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 1. The Evolution of Technology 

The confluence of several new technologies enabled a new generation of always attentive 
personalized systems called Virtual Coaches. A Virtual Coaches continuously monitors 
its users activities and surroundings, detects situations where intervention would be 
desirable, and offers prompt assistance.  
 
Presently available cognitive aids are simplistic, providing only scheduled reminders and 
rote instructions. Future virtual coaches will actually monitor user performance of 
activities and provide appropriate feedback and encouragement. As the user’s abilities 
change, the coach may reduce the number of verbal cues as the subject learns, or provide 
increased support as needed. A care provider could upload new capabilities to the virtual 
coach, as required, potentially without even an office visit. Virtual coaches also provide 
constant and consistent observation/monitoring, even on a clinician’s guidance beyond 
episodic patient examinations. 

Virtual Coaches are the latest phase of a technology evolution over the past two decades. 
The advent of powerful microprocessors capable of running an operating system with real 
time responsiveness in small, energy efficient pages in the early 1990’s enabled a new 
generation of personal computing systems that provided access to information any time, 
any where. Handheld Personal Digital Assistant (PDA) that could fit in a shirt pocket 
gave access to addresses, notes, and schedules via a new interface access modality 
featuring stylus and hand writing recognition (e.g. graffiti) and more recently touch 
screen and voice control (e.g. SIRI). 
 
Another novel technology, head mounted displays, enabled revolutionary new body worn 
systems, termed Wearable Computers [Siewiorek, Smailagic, Starner 2008], that were 
always on providing instantaneous access to reference information in application areas 
such as complex plant operations, manufacturing, maintenance, and group collaboration. 
 
MEMS (Mircro-electro-mechanical systems) created low cost, low energy sensors that 
could sense physical parameters such as acceleration, orientation, temperature, and light 
that, when coupled with signal processing and machine learning algorithms allowed 
personal systems to infer user context in Context Aware Systems.   
 
Section 2 provides background on one class of applications for virtual coaches - cognitive 
aids demonstrating the potential user population. Section 3 introduces the elements in 
virtual coach architecture with a summary of how the elements are configured in the 
example virtual coaches presented in later sections. The following two sections provide 
two detailed examples of virtual coaches that implement two basically different coaching 
models – rule based that derives the model through end user involvement in the design 
process and machine learning that derives a statistical model through labeled sensor data. 
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Section 6 provides three more coaching examples while Section 7 provides conclusions 
and future challenges. 
 
2. Desirable Attributes of Virtual Coaches as Cognitive Aids 
 
One important application domain for virtual coaches is in assisting individuals whose 
own cognitive capabilities have been impaired due to natural aging, illness or traumatic 
injuries. Recent estimates indicate that over 20 million Americans experience some form 
of cognitive impairment. This includes older Americans living alone (~4M), people with 
Alzheimer’s (~4.5M), people with mild cognitive impairments (~6M older adults), 
survivors of stroke (~2.5M) and people with traumatic brain injury (~5.3M). Of the many 
challenges faced by older individuals, declines in memory and cognition are often most 
feared and have the largest negative impact on themselves and their family members 
 
Cognitive aids currently available are simplistic, providing only scheduled reminders and 
rote instructions. They operate open-loop without regard for the user’s activities or 
environment.  In contrast, Virtual Coaches monitor how the user performs activities, 
provides situational awareness and gives feedback and encouragement matched to their 
cognitive state and circumstances at the time. Consider the difference between a 
medication reminder that blindly sounds an alert everyday at noon versus a Virtual  
Coach that both realizes a user took their pill at 11:58 or in another situation, such as 
when they are having a conversation, and sets itself to vibrate mode.   
 
Other transformative features of a Virtual Coach include:  
• As the user learns, it reduces the number of and level of detail in the cues it provides;  
• It matches its level of support to the user as his abilities change;    
• A caregiver can upload new capabilities to the Virtual Coach, as required, without even 
an office visit; and,  
• It provides constant and consistent monitoring of adherence to a caregiver’s 
instructions, enabling a deeper and more timely understanding of conditions beyond the 
episodic patient examinations available today.  
  
Virtual Coaches based on understanding of user situations and needs are also effective for 
applications aimed at larger populations. For example, cognitive support can assure safe 
use and compliance with instructions in rehabilitation and management of chronic illness. 
Many individuals are released from hospital to home with inadequate training for 
themselves or their family caregivers for the operation of newly prescribed home medical 
devices or following complex medical regimens. Failure to properly follow directions 
often results in expensive (to the insurer) re-hospitalizations. Similarly, understanding 
how to effectively motivate people toward healthy behaviors, such as proper diet and 
physical activity, can benefit broad segments of the general population. Virtual coaches 
can monitor for compliance, provide cognitive assistance, provide advice that is trusted 
and followed, and adapt to user capabilities that vary with time and circumstances. The 
next section discusses the architectural elements common to all virtual coaches. 
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3. Virtual Coach Architecture 
 
As indicated above, currently available aids are simplistic, providing only scheduled 
reminders and rote instructions. Virtual coaches monitor user performance of activities 
and user context (Sensor Processing), determines appropriate feedback (Coaching 
Model), and provides feedback and encouragement (User Engagement). A care provider 
could upload new capabilities to the virtual coach, as required (Prescription). Over time a 
customized personal interaction evolves (User Interaction). Figure 1 depicts how these 
five elements interact to create a Virtual Coach. 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Inter-relation of five elements of virtual coaches. 

