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 1. The Evolution of Technology 

The confluence of several new technologies enabled a new generation of always attentive 
personalized systems called Virtual Coaches. Virtual Coaches continuously monitors its 
users activities and surroundings, detects situations where intervention would be 
desirable, and offers prompt assistance. Virtual Coaches is the latest phase of a 
technology evolution over the past two decades.  
 
The advent of powerful microprocessors capable of running an operating system with real 
time responsiveness in small, energy efficient packages in the early 1990’s enabled a new 
generation of personal computing systems that provided access to information any time, 
any where. Handheld Personal Digital Assistant (PDA) that could fit in a shirt pocket 
gave access to addresses, notes, and schedules via a new interface access modality 
featuring stylus and hand writing recognition (e.g. graffiti).  
 
Another novel technology, head mounted displays, enabled revolutionary new body worn 
systems, termed Wearable Computers [Siewiorek, Smailagic, Starner 2008], that were 
always on providing instantaneous access to reference information in application areas 
such as complex plant operations, manufacturing, maintenance, and group collaboration. 
 
MEMS (Mircro-electro-mechanical systems) created low cost, low energy sensors that 
could sense physical parameters such as acceleration, orientation, temperature, and light 
that, when coupled with signal processing and machine learning algorithms allowed 
personal systems to infer user context in Context Aware Systems.  
 
Figure 1 depicts the elements of a Virtual Coach. MEMS sensors sample the environment 
and the users interaction with it yielding a perception and awareness (P&A) of the 
surroundings. The data is labeled for interpretation by the Coaching Domain Model. The 
coach is instructed about what to monitor and how to respond to situations as described 
by recommendations and prescriptions prepared by medical staff, caregivers, or even the 
user themselves. The system interacts with the user through a Personal Agency that 
adapts to the user’s capabilities which may be diminished by physical and/or cognitive 
decline. Taking into account the current context and the instructions provided through  
authoring, the Coaching Domain Model engages the user to remind them of activities 
they should be doing. Summaries are also prepared for caregivers and clinicians. 
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Figure 1. Elements of a Virtual Coach 
 
The first generation sensors (accelerometers, light, sound, temperature, Global 
Positioning System- GPS) combined with statistical machine learning algorithms enabled 
whole body activity recognition (e.g. running, standing, sitting, walking, climbing stairs) 
as well as upper body exercises. The amount of physical activity could be measured and 
calories burned could be estimated. User activity could also be inferred from location. 
There are several well-established location approaches for outdoor (GPS - resolution of 
approximately 10 meters world wide, tower cell phone is communicating with – 
resolution 20 meters) and indoor (audio and light fingerprints of rooms) location. There 
are also biological parameter sensors such as pulse, respiration, and even EKG. Statistical 
machine learning has been very effective at categorization. First the raw data, often in the 
form of a two dimensional wave form of sensor value (such as acceleration) versus time, 
is segmented into time based chunks (typically a couple of seconds). Then features of 
these wave forms (such as area under the curve, peak count, number of zero crossings) 
are calculated. A set of categories are picked (e.g. whole body activities) and through 
experience or statistical learning, the features that have the highest probability of 
differentiating the different categories are selected. During run time the activity is 
classified into the category that matches the measured features most closely. 
  
The eWatch is an example of these first generation systems. The eWatch multi-sensor 
platform senses acceleration, light, sound, and temperature [Smailagic, Siewiorek 2005] 
shown in Figure 2. When combined with statistical machine learning algorithms, it is 
possible to identify user activity in real time as shown in Figure 3. 
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Figure 2. eWatch with MEMS sensors 

 
Figure 3. Real time activity recognition using classifiers based on statistical machine 
learning algorithms. 
 
Time sequences can be modeled to predict how long you will continue to do an activity. 
For example, if I have been sitting in a meeting for the last 20 minutes chances are very 
high I will still be in that meeting five minutes from now. 

While activity recognition is routine, the next step to identify user intent is still the 
subject of research. Typically data is required from multiple sensors monitoring over a 
period of time.  

Keeping users engaged is another active area of research. Interactive games have created 
the principles that keep users engaged with cyber activities over long periods of time and 
motivate users to learn more about the game’s environment. On-line games have 
motivated distributed users to collaborate to achieve a common goal. How can these 
principles be applied to virtual coaches. 

Virtual Coaches integrate elements of wearable computing, context aware computing, 
artificial intelligence and user engagement. Section 2 provides background on cognitive 
aids followed by a detailed example in Section 3 of a Virtual Coach that provides advice 
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and reminders for Power Wheel Chair users.  Section 4 provides several other examples 
of Virtual Coaches. A methodology for designing, evaluating and architecting Virtual 
Coaches is given in Section 5. Section 6 summarizes the virtual coach examples and 
provides future challenges. 
 
2. Virtual Coaches as Cognitive Aids 
 
An important application domain for cognitive augmentation is in assisting individuals 
whose own cognitive capabilities have been impaired due to natural aging, illness or 
traumatic injuries. Recent estimates indicate that over 20 million Americans experience 
some form of cognitive impairment. This includes older Americans living alone (~4M), 
people with Alzheimer’s (~4.5M), people with mild cognitive impairments (~6M older 
adults), survivors of stroke (~2.5M) and people with traumatic brain injury (~5.3M). Of 
the many challenges faced by older individuals, declines in memory and cognition are 
often most feared and have the largest negative impact on themselves and their family 
members 
 
Cognitive aids currently available are simplistic, providing only scheduled reminders and 
rote instructions. They operate open-loop without regard for the user’s activities or 
environment.  In contrast, Virtual Coaches monitor how the user performs activities, 
provides situational awareness and gives feedback and encouragement matched to her 
cognitive state and circumstances at the time. Consider the difference between a 
medication reminder that blindly sounds an alert everyday at noon versus a Virtual  
Coach that both realizes a user took her pill at 11:58 or in another situation, such as when 
she’s having a conversation, sets itself to vibrate mode.   
 
