
3 while V ′ 6= ∅ do

4 Choose v with the largest 1
wclass(v)

(or 1
w′(v)

) ;

5 if maxpg(V+ ∪ {v}) 6 ⌈
|Vs|
k
⌉ then

6 Res← Res.Union (v); V+ ← V+ ∪ {v} ;
7 V ′ ← V ′\{v} ;
8 foreach PGi ∈ Res do
9 PGi ← ExtendByPaths(PGi);

10 foreach PGi do
11 Pj ← AssignPGToPartition(PGi);

VII. QUERY DECOMPOSITION

In the previous sections, we have presented the path-based
partitioning approaches, which are able to carefully partition a
big RDF graph into path preserving data partitions. If a query
is inner-partition query which can be executed locally without
collaboration between computing nodes, it will be sent to the
local engines running at the individual nodes. The query will
be processed and the results will be returned directly. However,
not all queries are inner-partition queries. If a query is a cross-
partition query, which has to be evaluated involving distributed
joins, the query has to be split into inner-partition subqueries.
Then the final results will be processed by joining the results
of all the inner-partition subqueries in a distributed manner
using MapReduce jobs [15]. In this section, we present how
to perform query decomposition.

According to our query decomposition model and Theo-
rem 7, given a query Q, we first decompose Q into a set of
subqueries, SQ={SQ1, ..., SQm}, where each SQi consists
of a start vertex of Q and all vertices that can be reachable
from this start vertex and the corresponding edges. Thus each
SQi is a subquery that only contains S-S and/or S-O joins.
Then we attempt to further reduce the number of subqueries
by combining some of them. Specifically, given two subqueries
SQi and SQj , suppose Vi,j is the set of shared vertices
between them. According to Theorem 3, if one of the vertices
Vi,j is a constant and it appears to be merged after looking
into our index, then we merge these two subqueries into a
new subquery, which replaces SQi and SQj .

If the shared vertex is a variable and we use class-based
weighting, then we see if this variable has a known class
(i.e. rdf:type) and all vertices in this class are merged. If
both are true, then these two subqueries can be merged. We
can continue this process until we get a number of inner-
partition subqueries that cannot be further merged. This will
produce a minimal number of subqueries given a path-based
data partitioning plan.

VIII. EXPERIMENT

We use a cluster of 20 computing nodes for all experiments.
Each node in the cluster has two processors at 2.4GHz, 6GB
RAM and a 500GB hard disk.

We compare our approach with the state-of-the-art RDF
data partitioning algorithms proposed in [15] and [19]. To



TABLE I: RDF Datasets
Dataset #Triple (|E|) #Entity (|V |) #Class N3 File Size

LUBM-Tiny 6K 2K 14 1 MB

LUBM-1 100K 27K 14 18 MB

LUBM-10 1,200K 315K 14 222 MB

LUBM-1000 138M 33M 14 24.1 GB

LUBM-2000 276M 66M 14 47.4 GB

LUBM-5000 691M 164M 14 118.8 GB

LUBM-10000 1,382M 329M 14 237.8 GB

UniProt 1,975M 619M 120 543.3 GB

SP2Bench-500M 500M 222M 12 51.4 GB

TABLE II: Queries
Star Chain Tree Complex

LUBM Q1, Q2 Q8, Q11, Q12 Q7, Q9 Q3, Q4, Q5, Q6, Q10

UniProt Q2 Q5 Q1, Q3, Q4, Q6

SP2Bench Q1 Q2 Q3

perform a fair comparison, we follow the implementation
and setup of the distributed RDF processing system proposed
in [15], [19] and take use of RDF-3X [22] and Hadoop to
build the system. We refer to our approximate algorithm as
Path-AX, and refer to the bottom-up path merging algorithms
with vertex weighting and class-based vertex weighting as
Path-BM and Path-BMC respectively. We also implement a
baseline path partitioning algorithm, called Path-Hash, which
partitions paths by hashing the start vertex of each path.
Furthermore, we implement the algorithm proposed in [15],
which uses METIS [3] as the graph partitioning tool and
applies undirected one-hop (un-one) and undirected two-hop
(un-two) vertex extension. Finally, we implement the semantic
hash partitioning algorithm, 2-hop forward (2f), in [19] that is
reported to perform the best in most cases. The 2f extends each
vertex with a 2-hop forward expansion to form a subgraph and
then hash such subgraphs to the computing nodes.

