
An Automated Approach to Create, Store, and
Analyze Large-scale Experimental Data in Clouds

Deepal Jayasinghe, Josh Kimball, Siddharth Choudhary, Tao Zhu, and Calton Pu.
Center for Experimental Research in Computer Systems, Georgia Institute of Technology

266 Ferst Drive, Atlanta, GA 30332-0765, USA.
{deepal, jmkimball, siddharthchoudhary, tao.zhu, calton}@cc.gatech.edu

Abstract—The flexibility and scalability of computing clouds
make them an attractive application migration target; yet, the
cloud remains a black-box for the most part. In particular,
their opacity impedes the efficient but necessary testing and
tuning prior to moving new applications into the cloud. A
natural and presumably unbiased approach to reveal the cloud’s
complexity is to collect significant performance data by conduct-
ing more experimental studies. However, conducting large-scale
system experiments is particularly challenging because of the
practical difficulties that arise during experimental deployment,
configuration, execution and data processing. In this paper we
address some of these challenges through Expertus – a flexible
automation framework we have developed to create, store and
analyze large-scale experimental measurement data. We create
performance data by automating the measurement processes
for large-scale experimentation, including: the application de-
ployment, configuration, workload execution and data collection
processes. We have automated the processing of heterogeneous
data as well as the storage of it in a data warehouse, which we
have specifically designed for housing measurement data. Finally,
we have developed a rich web portal to navigate, statistically
analyze and visualize the collected data. Expertus combines
template-driven code generation techniques with aspect-oriented
programming concepts to generate the necessary resources to
fully automate the experiment measurement process. In Expertus,
a researcher provides only the high-level description about the
experiment, and the framework does everything else. At the end,
the researcher can graphically navigate and process the data in
the web portal.

Keywords-Automation, Benchmarking, Cloud, Code Genera-
tion, Data Warehouse, ETL, Performance, Visualization.

I. INTRODUCTION

As companies migrate their applications from traditional data
centers to private and public cloud infrastructures, they need
to ensure that their applications can move safely and smoothly
to the cloud. An application that performs one way in the data
center may not perform identically in computing clouds [19],
so companies need to consider their applications present and
future scalability and performance. Neglecting the possible
performance impacts due to cloud platform migration could
ultimately lead to lower user satisfaction, missed SLAs (Ser-
vice Level Agreement), and worse, lower operating income.
For instance, a study by Amazon reported that an extra delay
of just 100ms could result in roughly a 1% loss in sales [27].
Similarly, Google found that a 500ms delay in returning search
results could reduce revenues by up to 20% [23].

One of the most reliable approaches to better understand the

cloud is to collect more data through experimental studies. By
using the experimental measurement data, we can understand
what has happened, explain why it happened, and more impor-
tantly predict what will happen in the future. Yet, conducting
large-scale performance measurement studies introduce many
challenges due to the associated complexity of application
deployment, configuration, workload execution, monitoring,
data collection, data processing, and data storage and anal-
ysis. In addition, due to the nature of the experiments, each
experiment produces a huge amount of heterogeneous data,
exacerbating the already formidable data processing challenge.
Heterogeneity comes from the use of various benchmarking
applications, software packages, test platform (cloud), logging
strategies, monitoring tools and strategies. Moreover, large-
scale experiments often result in failures; hence, storing in-
complete or faulty data in the database is a waste of resources
and may impact the performance of data processing.

We address those challenges through Expertus — a flexible
automation framework we have developed to create, store and
analyze large-scale experimental measurement data. In Exper-
tus, we have created tools to fully automate the experiment
measurement process. Automation removes the error prone
and cumbersome involvement of human testers, reduces the
burden of configuring and testing distributed applications, and
accelerates the process of reliable applications testing. In our
approach, a user provides a description of the experiment (i.e.,
application, cloud, configurations, and workload) through a
domain specific language (or through the web portal), and
then Expertus generates all of the resources that are necessary
to automate the measurement process. Next, the experiment
driver uses the generated resources and deploys and configures
the application, executes workloads and monitors and collects
measurement data.

The main contribution of this paper is the tools and ap-
proaches we have developed to automate the data related
aspects. To address data processing and parsing challenges,
we have used ETL (extract, transform, and load) tools and
approaches [21], [22] to build a generic parser (Expertract) to
process the collected data. The proposed parser can process
more than 98% of the most commonly used file formats in
our experimental domain. To address the storage challenge,
we have designed a special data warehouse called Experstore
to store performance measurement data. Our data warehouse
is fully dynamic that is the tables are created and populated



on-the-fly based on the experimental data. More specifically,
at the end of each experiment, we create a set of tables to store
the data, and the schema is solely based on the structure of the
data (e.g., how many columns and tables). Finally, to address
the challenges associated with navigating and analyzing an
enormous amount of performance measurement data, we have
built a web portal which helps users to: navigate the data
warehouse, visualize the data, statistically analyze the data,
and identify interesting performance phenomena from it.