Other transformative features of a Virtual Coach include:  
• As the user learns, it reduces the number of and level of detail in the cues it provides;  
• It matches its level of support to the user as his abilities change;    
• A caregiver can upload new capabilities to the Virtual Coach, as required, without even 
an office visit; and,  
• It provides constant and consistent monitoring of adherence to a caregiver’s 
instructions, enabling a deeper and more timely understanding of conditions beyond the 
episodic patient examinations available today.  
  
Human-system interactions based on understanding of user situations and needs are also 
effective for applications aimed at larger populations. For example, cognitive support can 
assure safe use and compliance with instructions in rehabilitation and management of 
chronic illness. Many individuals are released from hospital to home with inadequate 
training for themselves or their family caregivers for the operation of newly prescribed 
home medical devices or following complex medical regimens. Failure to properly follow 
directions often results in expensive (to the insurer) re-hospitalizations. Similarly, 
understanding how to effectively motivate people toward healthy behaviors, such as 
proper diet and physical activity, can benefit broad segments of the general population. 
Virtual coaches can monitor for compliance, provide cognitive assistance, provide advice 
that is trusted and followed, and adapt to user capabilities that vary with time and 
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circumstances.  

3. An Example: Seating Virtual Coach – A Smart Reminder for Power Seat 
Function Usage 
 
Patients with spinal cord injuries have lost feeling in the lower parts of their body. They 
must shift their positions periodically to prevent the occurrence of pressure sores. Once 
pressure sores occur they are very difficult to heal. 

The power wheelchair virtual coach is an intelligent system that guides power wheelchair 
users in achieving clinician established goals for body positioning. An array of pressure, 
tilt, and IR sensors provides data to the virtual coach which monitors user compliance 
with the clinician’s goals and generates reminders for doing past due activities. Clinicians 
and power wheel chair users were part of the design team from the first day.  

Power seat functions (PSFs) allow the user to recline, tilt, elevate the seat and the elevate 
leg-rests of the chair. Tilt indicates that the entire seating system is shifted backward, but 
the angle between the back and seat remains constant. Recline changes the backrest angle 
only, and leg-rest elevation changes the leg-rest angle. The seat elevation raises or lowers 
the individual in a seated position.  

An array of pressure sensors is distributed over the backrest and seat cushion providing 
the pressure information to the virtual coach, as shown in Figure 4. Three tilt sensors 
determine the tilt angle of the backrest, seat recline, and leg-rest elevation, as illustrated 
in Figure 5. Infrared sensors are used to detect obstacles behind the chair and determine 
the height of the seat. Pressure sensors are monitored for weight distribution inferring 
body positions. 

     

(a) 
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(b) 

Figure 4.  Power Wheelchair Virtual Coach sensors and touch screen: (a) front view and 
(b) rear view. 

              

Figure 5. Tilt function and placement of sensors 

Tilt, recline, and leg rest elevation are monitored for any improper sequences in using 
seat functions, such as reclining the backrest without tilting the seat, elevating the leg-
rests without reclining the backrest, and recline or tilt angles that are too large, as well as 
any inappropriate use of seat functions during driving. The user interaction and sensor 
monitor software run on an embedded computer, attached to the back of the wheelchair 
seat. 

A barrier to wider adoption of QoLT systems that include clinicians and other caregivers 
(e.g., physical therapy coaches) is the current dearth of techniques and languages 
appropriate for them to program assistive technology systems, instruct users on the 
desired behaviors, and assess users’ adherence to instructions. Realistically, we cannot 
expect caregivers to become software programmers, so these interactions should use 
familiar vocabulary and formats and be flexible to accommodate a variety and range of 
caregiver specialties and individual styles.   
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After interviewing clinicians, several attributes of a prescription were identified: 
  
• Activity: Indicates the power seat function to be performed. It also includes the pressure 
activity that is not explicitly performed by the user, but is the result of using the chair.    
• Parameter: The minimum, ideal, and maximum values per function    
• Duration: Each activity (except pressure) is to be performed for the ideal duration.  
However, it is not considered a violation if the duration is between min and max value. 
Only the max duration for the pressure activity is valid and this indicates the maximum 
time for which the pressure reading can be above the max value of the parameter.   
• Gap: This value represents the time after which each activity (except pressure) is to be 
repeated.   
• Alert After: This value indicates the number of rule violations, after which the 
notification action takes place.   
 
An attribute:value pair approach was selected where-in the clinician fills in the value 
cells of a spreadsheet (Table 1) [Siewiorek, Smailagic 2008].  It is interesting to note that 
through students soliciting inputs from clinicians for the Power Wheel Chair Virtual 
Coach, the clinicians changed their practice to a more repeatable process. 

Data analysis software extracts underlying user patterns. A clinician-friendly interface 
allows therapists to prescribe rules for proper use of the wheelchair, as well as parameters 
for user compliance goals. To illustrate how a user would comply with one of the rules, 
we describe the use of the feet elevation rule:  

1. The user tilts to an angle between the min and max of the general tilt angle, 
aiming for the ideal specified angle. 

2. The user then reclines to an angle between the min and max of the general recline 
angle, aiming for the ideal value. 

3. Now, the user elevates the leg-rest to an angle between the min and the max in the 
feet elevation activity parameter, aiming again for the ideal value.  

4. The user maintains this position for the duration specified in the prescription. 
5. This completes the compliance of the feet elevation rule and the user can wait for 

more reminders or resume daily activity 
 
Clinician settings, user data, and sensor data is stored in a database, and a web service 
component securely transfers data from the clinician’s computer to chair-side system. A 
web portal is designed to provide quick access to all frequently needed information to a 
clinician.  