For the experiments, we use nine datasets, from
LUBM [11], UniProt [6] and SP2Bench [25]. The properties
of these data are listed in Table I. The LUBM and SP2Bench
are benchmark generators. The UniProt is a real-world protein
dataset. All the benchmark queries (see [1] for details) come
from [7], [11], [19], [21], [25], [29], covering most types of
queries mentioned earlier in the paper, as shown in Table II.

Table III shows the comparison among different path
partitioning algorithms. As one can see, it takes 175 minutes
to run Path-AX on an RDF graph with 6K edges and 2K
vertices. Path-AX cannot finish processing over LUBM-1 and
LUBM-10 within 3 days. However, Path-BM and Path-BMC
only need several seconds to partition those two datasets. In
addition, they perform well in maximizing the number of
merged vertices. Hence, we only consider Path-BMC in the
following experiments. A comparison of query performance
between Path-BM and Path-BMC is shown in Section VIII-D.

A. Partitioning Time, Data Balance and Duplication

We explore the impact of parameters on the partitioning
time, data load balance and data duplication of the data
partitioning algorithms. Note that, we cannot get METIS to
work on larger datasets, such as LUBM-5000, LUBM-10000,
SP2Bench-500M and UniProt, due to insufficient memory.
Therefore we can only collect results for the graph partitioning
algorithm over the LUBM-2000 dataset.

Table IV shows the data partitioning time for different
algorithms (METIS and path merging phase in Path-BMC

TABLE III: Comparison of Path Partitioning Algorithms

Algorithms
LUBM-Tiny LUBM-1 LUBM-10

|V+| Time |V+| Time |V+| Time

Path-AX 1.6K 175 min N/A > 3 days N/A > 3 days

Path-BM 1.7K 0.9 sec 24.2K 2.8 sec 303.8K 20.6 sec

Path-BMC 1.3K 0.9 sec 18.4K 2.7 sec 220.8K 20.1 sec

TABLE IV: Data Partitioning Time
un-one un-two 2f Path-Hash Path-BMC

LUBM-2000 220 min 294 min 79 min 65 min 81 min

LUBM-10000 N/A N/A 273 min 314 min 376 min

UniProt N/A N/A 852 min 896 min 958 min

SP2Benck-500M N/A N/A 156 min 149 min 169 min

run on a server with 24GB RAM). The un-one and un-two
approaches have the longest partitioning time, since running
METIS takes a lot of time. Path-Hash, 2f and Path-BMC can
achieve more efficient data partitioning, while Path-BMC is
slightly slower due to the cost of calculating the weights and
merging the vertices.

The duplication ratios (Eq. (1)) achieved by all the algo-
rithms are listed in Table V. As one can see, the numbers
of duplicated triples of un-one and un-two approaches are
very large. It can be attributed to the existence of high-degree
vertices. Furthermore, by increasing the vertex extension from
one-hop to two-hop, the number of duplicated triples grows
rapidly. The 2f algorithm can significantly improve the data
duplication, which is consistent with the results reported in
[19]. Our Path-BMC achieves a even more dramatic reduction
on data duplication. This is because many vertices are merged
in this case and the triples involving the merged vertices
are ensured to have only one copy. For the case of Path-
Hash, although the load is balanced, the data duplication is
rather high. This is because this algorithm fails to consider the
common vertices and edges among paths.