The remainder of this paper is structured as follows. In Sec-
tion II we provide a high level overview about the experiment
automated framework. We discuss our approach to generate
heterogeneous measurements data in Section III and in Sec-
tion IV we discuss about the automated data extractor and
the data warehouse we have developed to store measurement
data. Section V presents our data analysis tool and we evaluate
the effectiveness of our approach in Section VI. Finally, we
provide a discussion of related state of the art approaches in
Section VII, and we conclude the paper with Section VIII.

II. AUTOMATED EXPERIMENT MANAGEMENT
INFRASTRUCTURE

Experiment measurement is a tedious process that consists
of multiple activities, and a typical experiment measurement
process consists of the following three activities:

• Create: preparing the experiment testbed (i.e., cloud) and
deploying and configuring the application.

• Mange: starting the application components in the correct
order, executing workloads, collecting resource monitor-
ing and other performance data, and parsing and upload-
ing the results into the data warehouse.

• Analyze: activities associated with analyzing the collected
measurement data using various statistical and visualiza-
tion techniques to understand and explain performance
phenomena.

In our approach, we have automated all three activities to
provide an efficient way to conduct performance measurement
studies. The high level view of our approach, which details
these activities and some of the tools used in the process,
appears in Figure 1. As shown in the figure, the process
consists of eight activities, a brief description of these follows:

• Experiment Design is the process of creating a set of
experiments that are necessary to evaluate a given appli-
cation in given target clouds.

• Expertus is a code generator which transforms experiment
design specifications into deployment, configuration, exe-
cution, data collection, and parsing scripts that are essen-
tial ingredients to automate the experiment preparation
and execution processes.

• Automation is the process of using generated scripts to
automate platform preparation, application deployment
and configuration, experimental execution, data collec-
tion, and data processing.

• Experiments is the actual execution of workloads and data
collection, in fact, most of the Elba publications belong
to this category.

Fig. 1. Our Approach to Large-scale Experiment Measurements

Fig. 2. Key Components of Automated Infrastructure

• Experstore is a flexible data warehouse that stores and
analyzes resource monitoring and performance data col-
lected through experiment measurements. These data are
in fact heterogeneous and vary significantly depending on
the experiments and monitoring strategy.

• Performance Map is a logical view of experiment results,
for example, an application’s performance across differ-
ent clouds.

• Online/Offline Configuration is the process of using per-
formance data to make configuration decisions at runtime
as well as finding appropriate software settings for new
configurations.

• Telescoping is the process of using collected data to
drive more experiments to deeply understand observed
phenomena.

• Experiment Redesign is the process of creating new
experiments or modifying existing experiments either
to validate online/offline configurations or to prove (or
disprove) performance hypotheses.

We designed the automation infrastructure by combining
multiple modules and built-in flexibility to accommodate new
modules. We employed modular architecture because of its
distinct advantage of enabling us to change one component
without affecting other components. The different modules in
the system are illustrated in Figure 2, and a brief description
of each is given below:

1) Code generator: is the core of the automation which
generates all the necessary resources to automate the
experiment management process. In a nutshell, code
generator takes experiment configuration files as the input
and generates all the required files (e.g., scripts).

2) Expertus Service: the components of automation frame-
work are connected using SOAP and REST APIs. We



created an Axis2 [?] based Web service that supports
APIs for code generation, data extraction, status update,
and information listing. We used the code generation API
to create a command line tool (CMI) for code generation.

3) Experiment Driver: We use a centralized approach for
experiment execution, and the component called, the
experiment driver, is responsible for this task. Code
generator generates all the scripts, and a special script
called run.sh, which maintains the sequence for script
execution. Experiment driver uses run.sh to find the
order of execution. It connects to all the nodes through
SSH/SCP and executes the scripts on the corresponding
nodes. In addition, experiment driver is configured to col-
lect and report information about the user, time, workload
start time and end time and the platform to the Expertus
service through the REST API.

4) Data Extraction: Each experiment produces gigabytes
of heterogeneous data for resource monitors (e.g., CPU,
Memory, thread pool usage, and etc. . . ), response time
and throughput, and application logs. The structure and
amount of collected data vary based on system archi-
tecture (64-bits vs 32-bit, 2-core vs. 4-core),
monitoring strategy and monitoring tools (e.g., sar,
iostat, dstat, oprofile), logging strategy (e.g.,
Apache access logs), and number of nodes and work-
loads. Data extractor is written to help users easily export
experiment data to the data warehouse.