After entering a usage prescription, the clinician can periodically monitor the wheelchair 
user’s compliance to those recommendations. An example alert as seen by the clinician is 
shown in Figure 6. The shape of daily, weekly or monthly reports in the form of Kiviat 
graphs making it easy for the clinician to quickly determine the progress of each user, as 
shown in Figure 7. Reminders are generated to prompt the user to comply while alerts 
indicate non-compliance and are sent to the user, as shown in Figure 8. 
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Table 1: Sample prescription, filled by the clinician 

 

 

 

                    Figure 6. Dashboard for the Clinician showing non-compliance alerts 

 
Figure 7. The Clinician can look at daily, weekly or monthly graphs of the wheel chair 
user’s compliance and follow the progress of each user. The shape of the triangle should 
be orientated towards the right indicating user compliance. On the left, an example of 
good compliance is shown. On the right, an example of poor compliance is shown. 

General Tilt angle : Min 10, Ideal 20, Max 30 

ALERTS 
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Figure 8. Virtual Coach screen with a reminder to tilt. The compliance graph shows color 
coded hourly compliance.  
 

3.1 Laboratory Test 

An important part of the design process is to obtain user feedback. The feedback can be 
gathered in the laboratory even before the Virtual Coach is operational. A Wizard of Oz 
user preference study was used to determine the appropriate interface modalities and 
coaching strategies. A survey program (Figure 9) was created allowing participants to 
select different interface modalities/stimuli for four types of coaching scenarios: 
Reminding (e.g., when a user forgets to change the seating position for an hour), Warning 
(e.g., when a user accesses power seat functions in an incorrect sequence), Guidance 
(e.g., when a user attempts to access pressure relief positions), and Encouragement (e.g., 
when a user responds to the message with appropriate actions) [Liu et al 2010]. 

Nine participants who use power wheelchairs equipped with PSFs and six clinicians 
experienced in prescribing power seat functions showed that speech was the most 
frequently selected modality for the reminding theme, and beeping was the most 
frequently selected modality for the warning theme. Most subjects gave monotonic 
speech the lowest ranking.  Male face animation received the lowest ranking. Most 
subjects gave cartoon animations or Power Seat Functions (PSF) task animations higher 
rankings than human face images.  The participants preferred to have cartoon animation 
to inform them of the task they need to do, as they are funny and entertaining.  They also 
preferred to have the animated power wheelchair figure to illustrate the instructions for 
the specific task, which not only conveys the essential point of a message, but makes 
them feel it is important to follow the instructions. Many power wheel chair users have 
limited upper extremity functions and strength, and moving arms and hands to navigate 
on a touch screen is a much more difficult task than using a joystick. An example of 
participant’s rank ordering of the preferred location of notification by vibration is shown 
in Table 2.   

 

 

    
Compliance

Please tilt your 
chair 
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Figure 9. Menu for selecting features for virtual coach interaction design. 
 
 
 
 

Ranking of Vibration 
Location on the Seat 

Armrest Headrest 

Backrest 
around 

Shoulder 
Blade 

Backrest 
around 

Mid of Upper 
Trunk 

1 60.0 6.7 26.7 6.7 

2 13.3 6.7 26.7 53.3 

3 26.7 6.7 33.3 26.7 

4 0 80.0 13.3 13.3 

Table 2. Rank ordering of vibration output modality. 
 

3.2 Field Study 

Subsequent to Laboratory tests, the next step is to evaluate the system in the field. A three 
day Pilot Study was conducted to gather user feedback during actual system operation. 
The participants were given a demonstration of the Virtual Coach and supplied with 
educational material. Questionnaires and interviews provided feedback. Subsequently the 
participants took the virtual coach home for three days with feedback again solicited 
through questionnaires and interviews [Liu et al 2011]. 

Systems that leave the laboratory to operate in the natural environment must be robust. 
Of particular concern was system reliability. The Virtual Coach was exercised over 
various surfaces to evaluate vibration tolerance including: pitch, cement, potholes, crack, 
grass, gravel, and mud. Location and mounting of the extra hardware, such as the touch 
screen, were evaluated as well as the repeatability of measurements of power seat 
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functions (e.g. tilt angles). For example, the initial screen mounting increased the width 
of the wheelchair and caused difficulties in traversing doorways. The ball joint that 
adjusted the screen angle tended to loosen. Power is a critical issue since once the wheel 
chair battery is discharged the participant is unable to move. The range of the unmodified 
power wheelchair was 26.2 miles on a single charge. The addition of the Virtual Coach 
electronics reduced the range to 23.2 miles. This provides a comfortable margin since the 
average daily distance traveled by an active power wheelchair user is 10.7 miles, less 
than half the range with the Virtual Coach. 

The functionality provided included pressure relief reminders (temporal and postural 
parameters) and providing further instructions once the user starts to engage seat 
functions. There were 12 power seat usage warnings. The warnings and reminders only 
appeared when the chair was occupied. 

It was important to provide participants with support when the researchers were not 
present. A user’s guide described how to use the virtual coach, precautions and 
limitations of the virtual coach, and how to diagnose problems and contact researchers. 
The Clinician’s Guide described the default settings for the 17 variables, the relationship 
between the settings, and how to increase/decrease sensitivity of the warnings. 

4. Example Virtual Coaches  

This section will provide brief examples of four more coaches. The goal of the PWC 
coach is to monitor and report on compliance to a clinician authored prescription. The 
Manual Wheel Chair Propulsion coach monitors for correct arm movement while 
propelling the chair. Ergo Buddy identifies improper techniques while handling and 
delivering packages. IMPACT seeks to motivate users to exercise. Finally, 
MemExerciser has a goal of improving user memory. Two basic technologies are used to 
identify the system’s context. The Power Wheel Chair coach is a rule based system and 
an example rule for feet elevation was given in Section 3. 