For data distribution, in Table V, we reported the standard
deviation (σ) of the percentage of triples allocated to each
partition. The un-one and un-two approaches have a very
skewed data distribution. Moreover, un-two could cause a
large number of duplicated triples at some small number of
nodes. For example, one computing node contains 21.2% of
the total triples, which is almost a duplication of the LUBM-
2000 dataset. This is because some high-degree vertices are
allocated to one partition. The highly loaded nodes will be the
bottleneck for parallel processing. Path-Hash and 2f do not
have such problems and only have some slight data imbalance.
Path-BMC has the most balanced data distribution.

B. Query Performance

As un-one and un-two use METIS, which cannot handle
larger datasets, we only use LUBM-2000 dataset for the

TABLE V: Data Balance and Data Duplication

Algorithms
Data Balance Data Duplication

SD (σ) Max Partition Size Dup(P) (Eq. (1))

LUBM-2000

un-one 0.0215 11.8% 0.22
un-two 0.0438 21.2% 2.00

2f 0.0036 6.1% 0.12
Path-Hash 0.0012 5.9% 1.66
Path-BMC 0.0001 5.0% 0.03

UniProt
2f 0.0032 8.8% 0.45

Path-Hash 0.0063 8.1% 2.02
Path-BMC 0.0021 5.3% 0.28

SP2Benck-500M
2f 0.0025 6.9% 0.20

Path-Hash 0.0043 7.5% 1.78
Path-BMC 0.0018 5.1% 0.17
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(a) Query Performance (LUBM-2000)

LUBM Queries

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

un-one
#SQ 1 1 3 2 3 3 2 1 3 3 1 1

IR (MB) 0 0 6.0 1190.6 660.6 1945.9 67.4 0 124.8 3857.5 0 0

un-two
#SQ 1 1 1 1 1 1 1 1 2 2 1 1

IR (MB) 0 0 0 0 0 0 0 0 0.1 316.2 0 0

2f
#SQ 1 1 1 2 1 1 1 1 3 3 1 1

IR (MB) 0 0 0 1190.6 0 0 0 0 127.5 1765.7 0 0

Path-Hash
#SQ 1 1 1 2 1 1 1 1 1 2 1 1

IR (MB) 0 0 0 566.2 0 0 0 0 0 1602.3 0 0

Path-BMC
#SQ 1 1 1 1 1 1 1 1 1 1 1 1

IR (MB) 0 0 0 0 0 0 0 0 0 0 0 0

(b) Query Decomposition and Intermediate Results Size (LUBM-2000)

Fig. 5: Query Performance, Query Decomposition and Intermediate Results Size (LUBM-2000)
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Fig. 6: Query Processing on Large Datasets

comparison with these two approaches. The results are shown
in Figure 5. We can run 2f, Path-Hash and Path-BMC on larger
datasets, such as LUBM-10000, UniProt and SP2Bench, whose
results are shown in Figure 6.

All the reported numbers are the averages of at least three
runs of the queries. To carefully follow the configuration
presented in [15], we remove the Hadoop’s start-up overhead.
Figure 5(b) shows the number of subqueries into which the
query should be decomposed (#SQ) and the size of the inter-
mediate results need to be transferred during distributed joins
(IR). For Path-BMC, all queries are inner-partition queries, i.e.
they can be processed locally without decomposition.

The first observation is that Path-BMC outperforms other
algorithms on all the benchmark queries and the improvement
is more significant on the queries with long chains or complex
structures, or with large input and low selectivities.

Let us look deeper into Figure 5(a) and analyze each
individual query. Q1 and Q2 are simple and highly selective
star queries, which only contains S-S join with a constant
as the star center, and Q8 is a two-hop chain query. All
these three queries are inner-partition queries for all five
partitioning algorithms. As they are all highly selective and
the local RDF-3X engines can use local indexes to efficiently
retrieve the results, the only reason for the differences in query
performance is the different amount of data duplication, which
would incur duplicate computation and result generation.

Q11 and Q12 are one-hop chain queries and hence are
also inner-partition queries. But they are not very selective and
hence each local engine has to process a large amount of data.
Thus the performance affected by both the data duplication
and distribution. So we can see un-two performs significantly
than all the other approaches due to its worst data balance.