5) Filestore: At the end of each experiment, experiment
driver uploads experiment data to a file server to store
the data in raw format. Some data analysis tools need to
have access to the original data files, so these raw data
files need to be retained. In addition, there are temporal
files and error logs files, which we do not want to put
into the database. Data extractor runs on the file store to
export data from the file store into the data warehouse.

6) Experstore: Is the flexible, extensible and dynamic data
warehouse we have created specifically to store heteroge-
neous experiment data collected through our experiments.

III. AUTOMATED GENERATION OF HETEROGENEOUS
EXPERIMENTAL DATA

In our approach to large scale experimental measurements, we
deploy actual or representative applications (e.g., benchmarks
like RUBBoS [10], RUBiS [11], Cloudstone c [7]) on actual
or representative deployment platforms (e.g., Amazon EC2)
and execute workloads. Through the large scale experiments,
we produce a huge amount of heterogeneous performance
data. The heterogeneous nature of the data is arising from
the nature of the applications, clouds, monitoring tools, and
monitoring strategies. We conduct large-scale experiments and
collect data by fully automating the process, and our code
generator generates all the necessary resources to automate
the process.

The generated resources includes shell scripts as well as
other configuration files (e.g., property files, header files,
action ordering and etc. . . ). In fact, Expertus is designed to

support four key entities in the experiment deployment, con-
figuration and execution. More concretely, it supports artifacts,
constraints, dependencies, and deployment and start order.
These scripts take into account the dependencies among the
various system components, including hardware and hyper-
visor (usually invariant through the experiments), operating
system configuration, and server configurations such as the
database load on the database server.

Once the system is deployed, we execute the workload
against the deployed system. In this step, we run the planned
experiments according to the availability of hardware re-
sources. For example, we usually run the experiments by
increasing the workload. For each workload, we run the easily
scalable (browse only) scenario first, followed by read/write
scenarios. To minimize cache inter-dependencies across ex-
periments, after each batch of experiments, we finish the data
collection, ramp-down the system, stop all servers, and start
the next batch with sufficient ramp-up time. The iterations
continue until all the experiments are finished.

During the experiment execution, the automated infras-
tructure collects information about system resources (e.g.,
CPU, memory), application specific data (e.g., thread pool
usage), application logs (e.g., apache logs), high level data like
throughput and response time, and any other data that the user
wants to collect. This process continues for each and every
workload. In fact, experiments in our domain consist of 50 to
60 workloads, and each workloads runs for approximately 30
minutes. The framework is capable of collecting, managing
and storing data without any help from the user. The data
extractor can use this data to extract and store in the data
warehouse after the experiment is completed.

IV. AUTOMATED EXPERIMENTAL DATA INTEGRATION
AND MANAGEMENT

Here we present the data extractor that we have developed
to process measurement data and the data warehouse solution
that we have developed to flexibly store measurement data.

A. Expertract - Automated Data Extractor

The large-scale experiment measurements with Expertus gen-
erate an enormous amount of metadata in the form of log files,
i.e. structured and semi-structured text files. This data needs to
be extracted and stored in the environmental data warehouse
for later analysis. The primary challenge with this activity is
the fact that different tools and software packages produce the
data of interest, differently. Thus, the goal of an automated
data extractor is to build a generalized parsing approach for
experimental data to support both the known and unknown
data formats. To begin developing an approach, we explored
the more recent and foundational research in the Extract,
Transform and Load (ETL) domain. Next, we built a system
bound by the existing data files known in the environment,
and more specifically, we focused on parsing ‘fixed width’
flat files.



Generally speaking, the log files that comprise our ETL
domain have significant variability. The following categories
are just a few of points of difference:

• Structure - semi-structured: [flat files, delimited files,
HTML] and structured [XML].

• Data Record Structure - what arrangement or construction
within the file represents one data record and how do
the data fields relate - either explicitly or implicitly -
ontologically.

• Data Type - numeric, string and other ASCII characters.
• Data Variability - how consistent the data is within a

specific - either explicit or implicit - data field and across
the fields within a file.

• Data Validity - similar to Data Variability but specifically
related to identifying error conditions within a specific -
either explicit or implicit - data field.