Function Coach Technology 

Monitoring for Compliance Power Wheel Chair Rule  

Correct Form Manual Wheel Chair 
Propulsion 

Machine Learning 

Correct Form Ergo Buddy Machine Learning 

Motivation IMPACT Rule 

Cognitive MemExerciser Rule 

Table 3 Summary of Example Virtual Coaches 
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4.1 Manual Wheelchair Propulsion Coach 
The Manual Wheelchair Coach (MWC) explored providing advice to manual wheelchair 
users to help them avoid damaging forms of locomotion. The primary form of context for 
this system is the user’s propulsion pattern. The contexts of self versus external 
propulsion and the surface over which propulsion is occurring are used to improve the 
accuracy of the system’s propulsion pattern classifications.  

The MWC uses statistical machine learning algorithms to classify propulsion patterns and 
surface material. The top three acceleration characteristics for six common activities after 
a Linear Discriminant Analysis (LDA) transformation (Figure 10) illustrates spatial 
clustering that can be exploited [Maurer et al 2006] to continuously infer physical 
activity.  An eWatch was worn on the wrist and a second eWatch was attached to the 
wheel chair frame (Figure 11). 
 
Four classic propulsion patterns have been identified by a limited user study (Figure 12): 
semi-circular, single loop over, double loop over and arcing. Of these, the recommended 
propulsion pattern is semi-circular, because the strokes have lower cadence and higher 
stroke angle. Data was collected using all four propulsion patterns on a variety of surface 
types. Machine learning algorithms produced accuracies of over 90%. It was also noted 
that the higher the resistance of the surface traversed, the higher the propulsion prediction 
accuracy.  

 
Figure 10 Feature Space after LDA Transformation 

 

 

 

 

 

Figure 11. The eWatch was worn on the wrist while the wheelchair was self – propelled 
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Figure 12. Four classic propulsion patterns are shown: (A) semicircular (SC); (B) SLOP; 
(C) DLOP; and (D) arcing. The dark bars to the right of each pattern represents the 
beginning of the propulsion stroke. The dark bars to the left of each pattern represent the 
end of the propulsion stroke and the beginning of recovery. 

Both wearable (Figure 11) and wheelchair-mounted accelerometers were used to provide 
contextual information [French et al 2007]. There are four distinct propulsion patterns 
that wheelchair users tend to follow (Figure 12) – semicircular (SEMI), single loop over 
(SLOP), double loop over (DLOP) and arcing (ARC) which have been identified in a 
limited user study. Two common machine learning algorithms, k-Nearest Neighbor 
(kNN) and Support Vector Machines (SVM) with a Radial Basis Function (RBF) kernel 
[] were used to classify propulsion patterns. We also experimented with simplifying the 
classification task into an Arcing vs. Non-arcing pattern classification in an attempt to 
improve classifier accuracy. The justification for this being that arcing patterns are the 
most damaging to the users. Using this binary classification scheme, we found the 
average classification accuracy increased to the 85-95% range. 



 14 

We were able to differentiate between the resistance level of the surface over which 
propulsion was occurring with 70-80% accuracy (Figure 13). It can be seen that the 
classification accuracy tends to be higher, with less variability across patterns, on 
surfaces with higher resistance (dynamometer, low carpet), when compared to surfaces 
with low resistance (tile, asphalt). Classification accuracy for arcing was considerably 
lower than the other propulsion patterns. Namely, the arcing is a subset of each of the 
other patterns, and hence, is most susceptible to misclassification. 

We found that there is differential classification accuracy across subjects, which seems to 
be dependent upon the arm length of the subject. Intuitively, this makes sense since the 
longer the arm, the faster the acceleration of the wrist if the arms are maintaining similar 
velocities. This also means that in order to develop cross-subject classifiers we may need 
to normalize the acceleration profiles with respect to participant arm length.  

We were also able to use the acceleration profile of the wheelchair from the frame-
mounted accelerometer to differentiate between self-propulsion and being pushed with 
~80-90% accuracy. This type of information will be useful in system management, for 
example, we don't want to be providing feedback to the user on their propulsion pattern 
when they are not propelling themselves. 

  

 

  

 

 

 

Figure 13. Classification results using KNN algorithm for various surfaces 

4.3 IMPACT: Personal Health Coach 
 
Many physical activity awareness systems are available in today's market. These systems 
show physical activity information (e.g., step counts, energy expenditure, heart rate) 
which is sufficient for many self-knowledge needs, but information about the factors that 
affect physical activity may be needed for deeper self-reflection and increased self-
knowledge. The IMPACT project explored the use of contextual information, such as 
events, places, and people, to support reflection on the factors that affect physical 
activity.  
 
IMPACT uses a mobile phone and GPS to monitor step counts and the user’s location 
(Figure 14). The mobile phone also has an easy-to-use interface to input what the user is 
doing and whom he/she is with. The pedometer application stores the user’s step counts 
per minute and displays the user’s aggregate step counts for the day and for each of the 
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past five minutes. The GPS module scans the user’s location every minute, which is then 
stored by the phone application. The phone application collects additional contextual 
information using activity-triggered experience sampling. When the user is active or 
inactive, the phone vibrates to prompt the user to select from a list: what they were doing 
(events) and whom they were with (people). The list is pre-filled with five common 
activities (e.g., grocery shopping, walking) and five usual companions (e.g., friends, 
family, co-workers), but users can enter new labels. We did not implement automatic 
labeling of events and people because such classification requires additional sensors that 
may not be robust enough for a long-term field study or are still not mainstream and 
widely available. 