 

The remaining sections will illustrate examples of these five elements through five 
example virtual coaches: 

 Power Wheel Chair (PWC) Seating Coach: rule based model whose input is 
prescription of positions and durations; sensors monitor positions and durations; 
Avatar provides reminders to do past due activities 

 Ergo Buddy: machine learning to diagnosis potentially harmful lifting practices in 
package delivery occupation; employs multiple sensors, and sensor fusion; 
provides audio warning 

 Manual Wheel Chair Propulsion: machine learning for diagnosis of stressful 
propulsion motions; warning suppressed if context appropriate for motion type 
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 IMPACT (Improving and Motivating Physical Activity Using Context): rule 
based model; uses contextual information to support reflection and improve 
motivation 

 Mem-Exerciser: Alzheimer Disease Memory Reminder Coach provides cues to 
remember experienced events; events sensed by still pictures, GPS, 
accelerometers, audio, and light 

 
Table 1 summarizes how the coaches implement each of the five architectural elements. 
The most basic difference between coaches is the Coaching Model. Rule Based models 
require extensive engagement of end users (patients, care givers, and clinicians) during 
the design process to insure capture of the relevant situations. Section 4 will provide an 
example of this process with the Power Wheel Chair Seating Coach. On the other hand, 
machine learning uses examples (labeled training data) to create a statistical model of the 
activities. Section 5 provides detailed discussion of deriving these models for Ergo 
Buddy. Section 6 provides summaries of the three other virtual coaches in Table 1. 
 

Coach Coaching 
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Table 1. Example Virtual Coaches and their embodiments of the five architectural 
elements. 
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4. Power Wheel Chair Seating Virtual Coach – A Rule Based Smart Reminder for 
Power Seat Function Usage 
 
Patients with spinal cord injuries have lost feeling in the lower parts of their body. They 
must shift their positions periodically to prevent the occurrence of pressure sores. Once 
pressure sores occur they are very difficult to heal. 

The power wheelchair virtual coach is an intelligent system that guides power wheelchair 
users in achieving clinician established goals for body positioning. An array of pressure, 
tilt, and IR sensors provides data to the virtual coach which monitors user compliance 
with the clinician’s goals and generates reminders for doing past due activities. Clinicians 
and power wheel chair users were part of the design team from the first day.  

Power seat functions (PSFs) allow the user to recline, tilt, elevate the seat and elevate leg-
rests of the chair. Tilt indicates that the entire seating system is shifted backward, but the 
angle between the back and seat remains constant. Recline changes the backrest angle 
only, and leg-rest elevation changes the leg-rest angle. The seat elevation raises or lowers 
the individual in a seated position.  

An array of pressure sensors is distributed over the backrest and seat cushion providing 
the pressure information to the virtual coach, as shown in Figure 2. Three tilt sensors 
determine the tilt angle of the backrest, seat recline, and leg-rest elevation, as illustrated 
in Figure 3. Infrared sensors are used to detect obstacles behind the chair and determine 
the height of the seat. Pressure sensors are monitored for weight distribution inferring 
body positions. 
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(b) 

Figure 2.  Power Wheel Chair Seating Virtual Coach sensors and touch screen: (a) front 
view and (b) rear view. 

              

Figure 3. Tilt function and placement of sensors 

Tilt, recline, and leg rest elevation are monitored for any improper sequences in using 
seat functions, such as reclining the backrest without tilting the seat, elevating the leg-
rests without reclining the backrest, and recline or tilt angles that are too large, as well as 
any inappropriate use of seat functions during driving. The user interaction and sensor 
monitor software run on an embedded computer, attached to the back of the wheel chair 
seat. 

An important design feature recognizes a barrier to wider adoption of Quality of Life 
Technology (QoLT) systems. Clinicians and other caregivers are responsible for assistive 
technology systems, instruct users on desired behaviors, and assess user’s adherence to 
instructions. Systems to support these functions for clinicians and other caregivers neither 
exist or are not well-defined. For example, realistically we cannot expect caregivers such 
as physical therapists to become software programmers. Thus, interactions with the 
software must use familiar vocabulary and formats and be flexible enough to 
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accommodate a variety and range of caregiver specialties and individuals  
 
After interviewing clinicians, several attributes of a prescription were identified: 
  
• Activity: Indicates the power seat function to be performed. It also includes the pressure 
activity that is not explicitly performed by the user, but is the result of using the chair.    
• Parameter: The minimum, ideal, and maximum values per function    
• Duration: Each activity (except pressure) is to be performed for the ideal duration.  
However, it is not considered a violation if the duration is between min and max values. 
Only the max duration for the pressure activity is valid and this indicates the maximum 
time for which the pressure reading can be above the max value of the parameter.   
• Gap: This value represents the time after which each activity (except pressure) is to be 
repeated.   
• Alert After: This value indicates the number of rule violations, after which the 
notification action takes place.   
 
An attribute:value pair approach was selected where-in the clinician fills in the value 
cells of a spreadsheet (Table 2) [Siewiorek, Smailagic 2008].  It is interesting to note that 
through students soliciting inputs from clinicians for the Power Wheel Chair Seating 
Virtual Coach, the clinicians changed their practice to a more repeatable process. 

Data analysis software extracts underlying user patterns. A clinician-friendly interface 
allows therapists to prescribe rules for proper use of the wheel chair, as well as 
parameters for user compliance goals. To illustrate how a user would comply with one of 
the rules, we describe the use of the feet elevation rule:  

1. The user tilts to an angle between the min and max of the general tilt angle, 
aiming for the ideal specified angle. 

2. The user then reclines to an angle between the min and max of the general recline 
angle, aiming for the ideal value. 

3. Now, the user elevates the leg-rest to an angle between the min and the max in the 
feet elevation activity parameter, aiming again for the ideal value.  