These observations suggest perhaps an alternative view of
the original problem. That is any log file contains data and
an inherent presentation. This presentation is a mixture of
inherent data ontology and human readability factors. Any
successful approach must disambiguate these two concerns.
Specifically, an approach needs to be able to handle three
aspects of any given log file:

• Data - this concerns aspects of data quality and validation.
• Ontology - that is the logical relationship among the data

elements in the file.
• Presentation / Layout - this concerns how the data is

expressed in the file.

During the course of our system design, we focused on four
main monitoring file data patterns, and these cover more than
98% of the monitoring data collected through our experiments.
These patterns are:

1) One header: The most basic case, a given file has one
header. This header can contain a row describing records
and a row describing fields, but it can also just have a
row containing fields.

2) Multiple headers with sequentially corresponding data:
This pattern is basically (1) except that another header
appears later in the file.

3) Multiple headers with non-sequential corresponding data:
This pattern differs from (2) in that data later in the
file matches the first header in the file at some random
position later in the file.

4) Multiple headers appear randomly in the file and data
is entirely non-sequential, i.e., randomly distributed
throughout the file.

We developed the tool to be user interactive, so a domain
expert can help the tool to correctly interpret the data format.
At the end of this process, we build an ontology for the file,
and then we use the created ontology to process the file during
data extraction. We use the previously described approach for
unknown or unseen file formats, but we use existing ontologies
to describe the file format for the known files. Nevertheless,
the matching algorithm that we delivered followed a Greedy

Fig. 3. Experstore - Sequence Diagram for Automated Data Extractor

algorithmic approach–detailed below. We augmented this core
functionality with the following surrounding functionality:

• Simple command line user interface to capture user
instructions for parsing header rows.

• Object-oriented design that supports separating file con-
tents from file format and layout.

• Row-Encoding Algorithm: Only prompt the user when
the system thinks the row is a header row. Headers
have two distinct characteristics: more alphabetic and
special characters relative to the total length of the string.
Noise rows, i.e., rows that should be ignored for later
processing, have one of two properties but not both,
which differentiates them from header rows.

1) Uses length-weighted character frequency to do first
pass encoding.

2) Then check for the prevalence of special characters.
• Header-to-Data Row Matching Algorithm, this algorithm

leverages multiple heuristics to achieve its objective:
– Generate a byte-array representation of the string.
– Compute character frequencies and scale weights

based on character frequency. For example, if a
tab appears once in a string, this character receives
significantly more weight than spaces that occur
in over half of the string. Alphanumeric characters
are marked as 0.

– If more than one header appears in a document, do a
byte-wise comparison of the header row to the row
of data of interest. Whichever header-row of data
comparison results in the lowest absolute difference
is the header selected to process the row.

The sequence diagram shown in Figure 3 represents the
primary instruction flow for the parser. It shows the flow
of events for: initially loading a data structure to hold the
file contents; encoding rows of the data structure to do later
matching; and finally, matching rows, classified as a row of
data, to the corresponding header.

B. Experstore - A Flexible Data Warehouse
The performance and scalability measurement of enterprise
applications is a tedious process, and in most cases, researchers



are unaware of what resources need to be monitored (whether
it be high-level data like response time or throughputs or
low-level data like resource utilization data and application
logs). Moreover, monitoring all the possible resources is not
an option, since this might result in enormous performance
overhead. Hence, a researcher (or a performance engineer)
typically starts with a selected set of resources and gradually
changes the monitoring set based on observed results. For
example, if the issue is caused by CPU, then a researcher might
look into additional data like context switches or interrupts. An
experiment can also be deployed on heterogeneous platforms
(e.g., XEN vs. KVM, 2-core vs. 4-core), hence the structure of
monitoring data may differ from one experiment to another.
Frequently, the user changes the monitoring strategy, which
results in new data formats, new monitoring data. The user
may choose to monitor new resources (possibly using new
monitoring tools) based on the observed results. As a result
of these issues, the experiments data cannot be feasibly stored
on a set of static tables.

In addition, large-scale experiments often result in failures;
hence, storing incomplete or faulty data in the database is a
waste of resources and may impact the performance of data
processing. Most OLAP applications such as experiment data
analysis require joining multiple tables or performing self-
joins. When the tables are huge, processing becomes very time
consuming, and the processing time increases significantly
unless the tables can be loaded into the main memory.

We address these problem through Experstore —a special
data warehouse to store performance measurement data. Our
data warehouse is fully dynamic that is the tables are created
and populated on-the-fly based on the experimental data. More
specifically, at the end of each experiment we create a set
of tables to store the data, and the schema is solely based
on the structure of the data (e.g., how many columns, and
tables). Tables names are created dynamically by combining
experiment ID and timestamp, and names of the tables are
stored in a mapping table called ‘Resource Mapping Table’.
With this approach, if an experiment fails, we can simply drop
all the tables. Since we create tables for each experiment,
data processing becomes highly efficient, because the small
table size (related to each experiment) can be easily joined in
memory.