 
 
 

 
Figure 14. Monitoring device for the second version of IMPACT. Nokia 5500 Sport (left) 
and detailed view of the display (right). 
 



 16 

 
Figure 15.  Visualizations in the IMPACT website showing step counts with contextual 
information. Detailed step counts graph with contextual  annotations (top) and context 
graph (bottom right). 
 
The IMPACT system also includes a web interface (Figure 15) that shows the association 
between daily activities and step counts on 1) a timeline of the user’s steps with time 
segments labeled with contextual information; and 2) a histogram of the total number of 
steps associated with a particular label (e.g., 400 steps at work, 1300 steps at the grocery 
store).  Instead of manually entering step counts and contextual information on the web 
site, a desktop application synchronized data between the phone and the new web site. If 
the user needs to add more contextual information after uploading, they can label periods 
of time on the visualizations. We also implemented two other versions of the system: 
Steps-Only and Control. The Steps-Only system only monitored step counts and the web 
site only showed daily step counts without any contextual information. The mobile phone 
still alerted users when they have been active and inactive, but they were just asked to 
rate how active they were on a 5-point Likert scale (not at all active to very active), to 
make the interruption comparable to the IMPACT version. The Control system also only 
monitored step counts, but we removed visualizations on the web site. Essentially, it is 
similar to an off-the-shelf pedometer. 
 
We conducted an 8-week long study with 49 participants with an age range of 18 to 60: 
four weeks for a Baseline phase and four weeks for an Intervention phase. During the 
Baseline phase, all participants used the Control system. During the Intervention phase, 
participants were randomly assigned to three types of interventions: Control, Steps-Only, 
and IMPACT. The evaluation revealed three major findings. First, when given access to 
contextual information and physical activity information, users can and do make 
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associations between the information helping them become aware of factors that affect 
their physical activity. Second, reflecting on physical activity and contextual information 
can increase people’s awareness of opportunities for physical activity. Lastly, automated 
tracking of physical activity and contextual information increases the amount of data 
collected by the user, which benefits long-term reflection, but may be detrimental to 
immediate awareness.  
 
We believe these results are applicable to the use of contextual information to reveal 
factors that affect other types of behaviors, for example, diabetes management and energy 
conservation. These contributions suggest that personal informatics systems should 
further explore incorporating contextual information. 
 
4.4 MemExerciser  
 
People with episodic memory impairment (EMI), such as those with early-stage 
Alzheimer’s disease, struggle with maintaining their sense of self [Conway 1990]. While 
they can still remember experiences from the distant past, recent experiences are difficult 
to recall. As a result, their window of remembered experiences shrinks as their memory 
abilities decline, leading to feelings of frustration, anger or depression [Steeman, et al 
2006]. Over 26 million people worldwide suffer from Alzheimer’s disease [American 
Health], but the effects are not limited to these individuals. Rather, the disease also 
affects the well-being of family caregivers as they have to provide the cognitive support 
necessary for aging in place. Caregivers usually help the person with EMI remember the 
details of an experience by providing cues, small details of the experience from which the 
person with EMI can use to recollect other details and mentally relive the experience. 
However, caregivers often must repeatedly provide cues for the same experience again 
and again which can lead to feeling overburdened, burnt out, or even depressed [Almbert 
et al 1997]. 

Lifelogging systems automatically record a log of a user’s personal experience in the 
form of pictures, sounds, actions, activities, or raw sensor data using wearable or 
embedded sensors such as cameras, audio recorders, location tracking, and bodily 
sensors. The data collected by lifelogging systems can provide memory cues to help 
people remember the original experience [Sellen et al 2007]. However, the sheer amount 
of data collected can also be overwhelming.  

MemExerciser, a lifelogging system , is specifically designed for people with episodic 
memory impairment and their caregivers. The system records and supports reminiscence 
for significant personal experiences that the user wants to remember in detail. The goals 
of the system are to maximize the independence of the person with EMI and at the same 
time minimize the burden on their caregiver. The system provides an appropriate amount 
of cueing assistance for the person with EMI to reminisce about the experience without 
needing to bother the caregiver repeatedly to provide additional cues. 
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Figure 16 MemExericser System Design: Capture, Selection, and Review 

 

MemExerciser consists of three subsystems Figure 16): passive experience capture, 
hybrid cue selection (CueChooser), and cue review (CueViewer)  

The system captures both the visual and audio content of the experience as well as 
contextual information such as location, movement, and light levels. People with memory 
impairment often forget to explicitly trigger a device (e.g., camera) to record. The system 
uses a passive capture approach that requires the user only to turn it on and allow the 
system to manage when to trigger recording. The capture system consists of three devices 
(Figure 17): the Microsoft SenseCam [Hodges et al 2006], an off-the-shelf digital voice 
recorder, and an off-the-shelf Wintec GPS location tracker. The SenseCam is a wearable 
digital camera that automatically takes pictures when triggered by the onboard light 
sensor, infrared sensor, accelerometer, or simple timer. With an initial reminder from the 
caregiver, the person with EMI can switch on these three capture devices before each 
experience, wear the camera around the neck, place the audio recorder in their top shirt 
pocket, carry the GPS logger in their pocket and can simply enjoy their experience 
without needing to stop and tell the system to record. 

With a passive capture approach mentioned above, the system can capture a large amount 
of data. To identify the most salient memory cues to present to the person with EMI, the 
lifelogging system employs a hybrid approach that involves both automated computer 
analysis of the lifelog as well as the expertise of the caregiver. CueChooser is a software 
application that assists the caregiver in selecting the most salient memory cues using 
automated content and context analysis.  

 

Figure 17. Capture devices: Microsoft SenseCam, digital voice recorder, GPS logger. 