4. The user maintains this position for the duration specified in the prescription. 
5. This completes the compliance of the feet elevation rule and the user can wait for 

more reminders or resume daily activity 
 
Clinician settings, user data, and sensor data is stored in a database, and a web service 
component securely transfers data from the clinician’s computer to chair-side system. A 
web portal is designed to provide quick access to all frequently needed information to a 
clinician.  

After entering a usage prescription, the clinician can periodically monitor the wheelchair 
user’s compliance to those recommendations. An example alert as seen by the clinician is 
shown in Figure 4. The shape of daily, weekly or monthly reports in the form of Kiviat 
graphs making it easy for the clinician to quickly determine the progress of each user, as 
shown in Figure 5. Reminders are generated to prompt the user to comply while alerts 
indicate non-compliance and are sent to the user, as shown in Figure 6. 
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Table 2: Sample prescription, filled by clinician 

 

                    Figure 4. Dashboard for the Clinician showing non-compliance alerts 

 
Figure 5. The Clinician can look at daily, weekly or monthly graphs of the wheel chair 
user’s compliance and follow the progress of each user. The shape of the triangle should 
be orientated towards the right indicating user compliance. On the left, an example of 
good compliance is shown. On the right, an example of poor compliance is shown. 

General Tilt angle : Min 10, Ideal 20, Max 30 

ALERTS 
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Figure 6. Virtual Coach screen with a reminder to tilt. The compliance graph shows color 
coded hourly compliance.  
 

4.1 Laboratory Test 

An important part of the design process is to obtain user feedback. The feedback can be 
gathered in the laboratory even before the Virtual Coach is operational. A Wizard of Oz 
(non functional mock-ups) user preference study was used to determine the appropriate 
interface modalities and coaching strategies. A survey program (Figure 7) was created 
allowing participants to select different interface modalities/stimuli for four types of 
coaching scenarios: Reminding (e.g., when a user forgets to change the seating position 
for an hour), Warning (e.g., when a user accesses power seat functions in an incorrect 
sequence), Guidance (e.g., when a user attempts to access pressure relief positions), and 
Encouragement (e.g., when a user responds to the message with appropriate actions) [Liu 
et al 2010]. 

Nine participants who use power wheelchairs equipped with PSFs and six clinicians 
experienced in prescribing power seat functions showed that speech was the most 
frequently selected modality for the reminding theme, and beeping was the most 
frequently selected modality for the warning theme. Most subjects gave monotonic 
speech the lowest ranking.  Male face animation received the lowest ranking. Most 
subjects gave cartoon animations or PSF task animations higher rankings than human 
face images.  The participants preferred to have cartoon animation to inform them of the 
task they need to do, as they are funny and entertaining.  They also preferred to have the 
animated power wheelchair figure to illustrate the instructions for the specific task, which 
not only conveys the essential point of a message, but makes them feel it is important to 
follow the instructions. Many power wheel chair users have limited upper extremity 
functions and strength, and moving arms and hands to navigate on a touch screen is a 
much more difficult task than using a joystick. An example of participant’s rank ordering 
of the preferred location of notification by vibration is shown in Table 3.   

 

 

    
Compliance

Please tilt your 
chair 
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Figure 7. Menu for selecting features for virtual coach interaction design. 
 
 
 
 

Ranking of Vibration 
Location on the Seat 

Armrest Headrest 

Backrest 
around 

Shoulder 
Blade 

Backrest 
around 

Mid of Upper 
Trunk 

1 60.0 6.7 26.7 6.7 

2 13.3 6.7 26.7 53.3 

3 26.7 6.7 33.3 26.7 

4 0 80.0 13.3 13.3 

Table 3. Rank ordering of vibration output modality. 
 

4.2 Field Study 

Subsequent to Laboratory tests, the next step is to evaluate the system in the field. A three 
day Pilot Study was conducted to gather user feedback during actual system operation in 
the field. The participants were given a demonstration of the Virtual Coach and supplied 
with educational material. Questionnaires and interviews provided feedback. 
Subsequently the participants took the virtual coach home for three days with feedback 
again solicited through questionnaires and interviews [Liu et al 2011]. 

Systems that leave the laboratory to operate in the natural environment must be robust. 
Of particular concern was system reliability. The Virtual Coach was exercised over 
various surfaces to evaluate vibration tolerance including: pitch, cement, potholes, crack, 
grass, gravel, and mud. Location and mounting of the extra hardware, such as the touch 
screen, were evaluated as well as the repeatability of measurements of power seat 
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functions (e.g. tilt angles). For example, the initial screen mounting increased the width 
of the wheel chair and caused difficulties in traversing doorways. The ball joint that 
adjusted the screen angle tended to loosen. Power is a critical issue since once the wheel 
chair battery is discharged the participant is unable to move. The range of the unmodified 
power wheelchair was 26.2 miles on a single charge. The addition of the Virtual Coach 
electronics reduced the range to 23.2 miles. This provides a comfortable margin since the 
average daily distance traveled by an active power wheel chair user is 10.7 miles, less 
than half the range with the Virtual Coach. 

The functionality provided included pressure relief reminders (temporal and postural 
parameters) and providing further instructions once the user starts to engage seat 
functions. There were 12 power seat usage warnings. The warnings and reminders only 
appeared when the chair was occupied. 

It was important to provide participants with support when the researchers were not 
present. A user’s guide described how to use the virtual coach, precautions and 
limitations of the virtual coach, and how to diagnose problems and contact researchers. 
The Clinician’s Guide described the default settings for the 17 variables, the relationship 
between the settings, and how to increase/decrease sensitivity of the warnings. 