1) Data to Table Mapping: As mentioned before, the tables
are created dynamically based on the structure of the data. To
achieve this, we create an intermediate representation of the
data, where for each resource monitoring file we describe how
to process the file and which parser to use. One file might
contain data for more than one resource type, for example
CPU, Memory and Network I/O. For each resource type, we
create a ‘profile’, which maps a file’s structure to an applicable
schema. As an example, the profile identifies which columns
from a CSV file correspond to a database table. Next, we have
a mapping, where we specify what profiles are applicable to
a given node. A mapping contains node name, file name and
corresponding profile. A sample profile and a mapping file is
shown below:

Fig. 4. Experstore - Static and Dynamic Tables

Listing 1. Code Listening for Profile and Mapping
<p r o f i l e>

<s e p a r a t o r> ,</ s e p a r a t o r>
<r e s o u r c e−name>CPU0</ r e s o u r c e−name>
<p r o c e s s o r−c l a s s>d a t a i m p o r t . f i l t e r . C S V F i l e P r o c e s s o r
</ p r o c e s s o r−c l a s s>
<column i n d e x = ‘ ‘0 ’ ’ colname = ‘ ‘ u s e r ’ ’ d a t a t y p e = ‘ ‘ d oub l e ’ ’ />
<column i n d e x = ‘ ‘1 ’ ’ colname = ‘ ‘ sys tem ’ ’ d a t a t y p e = ‘ ‘ d ou b l e ’ ’ />
<s t a r t −i n d e x>10</ s t a r t −i n d e x>
<end−i n d e x>0</ end−i n d e x>

</ p r o f i l e>

<mapping nodename = ‘ ‘ Apache ’ ’ f i l n a m e = ‘ ‘ 1 6 9 . 2 5 4 . 1 0 0 . 3 . csv ’ ’
s t a r t w i t h = ‘ ‘ f a l s e ’ ’ endwi th = ‘ ‘ f a l s e ’ ’
p r o f i l e s = ‘ ‘CPU0 , DISK , CPU1 ,NETWORK,SYSTEM ’ ’ />

The structure of the data warehouse is shown in Figure 4.
As shown in the figure, it consists of four static tables to store
experiment metadata (e.g., experiment name, platforms, node
and workload information), which are typically fixed across
experiments. The highlighted tables are the tables, which are
created on-the-fly, as shown in the figure. ‘Resource Mapping
Table’ stores the names of the dynamically created tables along
with the resource names. For example, it has a record for
CPU utilization for experiment ID (EXP ID), and the value is
EXP ID CPU. Likewise, all the monitoring data for a given
experiment is stored. In fact, it has a record for each unique
node, workload, and resource.

During the course of data loading, a user starts with the
results directory and uses the data extraction tools. The tools
internally uses Expertract (Section IV-A) to create the ontolo-
gies for unknown file formats, and then combine it with known
file format to create the mapping file. Finally, the created
mapping file is used to export the raw data to the Experstore
data warehouse.

V. STATISTICAL ANALYSIS OF INTEGRATED
EXPERIMENTAL DATA

Experstore is an attempt on our part to aid in the analysis of a
large amount of data collected from sundry sources. It equips
the user with the capability to identify patterns, trends and rela-
tions, which generally gets obscured by the massive quantities
of data. Also, it equips the user with capabilities to control
the way in which data is represented, which further enhances
his productivity and analytical capabilities. The application
provides a simple interface that facilitates the comparison of



Fig. 6. Architecture - Data Analysis Web Portal

data from seemingly unrelated sources, thereby enhancing the
user’s ability to see and detect potentially interesting, latent
relations that were previously unknown. As an illustration, a
examples graph generated is shown in Figure 5.

We believe the application can be really helpful for any sys-
tem where components have dependencies and hence impact
each other. Moreover, the high degree of customization for
both graphs and data makes the application highly unique.
For example, let’s assume we have a process when it is
scheduled that it is mostly followed by processes that have
heavy disk activity. Such trends are very hard to identify, but
our application makes this trivial to pinpoint.

We have tried to keep the design of the application very
simple and clean. The core of the application is a Node.js
server that runs as a webserver. The whole application is
written using Node.js libraries. On the interface end, the
application uses the HighCharts framework to plot 2-
dimensional graphs and 3D WebGL-surface-plot for 3-
dimensional graphs. The server and the front-end communicate
using jQuery and JSON calls. From the server, we connect to
the MySQL database using the Node.js module, which acts as
a connector. The high level architecture is shown in Figure 6.