Q3, Q5, Q6 and Q7 are queries whose paths’ lengths are
at most equal to 2, which means only the un-one needs to
decompose them into 2 or more subqueries. Therefore, un-one

performs significantly worse than the others in most cases.

Q9 is a highly selective tree query whose paths are quite
long (up to 5). Thus, except Path-BMC and Path-Hash, the
other algorithms have to decompose it into multiple subqueries
and then join the intermediate results using MapReduce on
Hadoop. As shown in Figure 5(b), un-two decomposes Q9 into
2 subqueries, while un-one and 2f have to decompose it into
3 subqueries, some of which are not very selective. Therefore,
for un-one and 2f, a large amount intermediate results have to
be transfered across computing nodes to perform distributed
joins. In this case, Path-BMC improves over these approaches
by up to two orders of magnitude.

Q4 and Q10 are more complex queries that contain all
three types of joins. In particular, Q4 has to be decomposed in
the approaches of un-one, 2f and Path-Hash, which perform
significantly worse than both un-two and Path-BMC due to
the large amount of intermediate results. Q10 is a selective
query, however, all approaches except Path-BMC have to
decompose it into several un-selective subqueries, which could
incur a large amount of intermediate results. Thus, Path-BMC
outperforms all the other algorithms two to three orders of
magnitudes. We also observe that the memory consumption is
another critical aspect in addition to I/O cost and communi-
cation cost for expensive queries, which will further discussed
in Section VIII-C.

In Figure 6(a), we find that the results of query performance
in LUBM-2000 is similar to those for LUBM-10000. However,
with a greater size of datasets, a greater performance improve-
ment can be achieved by using Path-BMC in comparing to 2f
or Path-Hash, especially for complex queries like Q4, Q9 and
Q10. This is because the sizes of intermediate results become
larger when the sizes of datasets increase.

Figure 6(b) presents the results for UniProt dataset. Q3,
Q4 and Q6 are tree queries with a height of 3. The 2f needs
to decomposed them into 2 subqueries. In addition, one of
the subqueries is not very selective, leading to expensive
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Fig. 7: Query Performance in Varying Dataset Size (from LUBM-1000 to LUBM-10000)
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Fig. 8: Query Performance in Varying Cluster Size (LUBM-2000)

distributed join and large amount of communication cost.
Thus, 2f has very bad performance for these two queries. The
rest queries in UniProt are inner-partition query for all three
algorithms, the query performance only depends on the data
redundancy and data distribution.

In Figure 6(c), Q2 needs to be decomposed in 2f. Q1
and Q3 are inner-partition query for all three algorithms. The
performance of the different methods is consistent with the
previous datasets.

C. Scalability

Data size. In Figure 7, we choose four typical queries to
show the scalability of different partitioning algorithms. For
Path-BMC, as the number of triples increases, the execution
time of each query also increases. But, we observe that the
increase of execution time is sublinear or nearly linear, which
means Path-BMC achieves a good property for scaling. In
particular, Q4 and Q9 are highly selective queries, thus their
performance is not sensitive to the data sizes. Q6 and Q11 are
non-selective queries that have complex structures and large
input. Hence they can benefit from the well-balanced data
distribution and low data duplication of Path-BMC and have
nearly linear scalability.

For 2f and Path-Hash, the execution time increases more
rapidly than Path-BMC. It is interesting to look at Q4 in
particular. Both 2f and Path-Hash need to decompose Q4 into
2 subqueries. When the data size is small, the number of dupli-
cate triples plays the main role in query performance. As the
data size increases, the size of intermediate results increases
significantly, which incurs a large communication cost and
expensive MapReduce jobs for joining the intermediate results.

Cluster size. This section reports the comparison of the
four algorithms (the results of Path-Hash are similar to those
of 2f and hence we omit Path-Hash here) with varying size of
server cluster. We run LUBM-2000 on the server cluster with
varying sizes, from 1, 5, 10, 15 to 20 computing nodes and
measure the performance of queries Q5, Q6 , Q9, Q10, Q11

and Q12. The results are displayed in Figure 8. We normalize
the query execution time of each query by the execution
time with a single-node RDF-3X engine, and include a linear
speedup line (1, 0.2, 0.1, 0.07 and 0.05 for 1, 5, 10, 15 and
20 computing nodes) for better presentation.