5. Ergobuddy Virtual Coach – Activity Classification via Statistical 
Machine Learning  
 

Ergobuddy is a virtual coach system for package delivery workers to help prevent injury 
and reinforce trained ergonomic practices. User activities are inferred from application of 
statistical machine learning classification techniques to accelerometer data from a 
handheld device (which delivery drivers carry containing the routing information as well 
as recorder for recipient signatures) and supportive wearable devices. 
 
The supportive wearable device was the eWatch, multi-sensor platform senses 
acceleration, light, sound, and temperature [Smailagic, Siewiorek 2005] shown in Figure 
8. When combined with statistical machine learning algorithms, it is possible to identify 
user activity in real time as shown in Figure 9. 

 
Figure 8. eWatch with MEMS sensors 
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Figure 9. Real time activity recognition using classifiers based on statistical machine 
learning algorithms. 
 
A typical approach in determining the best combination of sensor locations is to have the 
user wear multiple devices and use only the data from selected devices to evaluate 
performance for the different configurations. 

For example, Figure 10 shows accuracy of activity classification for six locations on the 
users body: wrist, pants pocket, book bag, lanyard (neck), shirt pocket, and belt. For the 
majority of activities (running, sitting, standing, walking) any of the locations would give 
a classification accuracy over 90%. However if descending stairs was important, a wrist 
mounted sensor should be added. For ascending stairs, the book bag sensor is most 
accurate. 

 
 
Figure 10. Activity Recognition Accuracy at Body Locations 
 

Package delivery requires activities beyond those shown in Figure 10 (e.g. lifting, 
sweeping, carrying, climbing a ladder, pushing a cart). For Ergobuddy there is a single 
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master handheld device and five eWatches worn at the Arm, Ankle, Back, Lanyard and 
Wrist positions (Figure 11). The Ankle position is shown in the lower part of Figure 11. 

For a statistical machine learning classifier, there are four layers of processing: raw 
sensor data, feature extraction, classifier, and decision. These four layers can be 
intuitively partitioned into three different partitions, shown in Figure 12. As expected 
there are implications with each partition on how fusion of the data from individual 
sensor is performed, and wireless bandwidth utilization. A brief overview of the three 
partitions are described below:  
   Centralized Aggregation Architecture: This is a commonly used architecture in which 
raw data from all nodes in a network are transmitted to a master device for feature 
extraction and classification. In our experiment the amount of data transmitted is a 
continuous stream at 2 KB/sec. This scheme requires a static set of sensors. 
    Low Bandwidth Architecture: This architecture requires lower radio bandwidth since 
feature vectors are transmitted upon completion, yielding approximately 200/tw 
Bytes/sec. This yields the same accuracy performance of a centralized aggregation 
architecture. Again a static set of sensors is required. 
   Dynamic Architecture: The dynamic architecture further decreases bandwidth usage 
since only the context and confidence information is transmitted every window. This is 
approximately 80/tw Bytes/sec. Decision fusion differs from the previously described 
aggregators in that it allows the number of sensors to be dynamic. Accuracy is expected 
to decrease because only an abstraction of raw data is provided to the final decision 
maker (fuser), but the system becomes resilient to sensor failure and packet loss faults. 
 
Multiple fusion techniques were used for the study and the best performance was offered 
by a scheme in which the average probability of all available sensors’ confidence is used 
to fuse the local decisions into a final decision [Fisk et al 2011]. This fusion technique, 
since it does not require all sensors to be available every time it makes a decision is 
resilient to lost packets and node failures. In a perfect environment we achieve up to 90% 
leave one subject out cross validation classification accuracy on trained package delivery 
activities. The activity set included: sitting, standing, walking, running, lifting, carrying, 
sweeping/mopping, using stairs, using a ladder, and using a cart and there were 11 
subjects total, which yielded approximately 20 hours of data. Multiple machine learning 
algorithms were tested, but best performance, given device constraints, were boosted 
decision trees on the eWatch (lower memory footprint) and random forests on the 
MC9500 master device. Additionally we find that performance scales well when data is 
missing, offering improved performance over a non fusion method at any packet lose rate 
and only 2% worse accuracy performance at 0% packet loss rate.  

The visualization in Figure 12 graphs the F-Measure (harmonic mean of recall and 
precision) of each for each activity. This data is particularly relevant for a customer who 
may be specifically interested in detection of activities with ergonomic consequences. For 
example, in the case of lifting the customer would definitely want to include a lower back 
sensor, perhaps in a lifting belt, and a wrist or ankle sensor to complement the back 
sensor and capture other activities. 
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Figure 11. Multiple sensor placement 

 

 

Figure 12.   Classification Engine Partitions 
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Figure 13.  A visualization of the performance of sensor locations as they vary with 
activity. 
 
In order to test the resilience of the classifier we simulated packet loss from 10% to 90%. 
For completeness the best sensor subsets of one to seven sensors were included in the 
analysis. To visualize the difference in reliability a low bandwidth scheme was also 
included. Figure 14 illustrates the results from this experiment. The primary takeaway 
from this chart is that in all non-ideal environments, 10% and up of packet loss, better  
classification performance was achieved with fusion. For example, there is a 35%  

 

Figure 14.  With the same number of sensors in a 0% loss environment fusion only 
provides 2% worse performance than a low bandwidth model. 
 
accuracy increase in an environment with 50% packet loss. We have also discovered that 
the number of sensors can be reduced in low loss environments for power and bandwidth 
savings. Seven sensors is only marginally better accuracy than three sensors but is more 
appealing configuration in terms of overall encumbrance and power. 
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6. Example Virtual Coaches  
This section will provide brief examples of three more coaches. The Manual Wheel Chair 
Propulsion coach monitors for correct arm movement while propelling the chair. 
IMPACT seeks to motivate users to exercise. Finally, MemExerciser has a goal of 
improving user memory. Two basic technologies are used to identify the system’s 
context.  