Prior work [Lee and Dey, 2007] has identified that the most salient memory cues are 
determined by the type of experience. There are people-based, place-based, action-based, 
and object-based experiences. The caregiver can specify the type of the experience and 
CueChooser (Figure 18) will apply the appropriate content and context analyses to 
suggest potentially good cues. For people-based experiences, CueChooser identifies 
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photos with faces using computer vision. For place-based experiences, it uses a 
combination of GPS data and the SenseCam’s accelerometer data to determine when the 
user enters, is near, or is staying in a particular place. Similarly for object-based 
experiences, CueChooser can use GPS or accelerometer data to find when the user is 
standing still and looking at an object of interest. For action-based experiences, image 
summarization techniques [Doherty, et al 2007] are used to find cues from different 
scenes. However, good memory cues have other characteristics that computers have 
difficulty identifying such as distinctiveness and personal significance [Lee and Dey, 
2007]. The CueChooser interface allows the caregiver to browse through the 
automatically suggested photos to select content to include in a slideshow narrative. 
Caregivers can add their own annotation using their voice or drawing on each photo in 
the slideshow narrative. 

  

Figure 18 MemExerciser’s CueChooser user interface. The caregiver can view system-
suggested cues in constructing a narrative, and provide visual and audio annotations to 
selected cues. 

  

Figure 19. MemExerciser’s CueViewer user interface: tapping on the screen displays 
pictures, and plays back lifelog audio and caregiver’s voice annotation. 

The lifelogging system presents the lifelog data in a way that maximizes the opportunities 
for the person with EMI to think deeply about each cue to trigger his own recollection of 
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the original experience. Caregivers normally reveal cues one at a time to allow the person 
with EMI to remember the rest of the experience on their own [Lee and Dey, 2007]. 
MemExerciser (Figure 19) includes a software application designed to run on a Tablet 
PC. Based on the selection of photos, sounds, and annotations from the caregiver with the 
CueChooser application, MemExerciser allows the person with EMI to step through all 
the cues at their own pace. The cue review process is designed to be challenging enough 
to stimulate their memory processes (acting as a form of mental exercise) but also be 
supportive enough so that people with EMI can feel as if they are mentally reliving the 
experience. Instead of passively playing back each photo and sound like a movie, 
MemExerciser shows only one picture at a time and gives the user control over how long 
they want to examine each picture. Recorded audio and the caregiver’s annotation are 
progressively revealed to facilitate the user’s self-recollection. With MemExerciser, the 
person with EMI can feel as if his caregiver is walking him through the cues but with the 
benefit of going at their own pace and not repeatedly bothering the caregiver. 

A pilot field evaluation was conducted of the lifelogging system with three people with 
EMI (all associated with the early stages of Alzheimer’s disease) and their spousal 
caregivers. The self-guided review approach of the lifelogging system was compared 
with a caregiver-guided approach [Hodges, et al 2006] where the caregiver repeatedly 
guides the person with EMI through only the photos taken with the SenseCam. 
Participants review the cues every other day during the two weeks after their experience. 
It was found that the self-guided approach resulted in a statistically significantly greater 
number of details freely recalled four weeks after the experience (Figure 20) as well as 
greater confidence in memory when assessed using the Meta-memory in Adulthood 
Questionnaire (Figure 21). Caregivers expressed that the self-guided approach freed them 
from repeatedly going through the same cues again and again. 

In summary, MemExerciser is a lifelogging system to assist people with episodic 
memory impairment to reminisce about recent experiences. The system uses a passive 
capture approach so that the person with EMI does not have to remember to initiate 
capture. The system uses both automated computer analysis and the expertise of the 
caregiver to select out the most salient cues from the lifelog. Finally, the system 
structures the cue review interaction so that it allows the person with EMI to think more 
deeply about each cue and remember the details of their experiences without repeatedly 
burdening the caregiver. 
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Figure 20. Mean Number of Details Recalled  
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Figure 21. Participant’s  self-assessed memory confidence using the Metamemory in 
Adulthood Questionnaire 
 

5. Design, Evaluation, and Architecture of Virtual Coaches 

In the process of designing and deploying virtual coaches we have gained experiences 
that are transferrable to new virtual coaches. The first is a design methodology where the 
end user is an integral part of the design team. Many of the coaches described in this 
paper were designed by an interdisciplinary capstone design class as described in Section 
5.1.   

Traditionally systems are completely designed and built before a evaluation with tens of 
users. Iterating to improve the design is labor intensive and time consuming. Section 5.2 
describes how very early in the design process CogTool can be used to accurately predict 
the user time to complete a task. 

Virtual Coaches typically have multiple sensors. Section 5.3 explores how Virtual 
Coaches should be architected with respect to conserving communications bandwidth and 
power consumption while maximizing accuracy in the face of errors.  

5.1 User Centered Design 
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Commercial systems go through a formal evolution of increasing functionality and 
robustness. These releases are typically referred to as Alpha and Beta. The Alpha release, 
the first functional version, is exercised by knowledgeable users to uncover defects and to 
suggest functional enhancements. The Beta release is fully functional but may still harbor 
obscure bugs that may only appear after many hours of user interaction. 

Research systems undergo a similar development, although the labor is typically provided 
by students. Figure 22 shows one such pipeline based on User Centered Design. 
representing four iterations. With the advent of rapid design methodologies and rapid 
fabrication technologies, it is possible to construct fully customized systems in a matter 
of months. Carnegie Mellon has developed a User-Centered Interdisciplinary Concurrent 
System design Methodology (UICSM) in which teams of electrical engineers, mechanical 
engineers, computer scientists, industrial designers and human computer interaction 
students work with an end-user to generate a complete prototype system during a four-
month long course [Siewiorek 94], [Smailagic 95]. The methodology defines 
intermediary design products that document the evolution of the design. These products 
are posted on the Internet so that even remote designers and end-users can participate in 
the design activities. The methodology includes monitoring and evaluation of the design 
process by a dedicated faculty member.  