A. Approach and Features

Throughout the development, we focused on delivering as
many customization capabilities in the graphs as possible.
Adhering to this principle greatly helped us enhance the utility
of the application. Factors such as the variety of graph types,
the graphing of different scales, and the ability to vary the
values for graph ranges were some of the major challenges
that we faced. In order to achieve the desired results, we
experimented with different approaches for handling the data.

1) Fixed vs. Customizable Data Values: Initially, we de-
signed the application to directly utilize the data that we
obtained from the database for graph generation. But later,
we realized that this makes comparison between values with
significant range differences extremely difficult. Imagine com-
paring something that varies in thousands to something that
has variations in the range of hundreds. We alleviated this
condition by allowing mathematical transformations on values
before they are plotted on graphs. This allowed us to enhance
capabilities. Using the previous example, we could now mul-
tiply the values on the second series by a value, 10 in this
case, making direct comparison with the first series possible.

Fig. 7. Number of Experiment Generated During April-2013

2) Multiple Graphs vs. Multiple Series: While designing
the application, one of the prime concerns was allowing for
the comparison among multiple datasets (many series in the
same graph?). This needed to be weighed against the amount
of information the user would need (how many graphs?). We
later took the hybrid approach of allowing the user to have
multiple graphs each of which could have multiple series. This
greatly enhanced the utility of the application.

3) Result Migration: Another prime concern while design-
ing the application was facilitating the sharing of analytical
data between users, so collaborative efforts could be fruitful.
In order to deliver this feasibly, we had to choose between
building printing or export capabilities. The application can
currently export graphs as a PNG image, a JPEG image, a
PDF document or an SVG vector image.

4) Advanced Graphs: To enhance the capabilities of the
application, we modularized and integrated advanced features
like frequency distribution graphs, bucketed graphs, dynamic
graphs, correlation and cumulative graphs and 3-dimensional
graphs. This helped us model the application in such a way
that future enhancements could be incorporated easily.

VI. EFFECTIVENESS OF THE INFRASTRUCTURE

We have used Expertus extensively to perform a large number
of experiments on different computing clouds; through exper-
imentation, we have collected a huge amount of data with
various data formats, stored them in the data warehouse, and
observed interesting performance phenomena.

A. Active Use of the Tool

Expertus is actively being used for large experimental studies.
As an illustration, we have collected data from a number of
experiments during April 2013. This is illustrated in Figure 7,
and as shown in the figure, we run on average, over 10
parallel experiments daily. In some instances, we run over 50
concurrent experiments.

B. Amount of Data Collected

Success is considered in the number of different experiments
we have performed and amount of data we have collected
through those studies. Expertus has been used for years, and
it has performed a vast number of experiments: spanning 5
clouds (Emulab [9], EC2 [14], Open Cirrus [12], Wipro [13],
and Elba), 3 benchmarks (RUBBoS [10], RUBiS [11], and
Cloudstone [7]), 4 database management systems (CJDBC,



Fig. 5. Data Analysis Web Portal with a Sample Graph

MySQL Cluster, MySQL, PostgreSQL), with various resource
monitoring tools (dstat, sar, vmstat), and with different types
and number of nodes (i.e., 10 to hundred of servers).

Table I provides a high level summary of the many dif-
ferent experiments performed using RUBBoS, RUBiS, and
Cloudstone benchmarks. In the table, experiment refers to a
trial of a particular experiment i.e., execution of a particular
workload against a combination of hardware and software
configurations. Typically, a trial of an experiment takes one
hour which is the aggregated value of: reset time, start time,
sleeping time, ramp-up time, running time, ramp-down time,
stop time, and data copy time. Hence, in Eumlab we have spent
approximately 8,000 hours running experiments. In the table,
nodes refer to the total number of machines we have used
during our experiments. We calculated the number of nodes
by multiplying the number of experiments by the number of
nodes for each experiment. Configuration means the number
of different software and hardware configurations that have
been used by our experiments. Finally, the number of data
points collected describes the amount of data we collected by
running all of our experiments.