6.1 Manual Wheel Chair Propulsion Coach 

The Manual Wheel Chair Propulsion (MWCP) coach explored providing advice to 
manual wheel chair users to help them avoid damaging forms of locomotion. The primary 
form of context for this system is the user’s propulsion pattern. The contexts of self 
versus external propulsion and the surface over which propulsion is occurring are used to 
improve the accuracy of the system’s propulsion pattern classifications.  

The MWCP uses statistical machine learning algorithms to classify propulsion patterns 
and surface material. The top three acceleration characteristics for six common activities 
after a Linear Discriminant Analysis (LDA) transformation (Figure 15) illustrates spatial 
clustering that can be exploited [Maurer et al 2006] to continuously infer physical 
activity.   

 
Figure 15 Feature Space after LDA Transformation 

 

 

 

 

 

Figure 16. eWatch used for wheel chair propulsion data collection. The eWatch was worn 
on the wrist while the wheel chair was self – propelled 
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Figure 17. Four classic propulsion patterns are shown: (A) semicircular (SC); (B) SLOP; 
(C) DLOP; and (D) arcing. The dark bars to the right of each pattern represents the 
beginning of the propulsion stroke. The dark bars to the left of each pattern represent the 
end of the propulsion stroke and the beginning of recovery. 

Both wearable (Figure 16) and wheel chair-mounted accelerometers were used to provide 
contextual information [French et al 2007].  

There are four distinct propulsion patterns that wheelchair users tend to follow (Figure 
17) – semicircular (SEMI), single loop over (SLOP), double loop over (DLOP) and 
arcing (ARC) which have been identified in a limited user study. Of these, the 
recommended propulsion pattern is semi-circular, because the strokes have lower 
cadence and higher stroke angle. Data was collected using all four propulsion patterns on 
a variety of surface types. Machine learning algorithms produced accuracies of over 90%. 
It was also noted that the higher the resistance of the surface traversed, the higher the 
propulsion prediction accuracy. 
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Two common machine learning algorithms, k-Nearest Neighbor (kNN) and Support 
Vector Machines (SVM) with a Radial Basis Function (RBF) kernel were used to classify 
propulsion patterns. We also experimented with simplifying the classification task into an 
Arcing vs. Non-arcing pattern classification in an attempt to improve classifier accuracy. 
The justification for this being that arcing patterns are the most damaging to the users. 
Using this binary classification scheme, we found the average classification accuracy 
increased to the 85-95% range. 

We were able to differentiate between the resistance level of the surface over which 
propulsion was occurring with 70-80% accuracy (Figure 18). It can be seen that the 
classification accuracy tends to be higher, with less variability across patterns, on 
surfaces with higher resistance (dynamometer, low carpet), when compared to surfaces 
with low resistance (tile, asphalt). Classification accuracy for arcing was considerably 
lower than the other propulsion patterns. Namely, the arcing is a subset of each of the 
other patterns, and hence, is most susceptible to misclassification. 

We found that there is differential classification accuracy across subjects, which seems to 
be dependent upon the arm length of the subject. Intuitively, this makes sense since the 
longer the arm, the faster the acceleration of the wrist if the arms are maintaining similar 
velocities. This also means that in order to develop cross-subject classifiers we may need 
to normalize the acceleration profiles with respect to participant arm length.  

We were also able to use the acceleration profile of the wheel chair from the frame-
mounted accelerometer to differentiate between self-propulsion and being pushed with 
~80-90% accuracy. This type of information will be useful in system management, for 
example, we don't want to be providing feedback to the user on their propulsion pattern 
when they are not propelling themselves. 

  

 

  

 

 

 

Figure 18. Classification results using KNN algorithm for various surfaces 

6.2 IMPACT: Improving and Motivating Physical Activity Using Context 
 
Many physical activity awareness systems are available in today's market. These systems 
show physical activity information (e.g., step counts, energy expenditure, heart rate) 
which is sufficient for many self-knowledge needs, but information about the factors that 
affect physical activity may be needed for deeper self-reflection and increased self-
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knowledge. IMPACT explored the use of contextual information, such as events, places, 
and people, to support reflection on the factors that affect physical activity.  
 
IMPACT uses a mobile phone and GPS to monitor step counts and the user’s location 
(Figure 19). The mobile phone also has an easy-to-use interface to input what the user is 
doing and whom he/she is with. The pedometer application stores the user’s step counts 
per minute and displays the user’s aggregate step counts for the day and for each of the 
past five minutes. The GPS module scans the user’s location every minute, which is then 
stored by the phone application. The phone application collects additional contextual 
information using activity-triggered experience sampling. When the user is active or 
inactive, the phone vibrates to prompt the user to select from a list: what they were doing 
(events) and whom they were with (people). The list is pre-filled with five common 
activities (e.g., grocery shopping, walking) and five usual companions (e.g., friends, 
family, co-workers), but users can enter new labels. We did not implement automatic 
labeling of events and people because such classification requires additional sensors that 
may not be robust enough for a long-term field study or are still not mainstream and 
widely available. 

 
 
 

 
Figure 19. Monitoring device for the second version of IMPACT. Nokia 5500 Sport (left) 
and detailed view of the display (right). 
 
There are many personal health applications developed for smart phones, including some 
recent ones on turning walking into a game by Mobile Adventures 
(www.mobileadventurewalks.com) , calorie counter and diet tracker by MyFitnessPall 
(www.myfitnesspal.com), and Pedometer PRO GPS+ by Arawella 
(mobile.viaden.com/pedometer).  The Nike+iPod system (www.nikeplus.com) monitors 
running time and uploads the data online for visualization.  Most of these systems do not 
go beyond performance numbers. The IMPACT research builds on these systems by 
integrating contextual information.  
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Figure 20.  Visualizations in the IMPACT website showing step counts with contextual 
information. Detailed step counts graph with contextual  annotations (top) and context 
graph (bottom right). 
 