 

Figure 22. Project pipeline from prototype to field deployment 

The design methodology proceeds through three phases: conceptual design, detailed 
design and implementation. End-users critique the design at each phase. In addition, 
simulated and real application tasks provide further focus for design evaluation. Based on 
user interviews and observation of their operations, baseline scenarios are created for 
current practice. A visionary scenario is created to indicate how technology could 
improve the current practice and identify opportunities for technology injection. This 
scenario forms the basis from which the requirements for the design are derived as well 
as for evaluating design alternatives. Both scenarios are reviewed with the end user. A 
technology search generates candidates for meeting the design requirements. Several 
architectures, each appropriate to the various disciplines are generated next: hardware, 
software, mechanical, shapes/materials and human interaction modes. User feedback on 
scenarios and storyboards become input to the detailed design phase. Designers alternate 
between the abstract and the concrete; preliminary sketches are evaluated, new ideas 
emerge and more precise drawings are generated. This iterative process continues with 
soft mock-ups, appearance sketches, computer and machine shop prototypes, until finally 
the product is fabricated.  



 23 

The iterative evaluation by end-users throughout the design process yields the equivalent 
of a second level (i.e. Beta) prototype that is much closer to deployment than a prototype 
produced by a traditional design methodology. Further development through the summer 
semester by selected students from the class yields a prototype suitable for pilot studies. 
Engagement of between 20 and 25 students from multiple disciplines (computer 
engineering, electrical engineering, mechanical engineering, computer science, industrial 
design, and human computer interaction) yields 4,000 to 5,000 engineering hours devoted 
to an integrated system prototype. 

In universities many technical disciplines have capstone design courses wherein senior 
students are given the opportunity to apply the theory they have learned to a large-scale 
project. While these courses will approach a project from a focused perspective, taken as 
a group they provide a measurable improvement. In Figure 22 we depict a Human 
Computer Interaction capstone that engages end users to evaluate and redesign the user 
experience and a Software Engineering capstone that improves the robustness of the 
software. Example software improvements could include: extending the software 
architecture to be multi-threaded and event-oriented, add logging of GUI and application 
events, customize device configuration; improve error handling by catching and handling 
hardware problems, automatic disabling malfunctioning assessments; and employing 
software best practices using styles and templates to separate application and data 
domains, and design patterns. 

Other capstone opportunities may be available depending on the disciplines required for 
the project. Project development continues through end user testing in the lab followed by 
end user testing in the field. Multiple replicas of the project enable Field deployment at 
multiple sites, greatly increasing experience and data collection. 

5.2 Evaluating Virtual Coach Interactions at Design Time  

We have explored alternative means of interacting with mobile, sensor-based systems and 
application of CogTool to evaluate the relative efficiency between interface modalities at 
design time. The application domain was periodically requesting users to answer a short 
survey. Reminders and polling of users for input are common features of Virtual 
Coaches. There are several possible user interaction modalities but the selection of an 
inappropriate interface can lead to several factors longer to complete a task. CogTool can 
evaluate user interaction designs very early in the design process allowing for quick 
iteration into an efficient design.  

As an example, in one field trial we had 30 participants use  different multi-media 
platforms to answer a questionnaire [French et al 2010]. Each interview consisted of a 
series of stress-related questions, approximately 200 seconds in length, asked every 45 
minutes. User input was collected through buttons and gestures. Outputs were either 
audio or video. Different platforms, Figure 23(a) and 23(b), supporting the various 
input/output modalities, were evaluated. A common state machine was used for all 
variations of user modalities, Figure 24. We also evaluated the interaction designs using 
CogTool. Once a mockup of the user interaction has been created, a designer can 
demonstrate the steps of a particular task by directly interacting with the series of screens 
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that represent the user progressing through a task. As the demonstration proceeds, 
CogTool builds a model of the task (Figure 25) that translated into a KLM-like language 
called ACT-Simple. The language is executed via the ACT-R cognitive architecture to 
produce a performance prediction and a detailed trace of modelled behaviour.  (ACT-R is 
a sophisticated system with a rich theoretical basis and years of use in the cognitive 
psychology research community and elsewhere). The  CogTool simulation predicted user 
interaction time, typically within 10% of the actual human subject time, Figure 26. 
Surprisingly users were more efficient using buttons to respond rather than gestures, even 
though using buttons required both hands. These results are predicted by the CogTool 
model [French et al 2010]. 

 

 

  (a)     (b) 

Figure 23. Two platforms that were explored during the EMA development process: (a) 
the eWatch and (b) a smartphone with a silicon sleeve button interface (right). Both 
platforms are displaying an example question of the interview application 
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Figure 24. Stress survey state diagram; The red states require user interaction 

 

 

         

 

Figure 25.  A visual depiction of the modeled actions of an expert interacting with the 
first three screens of the interview application using the visual output modality combined 
with the gesture input modality (left) and the eWatch button input modality (right). 

 

 

 

Figure 26. Interaction time comparison between CogTool model predictions and 
measured user interaction times. Voice input has yet to be implemented so only the 
predictions are given. 
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5.3 Virtual Coach Architecture 
 

We will illustrate architectural trade-offs in the context of the design of Ergobuddy, a 
virtual coach system for package delivery workers to help prevent injury and reinforce 
trained ergonomic practices. The user activities are inferred from a handheld device 
(which delivery drivers carry containing the routing information as well as recorder for 
recipient signatures) and supportive wearable devices. A typical approach in determining 
the best combination of sensor locations is to have the user wear multiple devices and use 
only the data from selected devices to evaluate performance for the different 
configurations. 