With regard to Path-BMC in Figure 8(d), all queries except
Q9 and Q10 can achieve a faster than linear speedup with an
increasing cluster size. This is because each benchmark query
can be performed locally without the expensive distributed join
operations with Hadoop jobs. For Q9 and Q10, the network
communication delay for aggregating the results from all
computing nodes take up the most portion of query execution
time, and the network communication delays are the same for
different cluster sizes. Therefore, the execution times from 5
to 20 are roughly the same.

For 2f, the query processing time of Q5, Q6, Q11, Q12 is
nearly linear. But, for Q9 and Q10, it has a poor performance
largely due to the fact that these two queries need to be
decomposed.

For un-one and un-two, almost all queries, except Q11 and
Q12 in un-one, cannot benefit from a cluster size increasing
from 5 to 20. There are a number of reasons. The data
distributions in un-one and un-two are highly imbalanced
(Section VIII-A), and the overloaded partitions become the
bottleneck. E.g., for Q10 in un-one, the intermediate results
are approximately 4 GB (Figure 5(b)), regardless of the cluster
size. In addition, the high I/O communication cost, memory
consumption becomes another critical bottleneck [7], [29].
This is because the index, candidate triples and intermediate
results need to reside in the main memory and we observe
frequent swapping happens in this case.

D. Parameter Analysis

In this section, we evaluate the effects of different config-
uring parameters. In particular, we vary the number of merged
classes in Path-BMC, from merging all vertices in first 6



TABLE VI: Different Configurations
Data Balance Data Duplication

#Path Group
SD (σ) Max Partition Size Dup(P) (Eq. (1))

Path-Hash 0.0012 5.9% 1.66 N/A

Path-BMC-6 0.0001 5.1% 0.88 20.6M

Path-BMC-9 0.0001 5.1% 0.19 13.4M

Path-BMC-13 0.0001 5.0% 0.03 80.4K

Path-BM 0.0001 5.0% 0.03 72.4K
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Fig. 9: Performance of Different Configurations

classes to first 13 classes (Path-BMC-6, Path-BMC-9 and Path-
BMC-13), and compare them with Path-BM and Path-Hash on
LUBM-2000 dataset.

Table VI shows the experimental results of data balance,
data duplication and the number of remained path groups. As
expected, as the number of merged classes increases, the dupli-
cation are decreased rapidly and the number of remained path
groups is reduced. Benefiting from the path group placement
strategy, the data distribution is very balanced. In Figure 9,
we explore the differences on query answering time. For Q4
and Q10, we observe a substantial performance difference
among different parameters. The performance of Path-BMC
with the lower number of merged classes is much poorer,
even underperforms the other parameters up to nearly two
orders of magnitude. This is because Q4 (or Q10) need
to be decomposed into two subqueries with the number of
class merged smaller or equal to 7 (or 5). Path-BM can
achieve good data balance and low duplication and can deliver
acceptable query performance. However, Q4 and Q10 need to
be decomposed into 2 subqueries with Path-BM due to the
inferior query decomposition strategy associated with Path-
BM, and hence it does not perform well for these two queries.

IX. CONCLUSION

In this paper, we analyze the limitation of the existing RDF
data partitioning methods and then propose path partitioning,
a novel and effective data partitioning technique for scalable
SPARQL query processing over big RDF graphs. By parti-
tioning the big RDF dataset into multiple path preserving data
partitions, we can make many complex SPARQL queries to
be inner-partition queries and hence can successfully avoid
or largely reduce the cost of distributed joins over the large
RDF dataset. Our experimental results verify that the proposed
approach can localize many complex queries while maintaining
balanced data distribution and minimizing data duplication,
and hence dramatically outperforms the state-of-the-art data
partitioning approaches by orders of magnitude.
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