The IMPACT system also includes a web interface (Figure 20) that shows the association 
between daily activities and step counts on 1) a timeline of the user’s steps with time 
segments labeled with contextual information; and 2) a histogram of the total number of 
steps associated with a particular label (e.g., 400 steps at work, 1300 steps at the grocery 
store).  Instead of manually entering step counts and contextual information on the web 
site, a desktop application synchronized data between the phone and the new web site. If 
the user needs to add more contextual information after uploading, they can label periods 
of time on the visualizations. We also implemented two other versions of the system: 
Steps-Only and Control. The Steps-Only system only monitored step counts and the web 
site only showed daily step counts without any contextual information. The mobile phone 
still alerted users when they have been active and inactive, but they were just asked to 
rate how active they were on a 5-point Likert scale (not at all active to very active), to 
make the interruption comparable to the IMPACT version. The Control system also only 
monitored step counts, but we removed visualizations on the web site. Essentially, it is 
similar to an off-the-shelf pedometer. 
 
We conducted an 8-week long study with 49 participants with an age range of 18 to 60: 
four weeks for a Baseline phase and four weeks for an Intervention  phase. During the 
Baseline phase, all participants used the Control system (step counts). During the 
Intervention phase, participants were randomly assigned to three types of interventions: 
Control, Steps-Only, and IMPACT (step counts and the context in which those steps were 
taken: location, type of activity, and whom the person was with). The evaluation revealed 
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three major findings. First, when given access to contextual information and physical 
activity information, users can and do make associations between the information helping 
them become aware of factors that affect their physical activity. Second, reflecting on 
physical activity and contextual information can increase people’s awareness of 
opportunities for physical activity. Lastly, automated tracking of physical activity and 
contextual information increases the amount of data collected by the user, which benefits 
long-term reflection, but may be detrimental to immediate awareness.  
 
We believe these results are applicable to the use of contextual information to reveal 
factors that affect other types of behaviors, for example, diabetes management and energy 
conservation. These contributions suggest that personal informatics systems should 
further explore incorporating contextual information. 
 
6.3 MemExerciser  
 
People with episodic memory impairment (EMI), such as those with early-stage 
Alzheimer’s disease, struggle with maintaining their sense of self [Conway 1990]. While 
they can still remember experiences from the distant past, recent experiences are difficult 
to recall. As a result, their window of remembered experiences shrinks as their memory 
abilities decline, leading to feelings of frustration, anger or depression [Steeman, et al 
2006]. Over 26 million people worldwide suffer from Alzheimer’s disease [American 
Health], but the effects are not limited to these individuals. Rather, the disease also 
affects the well-being of family caregivers as they have to provide the cognitive support 
necessary for aging in place. Caregivers usually help the person with EMI remember the 
details of an experience by providing cues, small details of the experience from which the 
person with EMI can use to recollect other details and mentally relive the experience. 
However, caregivers often must repeatedly provide cues for the same experience again 
and again which can lead to feeling overburdened, burnt out, or even depressed [Almbert 
et al 1997]. 

Lifelogging systems automatically record a log of a user’s personal experience in the 
form of pictures, sounds, actions, activities, or raw sensor data using wearable or 
embedded sensors such as cameras, audio recorders, location tracking, and bodily 
sensors. The data collected by lifelogging systems can provide memory cues to help 
people remember the original experience [Sellen et al 2007]. However, the sheer amount 
of data collected can also be overwhelming.  Thus a functional cognitive support system 
must embed an intelligence system to select and display appropriate data. 

MemExerciser, a lifelogging system , is specifically designed for people with episodic 
memory impairment and their caregivers. The system records and supports reminiscence 
for significant personal experiences that the user wants to remember in detail. The goals 
of the system are to maximize the independence of the person with EMI and at the same 
time minimize the burden on their caregiver. The system provides an appropriate amount 
of cueing assistance for the person with EMI to reminisce about the experience without 
needing to bother the caregiver repeatedly to provide additional cues. 
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Figure 21. MemExericser System Design: Capture, Selection, and Review 

 

MemExerciser consists of three subsystems (Figure 21): passive experience capture, 
hybrid cue selection (CueChooser), and cue review (CueViewer).  

The system captures both the visual and audio content of the experience as well as 
contextual information such as location, movement, and light levels. People with memory 
impairment often forget to explicitly trigger a device (e.g., camera) to record. The system 
uses a passive capture approach that requires the user only to turn it on and allow the 
system to manage when to trigger recording. The capture system consists of three devices 
(Figure 22): the Microsoft SenseCam [Hodges et al 2006], an off-the-shelf digital voice 
recorder, and an off-the-shelf Wintec GPS location tracker. The SenseCam is a wearable 
digital camera that automatically takes pictures when triggered by the onboard light 
sensor, infrared sensor, accelerometer, or simple timer. With an initial reminder from the 
caregiver, the person with EMI can switch on these three capture devices before each 
experience, wear the camera around the neck, place the audio recorder in their top shirt 
pocket, carry the GPS logger in their pocket and can simply enjoy their experience 
without needing to stop and tell the system to record. 

With a passive capture approach mentioned above, the system can capture a large amount 
of data. To identify the most salient memory cues to present to the person with EMI, the 
lifelogging system employs a hybrid approach that involves both automated computer 
analysis of the lifelog as well as the expertise of the caregiver. CueChooser is a software 
application that assists the caregiver in selecting the most salient memory cues using 
automated content and context analysis.  