For example, Figure 27 shows accuracy of activity classification for six locations on the 
users body: wrist, pants pocket, book bag, lanyard (neck), shirt pocket, and belt. For the 
majority of activities (running, sitting, standing, walking) any of the locations would give 
a classification accuracy over 90%. However if descending stairs was important, a wrist 
mounted sensor should be added. For ascending stairs, the book bag sensor is most 
accurate. 

 
 
Figure 27. Activity Recognition Accuracy at Body Locations 
 

For Ergobuddy, there is a single master handheld device and five eWatches (small sensor 
nodes) worn at the Arm, Ankle, Back, Lanyard and Wrist positions (Figure 28).  

For a statistical machine learning classifier, there are four layers of processing: raw 
sensor data, feature extraction, classifier, and decision. These four layers can be 
intuitively partitioned into three different architectures, shown in Figure 29. As expected 
there are implications with each partition on how fusion is performed, and wireless 
bandwidth utilization. A brief overview of the three partitions are described below:  
   Centralized Aggregation Architecture: This is a commonly used architecture in which 
raw data from all nodes in a network are transmitted to a master device for feature 
extraction and classification. In our experiment the amount of data transmitted is a 
continuous stream at 2 KB/sec. This scheme requires a static set of sensors. 
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    Low Bandwidth Architecture: This architecture requires lower radio bandwidth since 
feature vectors are transmitted upon completion, yielding approximately 200/tw 
Bytes/sec. This yields the same accuracy performance of a centralized aggregation 
architecture. Again a static set of sensors is required. 
   Dynamic Architecture: The dynamic architecture further decreases bandwidth usage 
since only the context and confidence information is transmitted every window. This is 
approximately 80/tw Bytes/sec. Decision fusion differs from the previously described 
aggregators in that it allows the number of sensors to be dynamic. Accuracy is expected 
to decrease because only an abstraction of raw data is provided to the final decision 
maker (fuser), but the system becomes resilient to sensor failure and packet loss faults. 
 
Multiple fusion techniques were used for the study and the best performance was offered 
by a scheme in which the average probability of all available sensors’ confidence is used 
to fuse the local decisions into a final decision [Fisk et al 2011]. This fusion technique, 
since it does not require all sensors to be available every time it makes a decision is 
resilient to lost packets and node failures. In a perfect environment we achieve up to 90% 
leave one subject out cross validation classification accuracy on trained package delivery 
activities. The activity set included: sitting, standing, walking, running, lifting, carrying, 
sweeping/mopping, using stairs, using a ladder, and using a cart and there were 11 
subjects total, which yielded approximately 20 hours of data. Multiple machine learning 
algorithms were tested, but best performance, given device constraints, were boosted 
decision trees on the eWatch (lower memory footprint) and random forests on the 
MC9500 master device. Additionally we find that performance scales well when data is 
missing, offering improved performance over a non fusion method at any packet lose rate 
and only 2% worse accuracy performance at 0% packet loss rate.  

The visualization in Figure 30 graphs the F-Measure (harmonic mean of recall and 
precision) of each for each activity. This data is particularly relevant for a customer who 
may be specifically interested in detection of activities with ergonomic consequences 
such as lifting. For example, in the case of lifting the customer would definitely want to 
include a lower back sensor, perhaps in a lifting belt, and a wrist or ankle sensor to 
complement the back sensor and capture other activities. 
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Figure 28. Multiple sensor placement 

 

 

Figure 29.   Classification Engine Partitions 
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Figure 30.  A visualization of the performance of sensor locations as they vary with 
activity. 
 
In order to test the resilience of the classifier we simulated packet loss from 10% to 90%. 
For completeness the best sensor subsets of one to seven sensors were included in the 
analysis. To visualize the difference in reliability a low bandwidth scheme was also 
included. Figure 31 illustrates the results from this experiment. The primary takeaway 
from this chart is that in all non-ideal environments, 10% and up of packet loss, better  
classification performance was achieved with fusion. For example, there is a 35%  

 

Figure 31.  With the same number of sensors in a 0% loss environment fusion only 
provides 2% worse performance than a low bandwidth model. 
 
accuracy increase in an environment with 50% packet loss. We have also discovered that 
the number of sensors can be reduced in low loss environments for power and bandwidth 
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savings. Seven sensors seems to be overkill based on this dataset, and three sensors is a 
more appealing configuration in terms of overall encumbrance, power, and accuracy 
performance. 

6. Summary 
 

Table 4 summarizes over a dozen virtual coaches and the technologies they employ. 

 

Table 4. Summary of technology employed by several virtual coaches 

Virtual coaches pose several research challenges. In addition to the challenges of 
interruption, there are also challenges of privacy. The information routinely emitted by 
wireless devices to stay in contact with the network, is open to abuse. Some social 
objectives related to collection and use of personal information may be in conflict. We 
must determine what information is requested of users, what information is collected 
through monitoring, how long such information is stored, how it is protected from 
unauthorized access, who is authorized to examine information associated with an 
individual, and who is authorized to examine aggregate information on groups of users.    

Meeting the needs of users requires revealing personal information in some cases, and 
protecting it in others.  One way to meet diverse needs is to allow individuals to state 
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their own preferences to the system. The challenge will be to create a protocol that is 
complex enough to address the diverse privacy issues, while embedding it in a user 
interface that is simple enough for the layman to use.  

The goal is to employ theory from social science, cognitive science, and economics.  
Social science models of collaborative behavior can be used as a basis for determining 
the nature of the social setting.  Theories and observations of which clues humans use to 
interrupt a social situation and gain attention can form the basis for sensor data 
processing and software decisions in virtual coaches. By mapping observable parameters 
into cognitive states, the computing system can estimate the form of interaction that 
minimizes user distraction and the risk of cognitive overload. 
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