TABLE I
NUMBER OF EXPERIMENTS PERFORMED WITH EXPERTUS

Type Emulab EC2 Open Cirrus Elba Wipro

Experiments 8124 1436 430 2873 120
Nodes 95682 25848 4480 8734 430
Configurations 342 86 23 139 8
Data points 3,210.6M 672.2M 2.3M 1328.2M 0.1M

C. Testing for Heterogeneous Data Formats

For the purpose of evaluating the robustness of the parser, the
following file patterns were tested: 1) one header, 2) multiple
header rows with sequentially corresponding data, 3) multiple
header rows with non-sequential corresponding data, and 4)
multiple header rows appearing randomly in the file, and the
data is entirely non-sequential. We used the collected data,
which matched these aforementioned patterns, and Table II
outlines the observed results. Not only were the file patterns
varied but also the structure of the header. Based on the

sample, headers contained either one row or two rows. A
header with one row, Only Field Row Header, only contained
data fields. Alternatively, a header with two rows, Record &
Field Row Header contained a row, which enumerated the
data records, and another row, which listed the corresponding
data fields for each record. For this latter case, the numbers of
records and fields were varied from 1 to the original maximum
values: 8 and 16 respectively. If the headers were correctly
matched to the applicable row of data, the specified test
received a PASS grade; otherwise, it received a FAIL grade.

TABLE II
EVALUATION SUMMARY OF SUPPORTED FILE FORMATS

Pattern Only Field Record & Field
Row Header Row Header

One header PASS PASS
Multiple header (sequentially data) PASS PASS
Multiple header (non-sequential data) PASS PASS
Multiple header (randomly headers) N/A FAIL

D. Data Analysis and Performance Phenomena

We have been using the automated infrastructure heavily
for data analysis, and through our analysis process we have
observed a number of interesting and non-trivial performance
phenomena. We have used most of those findings for our
publications [18]–[20], [24], [25], and we continue to use the
collected data for more publications.

VII. RELATED WORK

Benchmarking is an essential approach used in both academia
and industry to gain an understanding of system behavior,
formation and testing of hypotheses, system configuration
and tuning, obtaining solution information, and resolving
performance bottlenecks. However, there have been relatively
few efforts aimed at building software tools for large-scale
testing of distributed applications and to reducing complexity
of benchmarking [1]–[6]. The ZOO [3] has been designed
to support scientific experiments by providing an experiment
management languages and supporting automatic experiment
execution and data exploration. Zenturio [4] on the other hand



is an experiment management system for parameter studies,
performance analysis and software testing for cluster and grid
architectures.

Our project parallels several others using XML and XSLT
for code generation. For example, the SoftArch/MTE and
Argo/MTE teams have also had favorable experiences using
XML + XSLT generators to “glue” off-the-shelf applications
together [15], [17]. Likewise, XML+XSLT is advocated for
code generation tasks in industry as well [16]. One of the
closest to our approach is Weevil [8], which is also focus
on workload generation and script creation. In fact, later they
observed some of the limitation in their approach and proposed
four enhancements to explore richer scenarios and to obtain
results with greater confidence [5]. To our knowledge, these
efforts have not explored the issues of extensibility, flexibility,
or modularity that is presented here in this paper.

VIII. CONCLUSION

Expertus, our automated experiment management framework,
has been developed to minimize human errors and max-
imize efficiency when evaluating computing infrastructures
experimentally. We have used the framework for a large
number of experimental studies and through them we have
collected a huge amount of data, which we have used for
finding interesting performance phenomena. In this paper, we
discussed the use of the infrastructure for efficiently creating,
storing and analyzing performance measurement data. The
code generator generates the necessary resources to fully
automate the experiment measurement process, and then using
the generated scripts, users can run experimental studies to
actually generate the performance data. The automated data
processor processes heterogeneous data and stores this data in
a flexible data warehouse, built specifically for measurement
data. Finally, the visualization tool helps us to easily navigate
and perform statistical analysis on the data warehouse to find
interesting performance phenomena. We evaluated the pro-
posed automation framework based on its usage, the amount
of data it can accommodate, different monitoring and logs
formats it supports, and finally, the overall effectiveness of
the approach for the scientific community.

Our future work includes, extending the data parser to
support additional data formats, extending the data warehouse
to use No-SQL databases, and extending the visualization tool
to support more customizable graphing capabilities. Google
Fusion Tables [26] provides useful APIs and framework for
processing big data, our future work also includes utilizing
them for processing performance data.

ACKNOWLEDGMENT

This research has been partially funded by National Science
Foundation by IUCRC/FRP (1127904), CISE/CNS (1138666),
RAPID (1138666), CISE/CRI (0855180), NetSE (0905493)
programs,and gifts, grants, or contracts from DARPA/I2O, Sin-
gapore Government, Fujitsu Labs, Wipro Applied Research,
and Georgia Tech Foundation through the John P. Imlay, Jr.
Chair endowment. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation or other funding agencies and
companies mentioned above.