 

Figure 22. Capture devices: Microsoft SenseCam, digital voice recorder, GPS logger. 

Prior work [Lee and Dey, 2007] has identified that the most salient memory cues are 
determined by the type of experience. There are people-based, place-based, action-based, 
and object-based experiences. The caregiver can specify the type of the experience and 
CueChooser (Figure 23) will apply the appropriate content and context analyses to 
suggest potentially good cues. For people-based experiences, CueChooser identifies 
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photos with faces using computer vision. For place-based experiences, it uses a 
combination of GPS data and the SenseCam’s accelerometer data to determine when the 
user enters, is near, or is staying in a particular place. Similarly for object-based 
experiences, CueChooser can use GPS or accelerometer data to find when the user is 
standing still and looking at an object of interest. For action-based experiences, image 
summarization techniques [Doherty, et al 2007] are used to find cues from different 
scenes. However, good memory cues have other characteristics that computers have 
difficulty identifying such as distinctiveness and personal significance [Lee and Dey, 
2007]. The CueChooser interface allows the caregiver to browse through the 
automatically suggested photos to select content to include in a slideshow narrative. 
Caregivers can add their own annotation using their voice or drawing on each photo in 
the slideshow narrative. 

  

Figure 23. MemExerciser’s CueChooser user interface. The caregiver can view system-
suggested cues in constructing a narrative, and provide visual and audio annotations to 
selected cues. 

  

Figure 24. MemExerciser’s CueViewer user interface: tapping on the screen displays 
pictures, and plays back lifelog audio and caregiver’s voice annotation. 

The lifelogging system presents the lifelog data in a way that maximizes the opportunities 
for the person with EMI to think deeply about each cue to trigger his own recollection of 
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the original experience. Caregivers normally reveal cues one at a time to allow the person 
with EMI to remember the rest of the experience on their own [Lee and Dey, 2007]. 
MemExerciser (Figure 24) includes a software application designed to run on a Tablet 
PC. Based on the selection of photos, sounds, and annotations from the caregiver with the 
CueChooser application, MemExerciser allows the person with EMI to step through all 
the cues at their own pace. The cue review process is designed to be challenging enough 
to stimulate their memory processes (acting as a form of mental exercise) but also be 
supportive enough so that people with EMI can feel as if they are mentally reliving the 
experience. Instead of passively playing back each photo and sound like a movie, 
MemExerciser shows only one picture at a time and gives the user control over how long 
they want to examine each picture. Recorded audio and the caregiver’s annotation are 
progressively revealed to facilitate the user’s self-recollection. With MemExerciser, the 
person with EMI can feel as if his caregiver is walking him through the cues but with the 
benefit of going at their own pace and not repeatedly bothering the caregiver. 

A pilot field evaluation was conducted of the lifelogging system with three people with 
EMI (all associated with the early stages of Alzheimer’s disease) and their spousal 
caregivers. The self-guided review approach of the lifelogging system was compared 
with a caregiver-guided approach [Hodges, et al 2006] where the caregiver repeatedly 
guides the person with EMI through only the photos taken with the SenseCam. 
Participants review the cues every other day during the two weeks after their experience. 
It was found that the self-guided approach resulted in a statistically significantly greater 
number of details freely recalled four weeks after the experience (Figure 25) as well as 
greater confidence in memory when assessed using the Meta-memory in Adulthood 
Questionnaire (Figure 26). Caregivers expressed that the self-guided approach freed them 
from repeatedly going through the same cues again and again. 

In summary, MemExerciser is a lifelogging system to assist people with episodic 
memory impairment to reminisce about recent experiences. The system uses a passive 
capture approach so that the person with EMI does not have to remember to initiate 
capture. The system uses both automated computer analysis and the expertise of the 
caregiver to select out the most salient cues from the lifelog. Finally, the system 
structures the cue review interaction so that it allows the person with EMI to think more 
deeply about each cue and remember the details of their experiences without repeatedly 
burdening the caregiver. 
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Figure 25. Mean Number of Details Recalled 
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Figure 26. Participant’s  self-assessed memory confidence using the Metamemory in 
Adulthood Questionnaire 

7. Summary 
 

We have introduced five elements (prescription – input, sensor processing, user 
interaction, coaching model, user engagement) that appear in the architecture of virtual 
coaches. Further, for coaches using multiple sensors and the statistical machine learning 
coaching model three partitions (centralized, low bandwidth, and dynamic) are evaluated 
for activities typical of the package delivery domain. Five virtual coaches are described 
and evaluated with a variety of user engagements. 

Virtual coaches is a highly interdisciplinary area of research and development that 
combines the expertise and science from the social sciences, informatics, computing 
sciences, health sciences and engineering. The goal is to employ theory from social 
science, cognitive science, and economics.  Social science models of collaborative 
behavior can be used as a basis for determining the nature of the social setting.  Theories 
and observations of which clues humans use to interrupt a social situation and gain 
attention can form the basis for sensor data processing and software decisions in virtual 
coaches. By mapping observable parameters into cognitive states, the computing system 
can estimate the form of interaction that minimizes user distraction and the risk of 
cognitive overload. 
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8. Lessons Learned 

 

People fundamentally prefer to do things without assistance from other people, even if it 
takes much more time. 
 
It is possible and valuable to auto-tune user interactions by incorporating contextual 
information, gathered about the user herself, her environment and her situation. 
 
Clinicians and informal caregivers are in fact willing to configure and customize QoLT 
systems. QoLT developers need to make it convenient for them to do so. 
 
People will trade some sense of privacy for enhanced ability to gain information about 
their environment and situation. 
 