REFERENCES

[1] Y Ioannidis, M Shivani, G Ponnekanti. ZOO: A Desktop Experiment
Management Environment. In Proceedings of the 22nd VLDB Confer-
ence, Mumbai(Bombay), India, 1996.

[2] K L. Karavanic, B P. Miller. Experiment management support for
performance tuning. In Proceedings of the 1997 ACM/IEEE conference
on Supercomputing, Mumbai(Bombay), India, 1996.

[3] R Prodan, T Fahringer. ZEN: A Directive-based Language for Automatic
Experiment Management of Distributed and Parallel Programs. In ICPP
2002, Vancouver, Canada.

[4] R Prodan, T Fahringer. ZENTURIO: An Experiment Management
System for Cluster and Grid Computing. In Cluster 2002.

[5] Y Wang, A Carzaniga, A L. Wolf. Four Enhancements to Automated
Distributed System Experimentation Methods. In ICSE 2008.

[6] S Babu, N Borisov, S Duan, H Herodotou, V Thummala. Automated
Experiment-Driven Management of (Database) Systems. In HotOS
2009, Monte Verita, Switzeland.

[7] A Fox, W Sobel, H Wong, J Nguyen, S Subramanyam, A Sucharitakul,
S Patil, D Patterson. Cloudstone: Multi-Platform, Multi-Language
Benchmark and Measurement tools for Web 2.0. In CCA 2008.

[8] Y. Wang, M.J. Rutherford, A. Carzaniga, and A. L. Wolf. Automating
Experimentation on Distributed Testbeds. In ASE 2005.

[9] Emulab - Network Emulation Testbed. http://www.emulab.net.
[10] RUBBoS: Bulletin board benchmark. http://jmob.objectweb.org/rubbos.

html.
[11] RUBiS: Rice University Bidding System. http://rubis.ow2.org/.
[12] Open Cirrus: Open Cloud Computing Research Testbed. https://

opencirrus.org/.
[13] WIPRO Technologies. www.wipro.com/.
[14] Amazon Elastic Compute Cloud. http://aws.amazon.com.
[15] Cai, Y., Grundy, J., and Hosking, J. Experiences Integrating and Scaling

a Performance Test Bed Generator with an Open Source CASE Tool.
In ASE 2004.

[16] Sarkar, S. Model driven programming using XSLT: an approach to
rapid development of domain-specific program generators In www.XML-
JOURNAL.com. August 2002.

[17] Grundy, J., Cai, Y., and Liu, A. SoftArch/MTE: generating distributed
system test-beds from high-level software architecture descriptions. In
ASE 2001.

[18] Malkowski, S., Hedwig, M., and Pu, C. Experimental evaluation of N-
tier systems: Observation and analysis of multi-bottlenecks. In IISWC
2009.

[19] Jayasinghe, D., Malkowski, S., Wang, Q., Li, J., Xiong, P., and Pu, C.
Variations in performance and scalability when migrating n-tier appli-
cations to different clouds. CLOUD 2011.

[20] Wang, Q., Malkowski, S., Jayasinghe, D., Xiong, P., Pu, C., Kane-
masa, Y., Kawaba, M., and Harada, L. Impact of soft resource allocation
on n-tier application scalability. IPDPS 2011.

[21] Vassiliadis, Panos. A Survey of Extract-Transform-Load Technology.
Integrations of Data Warehousing, Data Mining and Database Technolo-
gies: Innovative Approaches (2011).

[22] Baumgartner, R., Wolfgang, G., and Gottlob, G.,. Web Data Extraction
System. Encyclopedia of Database Systems (2009): 3465-3471.

[23] Kohavi, R., Henne, R.M., Sommerfield, D. Practical guide to controlled
experiments on the web: Listen to your customers not to the HiPPO. In
ACM KDD 2007.

[24] Malkowski, S., Jayasinghe, D., Hedwig, M., Park, J., Kanemasa, Y., and
Pu, C. Empirical analysis of database server scalability using an n-tier
benchmark with read-intensive workload. ACM SAC 2010.

[25] Malkowski, S., Kanemasay, Y., Chen, H., Yamamotoz, M., Wang, Q.,
Jayasinghe,D., Pu,C., and Kawaba, M., Challenges and Opportunities in
Consolidation at High Resource Utilization: Non-monotonic Response
Time Variations in n-Tier Applications. IEEE Cloud 2012.

[26] Google Inc. Fusion Tables. http://www.google.com/drive/apps.html#
fusiontables

[27] G. Linden. Make Your Data Useful, Amazon, November 2006. [Online].
http://home.blarg.net/∼glinden/StanfordDataMining.2006-11-29.ppt