The user’s input has a very high priority in the system design, in particular for the 
graphical user interface (GUI). Asking users what they want, then about their feedback, 
as well as their evaluation of the system, is the right strategy to pursue toward a 
successful outcome. 
 
 

 

References 

[Almbert et al 1997] Almbert, B., Grafstrom, M. and Winblad, B. (1997). Caring for a 
demented elderly person – burden and burnout among caregiving relatives. Journal of 
Advanced Nursing, 25 (1), 109-116. 
 
[American Health] American_Health_Assistance_Foundation. 
http://www.ahaf.org/alzdis/about/adabout.htm. 
 
[Conway 1990] Conway, M. (1990). Autobiographical memory. Open University Press, 
Milton Keynes, 1990. 
 
[Doherty et al 2007] Doherty, A.R., Smeaton, A.F., Lee, K. and Ellis, D. (2007). 
Multimodal Segmentation of Lifelog Data. RIAO, Pittsburgh, PA, 2007. 
 
[French et al 2007] French, B., Siewiorek, D.P., Smailagic, A., Deisher, M. Selective 
Sampling Strategies to Conserve Power in Context Aware Devices, iswc, pp.1-4, 2007 
11th IEEE International Symposium on Wearable Computers, 2007. 
 
[French et al 2010] French, B., Siewiorek, D.P., Smailagic, A., Kamarck, T. Lessons 
Learned Designing Multi-Modal Ecological Momentary Assessment Tools, Journal of 



 27 

Technology and Disability, Special Issue on Quality of Life Technology, IOS Press, Vol. 
22, No. 1-2, 2010, pp. 41-51.  

[Fisk et al 2011] Fisk, S.,  Siewiorek, D.P., Smailagic,  A. Increasing Multi-Sensor  
Classifier Accuracy Through Personalization and Sensor Fusion, Proceedings of the 
International Symposium on Quality of Life Technology, Toronto, Canada, June 2011. 
 
[Hodges et al 2006] Hodges, S., Williams, L., Berry, E., Izadi, S., Srinivasan, J., Butler, 
A., Smyth, G., Kapur, N. and Wood, K. (2006). SenseCam: a Retrospective Memory Aid. 
Proc. UBICOMP. 81 - 90. 
 
[Lee 2007] Lee, M.L. and Dey, A.K. (2007). Providing Good Memory Cues for People 
with Episodic Memory Impairment. Proc. ASSETS 2007. 131 - 138 
 
[Liu 2010] Liu, H., Cooper, RM., Cooper, RA., Smailagic, A., Siewiorek, D., Ding, D., 
Chuang, F. (2010). Seating virtual coach: A smart reminder for power seat function 
usage, Journal of Technology and Disability, Volume 22, Number 1-2, 53-60 

[Liu 2011] Liu, H-Y., Grindle, G., Chuang, F-C., Kelleher, A., Cooper, R., Siewiorek, D., 
Smailagic, A, Cooper, R. User preferences for indicator and feedback modalities: A 
preliminary survey study for developing a coaching system to facilitate wheelchair power 
seat function usage, IEEE Pervasive Computing, Vol. 10 (in press), 2011. 
 
[Maurer et al 2006] Maurer, U., Smailagic, A., Siewiorek, D.P., Deisher, M. Activity 
Recognition and Monitoring Using Multiple Sensors on Different Body Positions. BSN 
2006: 113-116 
 
[Plarre et al 2011] Plarre, K., Raij, A., Hossain, S., Ali., A., Nakajima ,M., Al’Absiz, M., 
Ertin, E.,  Kamarck, T., Kumar, S., Scott, M., Siewiorek, D.P., Smailagic, A., Wittmers, 
L. Continuous Inference of  Psychological Stress from Sensory Measurements Collected 
in the Natural Environment, ACM/IEEE International Conference on Information 
Processing in Sensor Networks (IPSN 2011), Chicago, IL, 2011. 
 
[Sellen et. al 2007] Sellen, A.J., Fogg, A., Aitken, M., Hodges, S., Rother, C. and Wood, 
K. (2007). Do life-logging technologies support memory for the past?: an experimental 
study using sensecam. Proc. CHI 2007.81-90. 
 
 
[Siewiorek 1994] Siewiorek, D.P., Smailagic, A., and Lee, J.C. (1994). An 
interdisciplinary concurrent design methodology as applied to the Navigator wearable 
computer system. Journal of Computer and Software Engineering, Ablex Publishing 
Corporation, 2(3), 259-292. 

[Siewiorek 2010] Siewiorek, D.P., Smailagic, A., Courtney, K., Matthews, J., Bennett, 
K., Cawley, R., Liao, X., Vartak, M,, White, N., Yates, J. Multi-User Health Kiosk, Proc. 
International Symposium on Quality of Life Technology, Las Vegas, NV, June 2010. 



 28 

[Siewiorek, Smailagic 2008] Virtual Coach for Power Wheelchair Users, Institute for 
Complex Engineered Systems Technical Report, Carnegie Mellon University. 

[Smailagic 1995] Smailagic, A., Siewiorek, D. P. et. al. (1995). Benchmarking an 
interdisciplinary concurrent design methodology for electronic / mechanical design. Proc. 
ACM / IEEE Design Automation Conference, 514-519. 

[Smailagic, Siewiorek 2005] Smailagic, A., Siewiorek, D. P.,  Maurer, U., Rowe, A., 
Tank, K., eWatch: Context Sensitive System Design Case Study, Proc. IEEE Symposium 
on VLSI,  98-103 

[Steeman et al 2006] Steeman, E., de, C., Dierckx, B., Godderis, J. and Grypdonck, M. 
(2006). Living with early-stage dementia: a review of qualitative studies. Journal of 
Advanced Nursing, 54. 722-738. 

 


